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Abstract

We show that the Potts model on a graph can be approximated by a sequence of
independent and identically distributed spins in terms of Wasserstein distance at high
temperatures. We prove a similar result for the Curie–Weiss–Potts model on the com-
plete graph, conditioned on being close enough to any of its equilibrium macrostates, in
the low-temperature regime. Our proof technique is based on Stein’s method for com-
paring the stationary distributions of two Glauber dynamics with similar updates, one of
which is rapid mixing and contracting on a subset of the state space. Along the way, we
prove a new upper bound on the mixing time of the Glauber dynamics for the conditional
measure of the Curie–Weiss–Potts model near an equilibrium macrostate.
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1. Introduction

The Potts model is a spin system that generalizes the classical Ising model of magnetism,
and has been extensively studied in many fields, including statistical physics [43] and proba-
bility theory [14, 17, 22, 39]. The Potts model and its extensions have also found applications
in areas such as simulating biological cells [21], predicting protein structure [37], image
reconstruction [19], and community detection in complex networks [34].

For a graph G = (V, E) on N vertices, a configuration or colouring σ ∈ [q]V is a function
which assigns to each vertex v ∈ V a spin or colour σ (v) ∈ [q] := {1, . . . , q}. Under the ferro-
magnetic Potts model, the probability of each configuration is given by the Gibbs measure μ

with

μ(σ ) = e−βH(σ )

Z(β)
,
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2 R. HE AND J. LOK

where β ≥ 0 is an inverse temperature parameter,

H(σ ) = − 1

N

∑
u,v∈V

1σ (u)=σ (v)

is the Hamiltonian with interaction strength N−1, and Z(β) =∑σ e−βH(σ ) is the partition
function (i.e. normalization factor), which is difficult to compute. Thus, configurations with
more monochromatic edges (i.e. whose endpoints have the same colour) are more likely. We
will assume that q ≥ 3 (note that q = 2 corresponds to the Ising model).

A high-level heuristic for the Potts model is that the spins should be approximately inde-
pendent if the temperature is high (i.e. β is small). In this paper, we prove that the Potts model
on a general bounded-degree graph is close to a random configuration with independent and
uniformly distributed spins in terms of Wasserstein distance when β is small enough (Theorem
1.2). We prove a similar approximation result for the Curie–Weiss–Potts model on the com-
plete graph for a wider range of β in a high-temperature regime where the corresponding
Glauber dynamics is known to mix rapidly (Theorem 1.3). Furthermore, we show that in the
complementary low-temperature regime, the Curie–Weiss–Potts model, conditioned on being
close to any of its equilibrium macrostates, can be approximated by a sequence of indepen-
dent and identically distributed (i.i.d.) spins (Theorem 1.4). Along the way, we prove a new
upper bound on the mixing time of the Glauber dynamics for the conditional measure of the
Curie–Weiss–Potts model near an equilibrium macrostate (Theorem 1.5).

Our main tool is the use of Stein’s method to reduce the problem of comparing two dis-
tributions to the problem of comparing the dynamics of two Markov chains for which these
distributions are stationary. This idea was introduced by the concurrent works [5, 36], where it
was used to approximate exponential random graphs (with Erdös–Rényi random graphs), and
the Ising model on d-regular expander graphs (with the Curie–Weiss model), respectively. This
technique was further applied in [2] to establish the spectral independence of spin systems.

To give a more concrete statement, the following approximation result was obtained in
[2], generalizing the ideas introduced in [5, 36]. We say that a Markov chain on a metric
space (�, d) is contracting if for all σ, τ ∈ �, there exists a coupling (Xσ

1 , Xτ
1 ) of the one-step

distributions of the chain, starting from σ and τ , such that for some 0 ≤ κ < 1,

E
[
d(Xσ

1 , Xτ
1 )
]≤ κ · d(σ, τ ). (1.1)

Theorem 1.1 ([2, Lemma 4.3].) Let P and Q be Markov chains on a finite metric space (�, d)
with stationary distributions μ and ν, respectively. Denote the one-step distributions of P and
Q, starting from σ ∈ �, by P(σ, ·) and Q(σ, ·). Let X ∼ μ and Y ∼ ν be random vectors. If P is
contracting according to (1.1) for some 0 ≤ κ < 1, then for any function h : � →R,

|Eh(X) −Eh(Y)| ≤ Ld(h)

1 − κ
E [dW (P(Y, ·), Q(Y, ·))] ,

where dW is the Wasserstein distance between measures on � with respect to d, and Ld(h) is
the optimal Lipschitz constant of h such that |h(σ ) − h(τ )| ≤ Ld(h) · d(σ, τ ) for all σ, τ ∈ �.

