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Abstract Let v be a henselian valuation of a field K with value group G, let v̄ be the (unique) extension
of v to a fixed algebraic closure K̄ of K and let (K̃, ṽ) be a completion of (K, v). For α ∈ K̄ \ K, let
M(α, K) denote the set {v̄(α − β) : β ∈ K̄, [K(β) : K] < [K(α) : K]}. It is known that M(α, K) has
an upper bound in Ḡ if and only if [K(α) : K] = [K̃(α) : K̃], and that the supremum of M(α, K), which
is denoted by δK(α) (usually referred to as the main invariant of α), satisfies a principle similar to the
Krasner principle. Moreover, each complete discrete rank 1 valued field (K, v) has the property that
δK(α) ∈ M(α, K) for every α ∈ K̄ \ K. In this paper the authors give a characterization of all those
henselian valued fields (K, v) which have the property mentioned above.
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1. Introduction

Let v be a valuation of a field K with value group G and let v̄ be a fixed prolongation
of v to an algebraic closure K̄ of K with value group Ḡ. In 1936, MacLane [9] gave an
iterative method of describing all extensions of v to a simple transcendental extension
K(x) of K when v is a discrete valuation of rank 1. In the general case using some ideas
of MacLane, Alexandru et al . [1,2] gave a description of all extensions of v to K(x) by
means of ‘minimal pairs’. A pair (α, δ) ∈ K̄ × Ḡ is said to be minimal (with respect to
K and v̄) if, whenever β ∈ K̄ satisfies v̄(α − β) � δ, then [K(α) : K] � [K(β) : K]. It
is clear that when α ∈ K, then (α, δ) is a minimal pair for each δ ∈ Ḡ and that a pair
(α, δ) in (K̄ \ K) × Ḡ is minimal if and only if δ is greater than each element of the set
M(α, K) defined by

M(α, K) = {v̄(α − β) : β ∈ K̄, [K(β) : K] < [K(α) : K]}. (1.1)

This led to the invariant δK(α) defined for those α ∈ K̄ \ K for which M(α, K) has an
upper bound in Ḡ, by

δK(α) = sup{v̄(α − β) : β ∈ K̄, [K(β) : K] < [K(α) : K]}, (1.2)
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where, for the sake of definition of supremum, Ḡ may be viewed as a subset of its Dedekind
order completion. Alexandru et al . proved that if (K, v) is a complete discrete rank 1
valued field, then M(α, K) has an upper bound in Ḡ and, moreover, δK(α) ∈ M(α, K)
for each α ∈ K̄ \ K (see [2, Theorem 3.9] and [11, p. 74]). They also proved that δK(α)
satisfies a fundamental principle [10, Remark 3.3] stated below which is similar to the
well-known Krasner principle [4, 16.8] satisfied by the Krasner constant.

Fundamental Principle. Let (K, v) be a complete discrete rank 1 valued field and
(K̄, v̄) be as in the foregoing text. If α, β ∈ K̄ are such that v̄(α − β) > δK(α), then
v̄(K(α)) ⊆ v̄(K(β)) and R(K(α)) ⊆ R(K(β)), where R(L) denotes the residue field of
the valuation obtained by restricting v̄ to a subfield L of K̄.

In 1999 it was proved that δK(α) satisfies the above principle when (K, v) is a henselian
valued field of any rank (see [7]). However, unlike in the discrete rank 1 case, there are
instances when δK(α) ∈ Ḡ but fails to belong to M(α, K) (see Example 2.1). This has
led us to consider the following problem.

How can we characterize those henselian valued fields (K, v) for which to each
α ∈ K̄ \ K, there corresponds β ∈ K̄ satisfying [K(β) : K] < [K(α) : K] and
δK(α) = v̄(α − β)?

In the present paper, we solve this problem by proving the following theorem.

Theorem 1.1. Let v be a henselian valuation of any rank of a field K and let (K̄, v̄)
be as above. The following two statements are equivalent.

(i) To each α ∈ K̄ \ K there corresponds β ∈ K̄ with [K(β) : K] < [K(α) : K] such
that δK(α) = v̄(α − β).

(ii) For each θ ∈ K̄, K(θ)/K is a defectless extension with respect to the valuation
obtained by restricting v̄.

Recall that a finite extension (K ′, v′) of a henselian valued field (K, v) is said to be
defectless if [K ′ : K] = ef , where e and f are, respectively, the index of ramification and
the residual degree of v′/v.

The above theorem has, in turn, given rise to the following problem.

