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Measuring the dihedral angle of water at a grain 
boundary in ice by an optical diffraction method 

M. E. R. WALFORD AND J. F. NYE 
H. H. Wills Physics Laboratory, University of Bristol, Bristol BSB 1 TL, England 

ABSTRACT. Optical measurements have been made on the water lenses which 
form under pressure at grain boundaries in polycrystalline ice. Monochromatic light 
from a point source is focused by the lenses but, because the lenses are microscopic 
in size, the image is blurred by diffraction. The diffraction pattern observed under 
a microscope has been compared with the computed diffraction pattern to deduce 
the angle 28 at the rim of each lens. This is the dihedral angle for water at a grain 
boundary in ice, and gives the ratio of the grain-boundary energy to that of an 
ice- water interface. The most sensitive measurements are those made on the rings 
of the virtual diffraction pattern formed on the object side of the lens. They give 
8 = 12.5 ± 0.5° for the grain boundary under observation, which is 26% lower than 
the previous value for 8 found by ignoring diffraction. 

1. INTRODUCTION 

When polycrystalline ice at the melting point is placed 
under stress, internal pressure melting occurs, with the 
formation of lens-shaped inclusions of water at some of 
the grain boundaries (Nye and Mae, 1972). Because of 
the ice- water surface energy, the lenses tend to have 
spherical faces; the lens diameters range from 400/l,m 
down to 20/l,m and below the level of optical measure­
ment. The dihedral angle 28 between the two spherical 
surfaces at the rim of each lens (Fig. 1) is determined by 
the surface energies of the grain boundary 19b and the 
ice- water interface liw' Thus, 

2'iw cos 8 = 19b. (1) 

Optical measurements on such lenses by Walford (re­
ported in Nye and Mae (1972)) and by Walford and oth­
ers (1987) have been used to infer the angle 8. This is 
of interest not only because it measures the ratio of the 
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Fig. 1. A water lens at a grain boundary, 
showing the dihedml angle 2 (). 

two surface energies, but also because it determines the 
cross-section of the veins of water which exist at the junc­
tions where three grains meet (Nye and Frank, 1973), 
and therefore is relevant to the hydrology of temperate 
ice. 

The method used was to pass parallel light through 
the lenses and measure their focal lengths. The refractive 
index of water is (slightly) greater than that of ice, and 
so the lenses are converging. Since the dihedral angle is 
about 30°, the lenses could be regarded as geometrically 
thick, but because the refractive-index ratio J.Liw is close 
to 1 (fJ.iw = 1.0185) they are optically t h in (this would 
be true up to dihedral angles of nearly 180°). Therefore, 
8 is expressed in terms of the focal length f , measured 
in ice, and the lens radius a by the formula 

. a 
Sill 8 = f( ) . 

2 J.Liw - 1 
(2) 

The experimental difficulty is to measure f with suf­
ficient accuracy in spite of the blurring of the focal spot 
by diffraction. Walford and his co-workers used a micro­
scope to observe the position of the focus and, by mea­
surements on 14 different lenses in two different fields, de­
duced a value for the dihedral angle of 2() = 33.6 ± O.T. 

It was apparent that a detailed calculation of the 
diffraction pattern produced by such a lens could allow a 
more accurate determination of the focal length. Viewed 
as an optical element, a water lens presents the unusual 
feature that light not only passes through it to produce 
the focus, but is also diffracted around it because the lens 
is not set in an opaque mount. The latter component of 
the light, if it were present by itself, would produce a 
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Fig. 2. The diffmction pattern formed by a smalL unstopped Lens (n = 1.5) and a point source at 
infinity. (a) Contours of equaL ampLitude. The Lens is at Z = 0 with its edge at R = 1; Z = F is 
the geometricaL focus. The bLack dots mark rings of zero ampLitude. To help distinguish maxima 
from minima, some of the maxima in the virtuaL field (to the Left of the lens) are marked b'y plus 
signs. With the amplitude at Z = F taken as 1, the contour interval is 0,025 in the real field, 
and 0,01 in the virtual field, where the amplitudes are weaker. (b) The amplitude var'iation along 
the axis. Note the maximum of amplitude inside the focus , seen in both (a) and (b). 

bright axial caustic, so that on a screen it would give the 
well-known Arago bright spot associated with diffraction 
by an opaque disc, When both components, light passing 
through the lens and around it, are present together they 
interfere, and the resulting three-dimensional diffraction 
pattern has been computed (Nye, 1991). A typical field 
is shown in Figure 2a and b and shows a number of inter­
esting features. One of them is that the brightest point of 
the diffraction pattern is always closer to the lens than 
the geometrical image point (Farnell, 1957), and with 
lenses of the small size used in the measurements there 
is a serious systematic error of about 25% if the bright­
est point is taken as exactly indicating the geometrical 
image point. This effect is due to the small size of the 
lens rather than to the absence of a mount. 

