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Abstract

Steady state solutions for spontaneous thermal ignition in a unit sphere are considered. The
multiplicity of unstable, intermediate, steady state, temperature profiles is calculated and
shown for selected parameter values. The crossing of the temperature profiles corresponding
to the unstable, intermediate, steady states is exhibited in a particular case and is proven in
general using elementary ideas from analysis. Estimates of the location of crossing points
are given.

1. Introduction

Models of spontaneous thermal ignition have a long history, beginning with the Russian
literature as listed by Frank-Kamenetskii [7]. A parallel literature in astrophysics has
examined many similar problems; for example, Chandrasekhar [5]. In both cases,
spherically geometric temperature distributions have been of considerable interest and
numerical, as well as analytical, effort has been expended in the cause of obtaining
complete solutions.

It was first recognised by Gel'fand [9], Fujita [8] and Steggerda [18] (see also
Enig [6], Gray [11], Aris [1, p. 48] and Zeldovich et al. [20, p. 159]) that there can
be a very large number of solutions for the steady-state, reaction-diffusion equation
in spherical geometry with an exponential reaction term or a polynomial reaction
term of sufficiently high degree (greater than 5). This was initially regarded as a
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mere mathematical curiosity, but later investigators have wondered if there could be
a physical role for the gross multiplicity of steady states, as well as examining the
bifurcation in greater detail; for example Ash et al. [2], Brindley et al. [4], Balakrishnan
et al. [3], Kapila et al. [14], Maddocks [15], Weber et al. [19].

In the present paper, we wish to examine the spatial distributions of these multiple
steady states. We will demonstrate numerically and then prove rigorously that the
existence of multiple unsteady steady states necessitates that their spatial distributions
must cross (already suggested diagrammatically, but never formally stated in earlier
work as reported by Zeldovich et al. [20, p. 160]). Furthermore, we will give estimates
for the crossing points and the associated function values.

2. Steady state solutions for spontaneous thermal ignition in a sphere

If we seek a balance between the effect of diffusional fluxes of heat and an exother-
mic reaction / ( « ) , then it can be shown (Frank-Kamenetskii [7], Weber, Wake and
Balakrishnan [19] and references therein) that the temperature variable u must satisfy

V 2 M + / ( M ) = 0. (1)

This equation represents a steady-state and non-dimensionalised statement of the
principle of conservation of energy and as such is the starting point for many investi-
gations into thermal ignition theory.

In earlier modelling and theoretical work, the reaction function / (u) was taken as
being proportional to the exponential function (that is, Se"). However, more recently,
it has been conclusively demonstrated by Gray and Wake [12] that there are tangible
benefits (such as a more simple correspondence between the ambient temperature and
bifurcation parameters) if the full temperature dependence of the Arrhenius function
is retained. Consequently, we shall focus our investigation on (1) with/ (M) = Xe~x/u

(A. is a constant dependent upon the thermo-physical properties of the exothermic
material under consideration). Furthermore, Gidas, Ni and Nirenberg [10] have
shown that all positive solutions of (1) satisfying Dirichlet boundary conditions are
radially symmetric, so we use spherical coordinates and (1) then becomes

£ + ?*W./._a (2,
dr2 r dr

Naturally this equation will need to be solved for the temperature u, as a function
of the radial coordinate r and the parameter A, subject to the appropriate Dirichlet
boundary conditions.

In order to keep the subsequent analysis and presentation of results reasonably
simple, we shall restrict our study to the case where the exterior is held at a constant
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FIGURE 1. Bifurcation diagram showing the central temperature M(0) as a function of ambient temperature
ua for fixed X = 1012 for a unit sphere. Unstable, intermediate, steady state profiles are labelled B, C, D,
E and F for ua = 0.0292.

temperature; called the ambient temperature and denoted ua. Due to the use of
dimensionless parameters, we can assume, without loss of generality, that the sphere
has unit radius. Hence our boundary conditions can be written as

Tr
= 0,

r = 0

= ua.

(3a)

(3b)

The first of these is merely a statement requiring bounded solutions at the centre of
our spherically symmetric domain. Additionally, it should be noted that our choice of
reasonably simple boundary conditions is not essential for the surprisingly complex
solutions which we will display. It does, however, make our task of presenting,
explaining and analysing the results somewhat easier and (hopefully) less confusing.