For a henselian field (K, v), if K(θ)/K is defectless for each θ ∈ K̄, then is
it true that every finite extension of (K, v) is defectless?

An example has been given in the last section to show that the answer to the above
question is ‘no’ in general.

2. Definitions, notation and some preliminary results

In what follows in this paper, (K, v) is a henselian valued field of any rank with value
group G and v̄ is a (unique) extension of v to a fixed algebraic closure K̄ of K with value
group Ḡ. For an overfield L of K contained in K̄, R(L) and G(L) will, respectively, stand
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for the residue field and the value group of the valuation of L obtained by restricting
v̄. For a finite extension L/K, def(L/K) will stand for the defect of the valued field
extension L/K with respect to the valuation vL obtained by restricting v̄ to L, i.e.

def(L/K) = [L : K]/ef,

where e and f are the index of ramification and the residual degree of vL/v. By the degree
(over K) of an element α ∈ K̄ we shall mean the degree of the extension K(α)/K. For
any ξ in the valuation ring of v̄, ξ∗ will denote its v̄-residue, i.e. the image of ξ under the
canonical homomorphism from the valuation ring of v̄ onto its residue field. We need the
following theorem, which is already known (see [7]); its proof is omitted.

Theorem A. Let (K, v) be a henselian valued field of any rank. Let α, β ∈ K̄ be such
that v̄(α − β) > v̄(α − γ) for any γ ∈ K̄ satisfying [K(γ) : K] < [K(α) : K], then

(i) G(K(α)) ⊆ G(K(β)),

(ii) R(K(α)) ⊆ R(K(β)), and

(iii) def(K(α)/K) divides def(K(β)/K).

If f(x) is a fixed non-zero polynomial in K[x], then using Euclidean algorithm, each
F (x) ∈ K[x] can be uniquely represented as a finite sum

∑
i�0 Fi(x)f(x)i, deg Fi(x) <

deg f(x), called the f -expansion of F . Let (α, δ) ∈ K̄ × Ḡ be a minimal pair. The valua-
tion w̄α,δ of K̄(x), defined on K̄[x] by

w̄α,δ

(∑
i

ci(x − α)i

)
= min{v̄(ci) + iδ}, ci ∈ K̄, (2.1)

will be referred to as the valuation defined by the pair (α, δ). The description of w̄α,δ on
K[x] is given by the already known theorem [6, Theorem 1.4] stated below.

Theorem B. Let w̄α,δ be the valuation of K̄(x) defined by a minimal pair (α, δ). If
f(x) is the minimal polynomial of α over K, then for any F (x) ∈ K[x] with f -expansion∑

i Fi(x)f(x)i, we have

w̄α,δ(F (x)) = min{v̄(Fi(α)) + iw̄α,δ(f(x))}. (2.2)

The following theorem will be used in the sequel. It is an immediate consequence
of the well-known fact that completion of a henselian valued field is henselian and of
Corollary 3.10 in [2].

Theorem C. Let (K̃, ṽ) be a completion of a henselian valued field (K, v), and let
α be an element of K̄ \ K. Then M(α, K) has an upper bound in Ḡ, if and only if
[K(α) : K] = [K̃(α) : K̃].

It may be pointed out that the supremum of M(α, K) being in G does not necessarily
imply that it belongs to M(α, K). Here is an example to support this assertion.
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Example 2.1. Let k0 be the algebraic closure of the finite field F2 of two elements,
and let K0 = k0((T )) be the field of Laurent series in T with valuation v0 given by
v0(T ) = 1. Let v̄0 be the extension of v0 to an algebraic closure K̄0 of K0. Let K be the
inseparable closure of K0 in K̄0, with valuation v which is the restriction of v̄0. Then
(K, v) being an algebraic extension of a complete rank 1 valued field is henselian. Let α

be a root of the polynomial x2 − x − T−1 = 0. As shown in [5], there does not exist any
c ∈ K such that v̄(α − c) � 0, whereas δK(α) = 0 by virtue of [3, Lemma 6] and the fact
that K is a perfect field.

We prove two lemmas; the first one is well known [6, Lemma 2.1(ii)]. For the sake of
completion, we prove it here.

Lemma 2.2. Let (α, δ) be a minimal pair (with respect to K and v̄) and θ be an
element of K̄ with v̄(θ −α) � δ. Let h(x) ∈ K[x] be a polynomial such that for each root
β of h(x), v̄(α − β) < δ. Then v̄(h(θ) − h(α)) > v̄(h(α)).

Proof. Write h(x) = c
∏

j(x − βj). Then

h(θ)
h(α)

=
∏
j

(
θ − βj

α − βj

)
=

∏
j

(
1 +

θ − α

α − βj

)
.