However, the position of the focal spot is not necessar­
ily the feature of the diffraction pattern that is most sen­
sitive to the dihedral angle. In principle, with the diffrac­
tion pattern known, any part of it may be used for a 
measurement of dihedral angle, and, moreover, the meas­
urement does not have to be confined to the real part of 
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the pattern . A microscope receiving the light from the 
lens and moved progressively nearer the lens will show 
a series of plane sections through the three-dimensional 
diffraction pattern. One of these will be through the geo­
metrical focus, a closer one will be through the brightest 
point, moving closer again will show the plane of the 
lens itself, and closer still will appear sections through 
the virtual diffraction pattern. The pattern is virtual in 
the sense that it is not actually present behind the lens; 
however, a real image of a section of the virtual pattern 
is produced by the microscope, either on the retina of 
the observer's eye or on a photographic film. A detailed 
examination of the whole pattern showed that it is these 
sections through the virtual field that an~ most sensitive 
to variations in the dihedral angle. 

2. EXPERIMENTAL ARRANGEMENT 

Clear cylindrical ice specimens were prepared by slowly 
freezing distilled water, with constant stirring to prevent 
bubbles forming; the water was contained in a cylindri-
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cal polythene bag which was lowered at a rate of a few 
microns per second into a freezer at -18°C. The result­
ing ice had crystals a few millimetres across, consider­
ably elongated in the growth direction. A sample was 
cut and transferred to a walk-in cold room held within 
2 deg of the melting point . There it was brought slowly 
to the melting point, compressed axially for a few hours 
at a stress of about 1 bar and left to anneal overnight 
in a polythene bag held in a dewar flask of ice and dis­
tilled water. This treatment produced a host of rather 
stable, separate, water lenses of up to a few hundred mi­
crons in diameter, appearing particularly at those grain 
boundaries which were normal to the compressive stress 
(Nye and Mae, 1972). We then reduced the sample by 
partially melting it against a warm metal plate to give 
a rectangular block approximately 2 cm x 3 cm x 5 cm, 
with such a grain boundary parallel to its large face. 
The block was mounted within an optical-quality glass 
cell with the chosen grain boundary or lens plane hori­
zontal, and held there by blocks of expanded polystyrene 
(Fig. 3). To avoid uneven refr action at the top and bot­
tom surfaces, the block was covered with an ice/distilled 
water mixture, the refractive index contrast between ice 
and water being much smaller than that at the optically 
perfect interface between water and air. 

The cell was placed on the stage of a cleaned and 
carefully aligned transmission optical microscope. The 
water lenses were examined in white light (which gives 
clear viewing) using a low-power objective (which has 
a conveniently long working distance). No sub-stage 
condenser was used, but a parallel-sided water cell was 
placed in the optical path to reduce unwanted radiation 
melting in the sample. A suitable candidate lens hav­
ing been placed on the optical axis of the instrument 
using the x- y stage controls, we checked the alignment 
by racking the microscope up and down; this was impor-
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Fig. 3. The exper'imental apparatus. FOT claT­
ity a single wateT lens only is shown (WL); 
its size Telative to the Test of the appamtus is 
gTeatly exagg erated. C sample cel l; CB cam­
era back; CR cabl.e Telease; FSM fTOnt-silv er'ed 
miTToT; 0 objecti've lens; P polystYTene blocks; 
PH pinhole; RM Temo1Jable miTToT; SS sodi'um 
lamp; W wateT; WS white-light SOUTce; Z cal­
ibrated height contToL. 