Solutions of (2) subject to boundary conditions (3) need to be constructed numer-
ically (with the possible exception of a series approach for the simple exponential
reaction as detailed in Frank-Kamenetskii [7]). Certainly there has been consider-
able effort in this direction and a consistent picture of the results has emerged. For
sufficiently large X. and for some 0 < ua < 1/4, there is found to exist one low
temperature solution, stable to temporal perturbations, and one high temperature so-
lution, also stable to temporal perturbations. In addition, there exists a large number
of intermediate solutions, all of which are unstable to temporal perturbations. This
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FIGURE 2. Unstable, intermediate, steady state profiles corresponding to points in Figure 1 (that is,
ua = 0.0292). Note the different scales in (a) and (b) required in order to clearly display these profiles.

is best displayed and understood with a bifurcation diagram, plotting the maximal
steady state temperature H(0) as a function of a bifurcation parameter; for example
ua, and holding the other parameter, X, constant. In Figure 1, the result for X = 1012,
a realistic value for milk powder (see Weber et al. [19]), is shown and it can be clearly
seen that for certain values of ua, there exist five intermediate steady states; all of
which turn out to be unstable if analysed by a linear, temporal, stability analysis or
if analysed numerically. Note that due to scaling difficulties, the high temperature
branch is not shown on Figure 1.

The bifurcation diagram was obtained using MATLAB™. The results were checked
by using the path following software AUTO97.

3. Spatial profiles of steady state solutions

Spatial profiles of the steady state temperature were also obtained numerically by
a shooting method; integrating from the already known central temperature out to the
temperature at the exterior of the sphere («„).

As an example we display in Figures 2 (a) and 2 (b) the results for the points labelled
B, C, D, E and F in Figure 1. It is apparent that these five points all have the same values
for the parameters X and ua, yet they correspond to different, unstable, intermediate,
temperature profiles. Furthermore, it can be clearly seen that these profiles cross each
other so that the one with the highest value for M(0) ends up below all of the others
near the exterior of the sphere. To see this, it is necessary to note that different scales
were required on the axes so that the distributions could be clearly displayed. We also
note the natural ordering of the crossing points, as indicated schematically in Figure 3.
Namely, if M,(0) < u, (0) < uk(0) for intermediate steady states, then the coordinate
values where crossing occurs is given by rjk < rik < /•/,. Part of this will be rigorously
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FIGURE 3. Schematic of the unstable, intermediate, steady state profiles showing the ordering of the
crossing points.

proven in Section 5.

4. Crossing as a natural requirement of the evolution of initial conditions

Having noted from the numerical results that the spatial distributions of the unstable
intermediate steady states cross, we naturally wonder if this is a general requirement,
or if we are considering a special case. Prior to proving that this is indeed a general
requirement (in the next section) we shall consider reasons for this which follow
from ideas on the evolution of initial conditions applied to the semi-linear parabolic
equation

u, = urr + - ur
r

Xe (4)

Assume that there exist two, unstable, intermediate, steady state profiles as solutions
to (4) with boundary conditions (3), that their profiles do not cross on r e [0, 1 ] and
that there is no stable steady state profile in between these two. Then, as an initial
condition begin with the average of these two, unstable, intermediate, steady state
profiles. Clearly the evolution of this initial profile will be constrained to lie between
the unstable profiles (for such equations, extremum principles, for example, Protter
and Weinberger [17], prove that profiles everywhere below cannot cross at some later
time). At the same time, the initial profile cannot find a steady state to evolve towards,
so it would seem that it must be ever changing in time. Norbury and Wake [16]
have proven that evolving solutions to partial differential equations such as (4) cannot
oscillate with a fixed frequency. Consequently the only fate for such an initial profile
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would be to evolve randomly in time while being constrained to lie in between the
two unstable, intermediate, steady state profiles. This is a most unlikely scenario and
we are led to conclude that our supposition that the profiles do not cross is incorrect.
Hence we expect the crossing of unstable, intermediate, steady state profiles to be
required.