By hypothesis, we have

v̄

(
θ − α

α − βj

)
� δ − v̄(α − βj) > 0.

Therefore

v̄

(
h(θ)
h(α)

− 1
)

> 0

as desired. �

Lemma 2.3. Let (K, v) be henselian and θ be an element of K̄ \ K such that δK(θ)
defined by (1.2) belongs to M(θ, K). If α ∈ K̄ is an element of smallest degree over K

such that v̄(θ − α) = δK(θ), then

(a) (α, δK(θ)) is a minimal pair, and

(b) w̄α,δ(G(x)) = v̄(G(θ)), for any polynomial G(x) ∈ K[x] of degree less than the
degree of θ over K, where the valuation w̄α,δ is as defined by (2.1) with δ = δK(θ).

Proof. (a) We show that for every γ ∈ K̄ with deg γ < deg α, the inequality v̄(α−γ) <

δK(θ) holds. For such an element γ, the choice of α gives v̄(θ − γ) < v̄(θ − α), which by
virtue of the strong triangle law implies that

v̄(α − γ) = min{v̄(α − θ), v̄(θ − γ)} = v̄(θ − γ).

Consequently, v̄(α − γ) < δK(θ) as desired.

https://doi.org/10.1017/S0013091500000936 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500000936


Elements algebraic over a henselian valued field 223

(b) Write G(x) = c
∏

(x − βi). By virtue of (2.1),

w̄α,δ(G(x)) = v̄(c) +
∑

i

min{v̄(α − βi), δ}.

Clearly it is enough to prove that for each root βi of G(x),

min{v̄(α − βi), δ} = v̄(θ − βi). (2.3)

Since deg G(x) is less than [K(θ) : K], it follows that

v̄(θ − βi) � δK(θ) = δ.

Keeping in mind the above inequality and the fact that v̄(θ − α) = δ, one can quickly
verify (2.3). �

3. Proof of (i) implies (ii) in Theorem 1.1

Assuming (i) we prove assertion (ii) of Theorem 1.1 by induction on the degree of the
extension K(θ)/K. Clearly it is enough to prove that to each θ ∈ K̄ \ K, there corre-
sponds α ∈ K̄ such that [K(α) : K] < [K(θ) : K] and def(K(α)/K) = def(K(θ)/K).
Fix an element θ ∈ K̄ of degree m � 2. Let α ∈ K̄ be of smallest degree over K

such that δK(θ) = v̄(θ − α). Let f(x) denote the minimal polynomial of α over K of
degree n � 1. For the sake of simplicity we shall denote δK(θ) by δ. By Lemma 2.3 (a),
(α, δ) is a minimal pair. Let w̄α,δ be the valuation of K̄(x) as given by (2.1). Observe
that when γ ∈ K̄ and deg γ < deg α = n, then v̄(θ − γ) < v̄(θ − α) and, conse-
quently, v̄(α − γ) < v̄(α − θ) = δ. Therefore by Theorem A, G(K(α)) ⊆ G(K(θ)),
R(K(α)) ⊆ R(K(θ)) and def(K(α)/K) divides def(K(θ)/K). If e denotes the smallest
positive integer such that ev̄(f(θ)) ∈ G(K(α)), then, by Lagrange’s theorem, e divides
[G(K(θ)) : G(K(α))]. Thus we conclude that en divides m. Let us denote m/en by l.
Then

l =
(

[G(K(θ)) : G(K(α))]
e

)
[R(K(θ)) : R(K(α))]

(
def(K(θ)/K)
def(K(α)/K)

)
. (3.1)

We shall prove that

[R(K(θ)) : R(K(α))] = l. (3.2)

Clearly (3.1) and (3.2) immediately yield def(K(θ)/K) = def(K(α)/K) as desired.
Choose a polynomial h(x) ∈ K[x] of degree less than n such that ev̄(f(θ)) = −v̄(h(α)).