Waljord and Nye: Dihedral angle of water at a grain boundary 

Fig. 4. DifJmction patter'ns pToduced by wateT 
lenses at a gTain boundaTY in ice. M easuTe­
ments weTe made of the viTtual diffraction pat­
ter'ns pToduced by lenses A and B at distances 
(TefeTTed to paths in ice) z = -22.58 mm 
(Fig. 4a) and -12.99 mm (Fig. 4b). The lens 
mdii aTe a = 182 p,m (lens A) and 96 .3 J-Lm 
(lens B) , and tILe calculated fo cal lengths in 
ice aTe f = 22. 73 mm (lens A) and 12.03 mm 
(lens B) . 

tant to ensure that we should be able to photograph the 
diffraction pattern over a wide range of z values without 
disturbing the specimen. We then switched to a high­
power sodium lamp with a 2 mm stop, placed on the 
optical axis at a distance of 1.20 m and, after rechecking 
the alignment, replaced the microscope eyepiece with a 
camera back. The diffraction pattern was recorded on 
a fine-grain film. Some 40 photographs were taken at 
measured z intervals of about 1 mm spanning both the 
real and the virtual fields. Because the entire operation 
took over an hour (each photograph needed an exposure 
time of 1 min), we repeated the first photograph at fre­
quent intervals to check that no significant changes had 
occurred. Usually the only significant effect was con­
d ensation on the bottom of the sample cell, because of 
the presence of the experimenter. This condensation was 
delica tely removed with lens tissue as necessary. Finally, 
a 1 mm microscope graticule was photographed to record 
the magnification. 

Figure 4a and b shows diffraction patterns at two dif­
ferent distances produced by the same lenses in one grain 
boundary, Figure 4b including both the lenses selected 

109 
https://doi.org/10.3189/S0022143000042854 Published online by Cambridge University Press

https://doi.org/10.3189/S0022143000042854


Journal of Glaciology 

for detailed analysis. Also visible are diffraction patterns 
produced by other lenses , by droplets of condensation 
and by water veins or surface grain-boundary grooves. 
It was because of these effects that we used sodium light 
in the experiments; with a laser , and its more coherent 
light , the diffraction rings of a single lens were highly 
confused by unwanted patterns. 

3. FITTING OBSERVATIONS TO THEORY 

3.1. Summary of the theory 

The water lens is assumed to be set within an infinite 
medium (ice). The theory in Nye (1991) uses Kirchhoff 
diffraction theory in the paraxial approximation to calcu­
late the complex wave amplitude 'l/J due to a point source 
of monochromatic waves on the lens axis. 'l/J is the sum of 
an inner part 'l/Ji, due to light that has passed through the 
lens, and an outer part 1/)0' due to light that has passed 
around the lens, 

(3) 

The wave front emerging from the lens consists of a 
spherical wave of radius v, converging on the geometri­
cal image point and giving rise to 'l/Ji; this is surrounded 
by an annular part of a spherical wave of radius u, di­
verging from the point source, which gives rise to 1/Jo. 
Thus, u and v are (approximately) the axial distances 
of the object and image from the lens. The focal length 
I is defined by the equation I-I = u- I + V-I. All these 
distances are within the ice. 

We take the origin 0 at the lens (for a more precise 
definition see the original paper) and cyclindrical polar 
coordinates r, z with z longitudina l along the axis in the 
direction of the light, and r radial. Corresponding di­
mensionless quantities are defined as follows: 

2 
Z = ka2z, R=~ , 

a 
2 

U = ka2u, 

2 
F = ka2/, 

2 
V=-v 

ka2 
(4) 

where a is the radius of the lens, k = 27r / >. , and>' is the 
wavelength of the light in the ice. It is useful to express 
the dimensionless focal length F in terms of the number 
n of half-period Fresnel zones subtended by the lens at 
its focus, 

F=~. 
n7r 

(5) 

Then 1/Ji and 'l/Jo are given by 

2iA (k
2
a

2 
R2) 'l/Jo(R,Z) = -z exp i -2- Z + Z 

iW (iR2W) . [2 exp ---z2 

t (i p2
) (2R) - lo dppexp W Jo zp]· (7) 
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Here Jo is a Bessel function, A (real) is the amplitude of 
the spherical wave incident on the lens, and W is the di­
mensionless distance given by W- 1 = Z-l + U- 1• Thus, 
for a n object at infinity, W is identical with Z; in general, 
since U is fixed, W is a function of Z. 

The exponential factor that appears before the integ­
ral sign in Equation (6) and before the square bracket 
in Equation (7) is a phase factor. For a given position 
(R,Z) in the field, 1/Ji depends only on n, apart from this 
phase factor, and 1/Jo is independent of n. Thus, since the 
phase factor does not affect the intensity 11/J12, the field of 
intensity depends, apart from a geometrical scaling, only 
upon the single parameter n; for different n the observed 
diffraction patterns will be essentially different. 