5. Crossing proof and estimates for crossing points

Multiply (2) by r2 and integrate from 0 to r, obtaining

r2u'(r) = - f s2f(u(s))ds < 0, (5)
Jo

so that every solution u(r) of (2) and (3) is monotone decreasing on [0,1]. Define
g(u, M,) = (/(w) —/(w,))/(u — M,) (where M, is some solution to be defined later)
and differentiate with respect to u yielding

dg /(«) r . 2 //(«••) A l /(») „ , _
-r- = -r, o " - « , + « -7TT ~ l ) \ = ~Ti 2̂ G ( M ) ( 6 )

du u2(u-Ui)2l V/(") / J M2(M-M,)2

with G(u) defined to be the contents of the square bracket. Then G(ui) = 0 and
G'(w) = (2M - 1)(/(«,-)// («) - 1) > 0, for ut < u < 0.5, so G(M) is positive and
g(«, u,) is strictly increasing in Uj < u < 0.5. Denote the low temperature stable
solution by Mmin(r), then any other solution u(r) must satisfy umin(r) < u(r) at every
point in the domain 0 < r < 1.

THEOREM 1. Let u\(r) and M2(r) be two intermediate solutions of (2) and (3), with
"min(O) < Mi(0) < u2(0) < 0.5. Then there is at least one value 0 < rn < 1 such
thatux(rn) = u2(ri2).

PROOF. Assume that u2 > ux on [0, 1) and define u, = u, — umin, i = 1, 2, so that
v2 > vt > 0 in [0, 1) and Ui(l) = u2(l) = 0. By Green's theorem

I (vlV
2v2-v2V

2vl)dV= f (vl(v2)n-v2(vl)n)dS = 0. (7)
JlrHI J\r\=l

However, V2u, = V2«, - V2«min = / (urain) - / (M,), SO that (7) becomes

0 = /
J\r\<

5 (8)

which is a contradiction, since g(ut(r), umin(r)) < g(u2(r), umin(r)) as g is strictly
increasing.
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THEOREM 2. Let uu u2, and w3 be three intermediate solutions of (2) and (3), with
«min(0) < «i(0) < u2(0) < «3(0) < 0.5. Then r23 < rl3 and r23 < rn.

PROOF. The functions z = «3 — «i and u> = «2 — «i satisfy the boundary value
problems

0, z'(0) = z ( l ) = 0 ,

( r V ) ' + r2*(«i. w2)u; = 0, u/(0) = w(l) = 0.

Assume /-23 > rn, so that w3 > u2 > ut and ^(MI, M2) > ,g(Mi, M2) on |r| < r]2-
Multiply the first equation in (9) by w and the second by z and subtract:

"(rV)' - (r2w')'z + r2[g(uu u3) - g(uu u2)]zw = 0.

Integrating over (0, r12) yields

0< [ar*[g(ul,u3)-g(ul,u2)]zwdr = - f'\(r2z')'w - (r2w')'z]dr
Jo Jo

= [(r2w')z - (r2z')wYo
n = r2

2z(rl2)w'(rl2) < 0

which is impossible. Hence r23 < ru and by continuity it follows that r23 < rl3.

We have not been able to prove that r)3 < ri2 although the numerical profiles suggest
this is true. The proofs of Theorems 1 and 2 can be generalized to ^-dimensional
space.

THEOREM 3. Let u\ and u2 be two intermediate solutions of (2) and (3), with
«min(0) < «i(0) < M2(0) < 0.5. Then, if p is the last value in (0, 1) at which

= u2(p),

^ (10)

PROOF. Let w = u2 — u{ satisfy (9). Then y = rw is a nontrivial solution of the
boundary value problem in region (p, 1):

y" + g("i> u2)y = 0 in (p, 1), y(p) = y(l) = 0. (11)

By Lyapunov's theorem (see for example Hartman [13, p. 346]), since y has at least
two zeros in [p, 1],

-r^—< I g(ul(r),u2(r))dr<g(u2(p),u2(pMl-p)=f'(ui(p))(\-p).
1 - P JP
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REMARK. Since f'(u) is monotone increasing in 0 < u < 0.5, it is useful to
determine where/'(M0) = 4. For example this occurs when X = 1012 at approximately
M0 = 0.0300724586. Consequently all pairs of intermediate solutions must have their
last crossover above u0. This is certainly the case in Figure 2. Further, the initial
values of the intermediate solutions must exceed u0, suggesting that u0 determines the
rightmost limit point in Figure 1.

6. Conclusion

The evolution of certain initial conditions is clearly influenced by the crossing of
the infinity of unstable steady states. We have proven and demonstrated interesting
properties of the spatially distributed unstable steady states, in particular the crossing
over of the distributions which is a necessary consequence of well known properties of
the ordinary differential equation, as well as the instability of the intermediate steady
states. The consequences for the crossing with the inclusion of fuel consumption is
currently under investigation.
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