The equality (3.2) is proved if we show that (f(θ)eh(α))∗ is algebraic over R(K(α))
of degree l. Suppose to the contrary that (f(θ)eh(α))∗ is algebraic over R(K(α)) of
degree q < l. Then there exist polynomials Ai(x) ∈ K[x] each of degree less than n and
A0(α)∗ �= 0 such that

((f(θ)eh(α))∗)q + Aq−1(α)∗((f(θ)eh(α))∗)q−1 + · · · + A0(α)∗ = 0. (3.3)

https://doi.org/10.1017/S0013091500000936 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500000936


224 K. Aghigh and S. K. Khanduja

For 0 � i � q − 1 we write h(α)iAi(α) as Bi(α) and h(α)q as Bq(α), where each
Bi(x) ∈ K[x] is of degree less than n. So (3.3) can be rewritten as

(Bq(α)f(θ)eq)∗ + (Bq−1(α)f(θ)e(q−1))∗ + · · · + (B0(α))∗ = 0, (3.4)

with (B0(α))∗ = (A0(α))∗ �= 0. Recall that (α, δ) is a minimal pair and v̄(θ − α) = δ. So,
by Lemma 2.2, (Bi(α)/Bi(θ))∗ = 1. Therefore (3.4) shows that

v̄(Bq(θ)f(θ)eq + Bq−1(θ)f(θ)e(q−1) + · · · + B0(θ)) > 0. (3.5)

Set

G(x) = Bq(x)f(x)eq + Bq−1(x)f(x)e(q−1) + · · · + B0(x). (3.6)

Observe that

deg G(x) < eqn + n � e(l − 1)n + n = m − en + n � m.

As the expansion of G(x) given by (3.6) is its f -expansion, it follows from Theorem B
that

w̄α,δ(G(x)) = min
0�i�q

{v̄(Bi(α)) + iew̄α,δ(f(x))} � v̄(B0(α)) = 0. (3.7)

Keeping in view that deg G(x) < m, we have by Lemma 2.3 (b) and (3.5)

w̄α,δ(G(x)) = v̄(G(θ)) > 0,

which contradicts (3.7). This contradiction proves (3.2), and hence (ii) follows.

4. Proof of (ii) implies (i) in Theorem 1.1

Suppose that (ii) holds. Since K(θ)/K is defectless for θ ∈ K̄, it follows that [K(θ) : K] =
[K̃(θ) : K̃], where (K̃, ṽ) is a completion of (K, v). Therefore by virtue of Theorem C,
M(θ, K) has an upper bound in Ḡ; consequently δK(θ) is defined in the Dedekind order
completion of Ḡ. Assume that (i) does not hold. Choose an element α ∈ K̄ \ K of degree,
say n, over K for which δK(α) /∈ M(α, K). We shall obtain the desired contradiction by
showing that K(α)/K is not defectless. Since M(α, K) is totally ordered without last
element, it contains a well-ordered cofinal subset. So we can choose a net {δi}i∈I in
M(α, K) satisfying

(1) {δi}i∈I is cofinal in M(α, K) and δi < δj , for i < j, i, j ∈ I; and

(2) δi = v̄(α − βi), βi ∈ K̄ is such that deg βi < n and whenever γ ∈ K̄ has degree less
than deg βi, then v̄(α − γ) < δi.

If necessary on replacing {δi}i∈I by a subnet, we may assume that all βi are of the
same degree (say s) over K. Keeping in mind that δi < δj for i < j, we have

v̄(βi − βj) � min{v̄(βi − α), v̄(α − βj)} = δi,
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and for any γ ∈ K̄ with deg γ < s

v̄(βi − γ) = v̄(βi − α + α − γ) = v̄(α − γ) < δi.

Consequently it follows from Theorem A, that

G(K(βi)) ⊆ G(K(βj)), i < j, (4.1)

R(K(βi)) ⊆ R(K(βj)), i < j, i, j ∈ I. (4.2)

As all the extensions K(βi)/K are defectless and of the same degree s < n, it is clear
that equality holds in (4.1) and (4.2). Thus for any j ∈ I,

⋃
i∈I

G(K(βi)) = G(K(βj)),
⋃
i∈I

R(K(βi)) = R(K(βj)). (4.3)

We are going to prove that

G(K(α)) =
⋃
i∈I

G(K(βi)), R(K(α)) =
⋃
i∈I

R(K(βi)). (4.4)

As the extension K(α)/K is of degree n > s, (4.3) and (4.4) immediately imply that
K(α)/K is not defectless, leading to the desired contradiction.