3.2. Relating the theory to the experiment 

To relate this theory to observation, we must first deal 
with the fact that in the theory the diffraction pattern is 
formed entirely within the ice, whereas the observations 
are made on water lenses contained within a parallel­
sided slab of ice, which is itself immersed in a water 
bath, with the microscope moving in air, and with the 
point source also in air. It is a matter of real and appar­
ent depth. A detailed consideration of the add itional re­
fractions involved shows that the object and image sides 
have to be treated differently, essentially b ecause the ob­
ject distance was measured directly, whereas the depth 
of the observed cross-section through the diffraction pat­
tern was obtained by noting the position of the micro­
scope carriage along the axis. The object distance u of 
the theory is related to the actual position of the source 
by 

(
10 lw li ) 

U=J-li -+-+-
J-lo /-Lw J-li 

(8) 

where J-lo, /.lw and J-li are the refractive indices for air, 
water and ice, and 10 , lw and li are the lengths of the ray 
paths in these media (lw is very small and there is also 
a negligible path length through glass). On the other 
hand, the position z in the diffraction field is related to 
the apparent distance z' as measured by the microscope 
scale by 

/-Li , 
z= - z 

/-Lo ' 

independently of the positions of the ice- water and 
water- air interfaces. This means, incidentally, that as 
the plane of focus of the microscope moves through the 
water- air interface, for example, there is no apparent 
sign of this in the diffraction pattern. 

Note that, although the graticule used for finding 
the magnification was in air while the water lenses were 
in ice, no correction for the transverse magnification is 
needed . 

3.3. Treatment of the observations 

As described in section 2, observations were made on two 
lenses, A and B, in the same grain boundary. The radius 
a could have been measured from a single photograph 
taken in the plane of the lens, but the difficulty with this 
method is that the lens almost disappears from view pre­
cisely when the microscope is focused on its plane. It was 
preferable to deduce a by interpolation of observations 
made on either side of the plane of the lens. This gave 
a = 182 J-lm for lens A a nd a = 96.3 J-lm for lens B. 
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Walford and Nye: Dihedral angle of water at a grain boundary 
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Fig. 5. (a) and (b) . Theoretical variat ion of amplitude l"p l with radial distance r, compared with 
the m easured radii of the dark rings (s hown by the vertical broken lines). (a) is f or len s A , 
z = - 22.58 mm, corres ponding to Figure 4 ai (b ) is for lens A , z = - 12 .99 mm, correspondi'ng to 
Figure 40 . Cur'ves are la belled with the value of e. (c) L ens A i theor etical variation of amp litude 
cLlong the aX'is 'in the virtual field, compar ed with t he observed Z 'valu es (vertical bT'oken lines) 
whe1'e t h e ring S'!} st em has a dark, d , or b1'ight , b, centre . (d) Like (a) and (b) bu t f or lens Bi 
z = - 12.99 mm, cOTres pon ding t o Figure 4 b. 

To ded uce the dihedral angle 2e, the method was as 
follows. A clear photograph of lens A was selected and 
values of U and Z were calcula ted . To compute the 
diffraction pattern requires a knowledge of 11" but this 
depends on f which in turn dep ends on e, which we do 
not ye t know. Therefore, a trial a nd error method was 
used. A trial va lue was taken for e; 11, was deduced from 
the formula, derived from Equations (2) , (4) and (5) , 

2 . 
11, = -a(lI.· - 1) sm e ). ,.-,w , (9) 

and the section through the amplitude pattern corres­
p onding to Z was computed . This was compared with 
t he observed p a ttern. e was then varied until a satisfac­
tory fit was achieved . Note that the value thus obta ined 
is for a single lens a nd a single va lue of Z. 

A check on the method was then made by choosing 
a nother value of Z (i.e. another photograph, showing a 
quite different ring system) and repeating the exercise, 
thus obtaining another value of e, which should agree 
with the first. However , both values used the sam e value 
of a, the lens radius, and so are liable to a sys tem a tic 
error from this source. Therefore , we moved to the sec­
ond lens B with four different va lues of Z , and thereby 

obta ined four new va lues of e. The b est value of e was 
then deduced. 

With lens A the m easured values of distances in 
Equation (8) gave u = 1.58 m. The wavelength used 
(sodium light) was 0.5893/-lm in free space, and there­
fore in ice ). = 0.4500 J.Lm .(since l.J. j = 1.3096) . Then , 
from Equation (4), U = 6.839. A photograph (Fig. 4a) 
was chosen at z = - 22 .58 mm (this is in the virtual field) , 
which gives Z = -0.0976. We started with trial values 
e = 15° and 18°, and found that e ~ 12° (11, = 3.111) 
would be needed to fit the observed ring sizes. Figure 
5a, which compares the computed amplitude as a func­
tion of R with the observed positions of the dark rings, 
illus tra tes this; while both e = 12° and 15° fit the outer 
two rings , e = 12° fit s the inner ones as well. Moreover, 
for e = 12°, unlike e = 15°, the computed centre is bright 
and the darkest ring is the third one , a s observed. 

As a check, another photograph (Fig. 4b) was used , 
with the same lens but with Z = - 0.0562. There are 
now m ore, and sharper , rings. Figure 5b shows that e = 
12.5° fits better than 11.5°, mainly beca use the former 
value reproduces the observed dark centre better. This 
conclusion is reinforced by Figure 5c, which shows the 
theore tical amplitude varia tion along the axis, compared 
with the observed dista nces where the ring system has a 
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bright or a dark centre. () = 12.5° is a good fit, while () = 
11.5° is decidedly poorer. The centres of the ring systems 
are, in fact, the feature of the diffraction patterns most 
sensitive to (). 

Lens B was now used with photographs at Z = 
-0.0799, -0.1072, -0.1618 and - 0.2007, and trial val­
ues of () = 12° (n = 1.646) and 13° (n = 1.781) . u 
was the same as before, but the different value of a now 
gives U = 24.43. The clearest observations were for 
Z = -0.2007 (Fig. 4b) . A central bright spot is just 
visible on the original photograph. Comparison with the 
curves in Figure 5d for this Z value suggests a value of () 
between 12° and 13°. We concluded from all the obser­
vations on this lens that () for lens B is not measurably 
different from () for lens A. 

The main sources of error are the measurements of 
the lens radii a and the ring radii . Taking account of 
these errors, our final value for these two lenses , based 
on all the measurements, is () = 12.5 ± 0.5°. To achieve 
significantly higher accuracy, one would have to consider 
the birefringence of the ice, since the maximum birefrin­
gence l:lf1.iw = 0.0011 corresponds to a difference in the 
deduced () of 0.8°. Our value of () is 26% lower than that 
found by Walford and others (1987), namely 16.8°. The 
difference is entirely accounted for by the effect of diffrac­
tion on the position of the apparent focus, as noted in 
section 1. 

4. THE VARIABILITY OF DIHEDRAL 
ANGLE 

Formula (1) for () contains the two surface energies 'Ygb 

and 'Yiw. The energy 'Ygb of a boundary between two 
grains in any polycrystal is known to depend on the 
relative crystallographic orientation of the grains. For 
example, when there is a good fit between the lattices, 
the energy is abnormally low, giving rise to a downward­
pointing cusp, that is, a singular minimum, in the curve 
of energy versus misorientation angle (e.g. Pumphrey, 
1976). The present observations, like the earlier ones, 
detected no marked systematic (i.e. crystallographic) el­
lipticity or astigmatism in the lenses, although some of 
them (including lens A) were measurably non-circular; 
therefore, each lens face was apparently spherical on av­
erage, in spite of the variation of crystallographic orien­
tation over it. This means that 'Yiw can be only weakly 
dependent on the orientation of the interface. One would 
therefore expect, as a good approximation, that () would 
be constant for anyone grain boundary. Both the lenses 

measured in the present work were in the same grain 
boundary, and this is no doubt why the values of () agree 
so well. However, observations by Morris (1972) and ob­
servations on the veins at the junctions of three grains 
(Mader, in press) show that, while () is usually approxi­
mately constant, there are occasional boundaries where 
() can take quite different values, as high as 52°. These 
must be the low-energy boundaries corresponding either 
to low angles of misorientation, or to a good fit of the 
lattices. 

In summary, the method of finding dihedral angle des­
cribed here is very accurate for measuring () in a given 
grain boundary. We believe the grain boundary chosen 
for study was not unrepresentative, but it has to be re­
membered that some grain boundaries would have given 
very different values. 
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