To prove (4.4), let F (x) ∈ K[x] be any polynomial of degree less than n. It is enough
to prove that there exists k ∈ I such that v̄(F (α) − F (βk)) > v̄(F (βk)). Let γ be a root
of F (x). Since v̄(α − γ) ∈ M(α, K), it follows from property (1) of the net {δi}i∈I that
there exists k ∈ I such that v̄(α − γ) < δk. Choosing k sufficiently large, we may assume
that

v̄(α − γt) < δk (4.5)

for each root γt of F (x). Write F (x) = c
∏

(x − γt). Then

F (α)
F (βk)

=
∏

t

(
α − γt

βk − γt

)
=

∏
t

(
1 +

α − βk

βk − γt

)
. (4.6)

Since v̄(α − γt) < δk by (4.5) and v̄(α − βk) = δk by choice of δk, we have, on using the
strong triangle law,

v̄(βk − γt) = min{v̄(βk − α), v̄(α − γt)} = v̄(α − γt);

consequently (4.6) shows that

v̄

(
F (α)
F (βk)

− 1
)

> 0,

which proves (4.4) and completes the proof of the theorem.
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5. An example

We give an example to show that the assumption ‘K(α)/K defectless for each α ∈ K̄’
does not imply in general that every finite extension of a henselian valued field (K, v) is
defectless. The construction of the field (K, v) given below appears in a different context
in [8, Chapter 8.4].

Let Fp((t)) be the field of Laurent series in an indeterminate t with coefficients from
the finite field Fp of p elements, p prime, with valuation vt given by vt(t) = 1. Fix
x, y ∈ Fp((t)) both of vt-valuation 1, which are algebraically independent over Fp(t).
Set s = xp + typ and L = Fp(s, t). Then s and t are algebraically independent over Fp,
because Fp(s1/p, t1/p, x) = Fp(t1/p, x, y) is of transcendence degree 3 over Fp. Let K be
the algebraic closure of L in Fp((t)) with valuation v, which is the restriction of vt. We
claim that K/L is a separable extension; this will imply that K being the separable
closure of L in a complete discrete rank 1 valued field is henselian (see [4, 17.18]). Since
K/L is a normal extension, the claim is proved once we show that whenever an element
α of Fp((t)) belongs to L1/p = Fp(s1/p, t1/p), then α ∈ L. Write α = P/Q, with P , Q

in Fp[s1/p, t1/p]. Since Qp ∈ Fp[s, t] ⊆ L, on replacing α by αQp we may assume that
α ∈ Fp[s1/p, t1/p]. Write

α =
∑
i,j

aijs
i/ptj/p, aij ∈ Fp, aij �= 0. (5.1)

It is to be shown that p divides each i and j. Suppose this is false. On replacing α by
α − c for some c ∈ Fp[s, t], we may assume that for each pair (i, j) appearing in (5.1),
either p does not divide i or p does not divide j. Let amnsm/ptn/p be the smallest degree
monomial in the variables s1/p, t1/p occurring in (5.1) in which the exponent of s1/p is
also the smallest. On dividing α by a suitable integral power of s, we may further assume
that 0 � m � p − 1. Keeping in mind that vt(s) = p, it can easily be seen that

vt(α) = v̄t(amnsm/ptn/p) = m + (n/p).

As α ∈ Fp((t)), vt(α) is an integer and hence p divides n. So our supposition gives that
p does not divide m, i.e. 0 < m < p. On recalling that s1/p = x + t1/py, we can rewrite
α as

α = A0(x, y, t) + A1(x, y, t)t1/p + · · · + Ap−1(x, y, t)t(p−1)/p, (5.2)

where each Aj(x, y, t) ∈ Fp[x, y, t]. It is clear that all the non-zero summands on the right-
hand side of (5.2) have different v̄t-valuation. It may be pointed out that Am(x, y, t) �= 0;
in fact one can easily verify that amnymtn/p is the monomial of smallest degree (in y,
t) among those monomials of Am(x, y, t) which are free from x. Keeping in mind that
m � 1, we conclude that vt(α−A0(x, y, t)) is not a rational integer, which is not so. This
contradiction proves that K/L is a separable extension.

We next show that for each α algebraic over K, K(α)/K is a defectless extension.
Since a complete discrete valued field is defectless [4, 18.8], the above assertion is proved
as soon as it is shown that

[K(α) : K] = [K̃(α) : K̃], (5.3)
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K̃ = Fp((t)) being the completion of K. To verify (5.3), observe that if g(x) is the minimal
polynomial of α over K̃, then the coefficients of g(x) are algebraic over K and these
coefficients being in K̃ must belong to K, for K is algebraically closed in K̃ = Fp((t)).

Finally it may be pointed out that K(s1/p, t1/p)/K has defect p. Since K/L is a
separable extension, we have

[K(s1/p, t1/p) : K] = [L(s1/p, t1/p) : L] = p2.

Keeping in mind that K(s1/p, t1/p) ⊆ Fp((t1/p)), it now follows that K(s1/p, t1/p)/K has
index of ramification p, residual degree 1 and defect p.
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