Remark 1.1. It is well known that the Wasserstein distance between two measures μ and ν on
a finite metric space (�, d) is given by the following two equivalent dual representations [42]:

dW (μ, ν) = suph{Eh(X) −Eh(Y) : X ∼ μ, Y ∼ ν} = inf
(X,Y)

E [d(X, Y)] . (1.2)
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On approximating the Potts model 3

Here, the supremum is over all 1-Lipschitz functions h : � →R with respect to d, and the
infimum is over all couplings (X, Y) of μ and ν (i.e. joint distributions on � × � such that
X ∼ μ and Y ∼ ν), which is attained by an optimal coupling. Therefore, by considering the
class of 1-Lipschitz functions h, the approximation result in Theorem 1.1 also implies the
following bound on the Wasserstein distance:

dW (μ, ν) ≤ 1

1 − κ
E [dW (P(Y, ·), Q(Y, ·))] . (1.3)

Assuming that P is contracting, this provides a precise statement of the heuristic that if the two
chains P and Q have similar updates (i.e. E [dW (P(Y, ·), Q(Y, ·))] is small), then their stationary
distributions μ and ν are also close (in terms of Wasserstein distance).

In our setting, we will compare the distributions of two spin systems μ and ν on the
state space � = [q]V equipped with the Hamming distance dH(σ, τ ) =∑v∈V 1σ (v)�=τ (v), which
counts the number of vertices with different colours. We will choose P to be the Glauber
dynamics for μ, which is a discrete-time Markov chain (σt)t≥0 with μ as its stationary distribu-
tion, and the following transitions: given the current configuration σt, a vertex v ∈ V is chosen
uniformly at random, and a new configuration σt+1 is generated by recolouring v with a new
colour k ∈ [q] drawn according to μ, conditional on the colours of all the other vertices being
fixed. That is, σt+1(u) = σt(u) for all u �= v, and σt+1(v) = k with probability

μv(k | σt) := μ(σ (v) = k | σ (w) = σt(w) ∀w �= v), k ∈ [q]. (1.4)

We say that μv(· | σ ) is the conditional spin distribution of μ at v, given σ . Similarly, we will
choose Q to be the Glauber dynamics for ν. We will take μ to be the more complicated model
of interest (i.e. the Potts model) and ν to be a simpler model (i.e. with i.i.d. spins), chosen in a
specific way such that the transition probabilities of P and Q are ‘matched’ using a mean-field
approximation (see (3.4) below).

However, a technical challenge often encountered in practice is that the Glauber dynamics
P is only contracting on a subset of the state space; see, for example, the exponential random
graph model analysed in [36], and our discussion of the Curie–Weiss–Potts model below. We
demonstrate that this problem can be overcome to deduce approximation results similar to
Theorem 1.1, provided that the following high-level conditions can be shown to hold.

(1) The chain P is rapid mixing, that is, its mixing time

tmix(ε) := inf

{
t ≥ 0 : max

σ∈[q]V
‖Pt(σ, ·) − μ‖TV ≤ ε

}
, (1.5)

which measures the time required for the total variation distance between the t-step
distribution of the chain (in the worst case over all initial states σ ), denoted by Pt(σ, ·),
and its stationary distribution μ to fall below a given threshold ε < 1/2, can be upper-
bounded by a polynomial in N, the number of vertices.

(2) The chain P is contracting in some subset �̃ ⊆ � of the state space. Furthermore, start-
ing in another subset �̃0 ⊆ �̃, the chain P remains in �̃ for a sufficiently long period
relative to its mixing time with high probability (i.e. the event does not occur with
probability exponentially small in N).

(3) The random vector Y ∈ �̃0 with high probability.
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4 R. HE AND J. LOK

These ideas are essentially embedded in the proof of [36, Theorem 1.13]. Our main contri-
bution is in making this strategy explicit, and using it to prove our approximation results for
the Curie–Weiss–Potts model in Section 4, for which the Glauber dynamics is not contracting
when β is large. In particular, Theorems 1.4 and 1.5 are the most technically demanding results
proved in the low-temperature regime where the Glauber dynamics is not rapidly mixing and
there are multiple equilibrium macrostates. As a byproduct, we obtain a new upper bound on
the mixing time of the Glauber dynamics for the Curie–Weiss–Potts model, conditioned on
being close to any of its equilibrium macrostates. This may be of independent interest, since
the rapid mixing of Glauber dynamics for conditional distributions is less well understood.

Before stating our results, we define some notation that will be used. For any function
h : [q]V →R, let

Lv(h) := supσ (u)=τ (u) ∀u �=v |h(σ ) − h(τ )| (1.6)

be the Lipschitz constant of h in the component corresponding to v ∈ V with respect to dH ,
where the supremum is taken over all pairs σ, τ ∈ [q]V that only possibly differ at v, and denote
the associated vector by L(h) := (Lv(h))v∈V ∈R

V . Thus, the usual vector 	∞ norm ‖L(h)‖∞
denotes the maximum value of Lv(h) for any v ∈ V . Observe that ‖L(h)‖∞ is equal to the
optimal Lipschitz constant of h with respect to the Hamming distance dH .

We also use standard asymptotic notation as N → ∞ (treating q ≥ 3 and β > 0 as constants):
we write f (N) = O(g(N)) if there exists an absolute constant C > 0 such that |f (N)| ≤ C|g(N)|
for sufficiently large N, and f (N) = o(1) if |f (N)| → 0.

1.1. Potts model on bounded-degree graphs

As a more straightforward example of the kinds of results that we are aiming for, we first
state an approximation result for the Potts model on a general graph that can be obtained
from Theorem 1.1. We show that if β is small enough such that the Glauber dynamics is
contracting (and hence rapid mixing), then the Potts model is close to a random configuration
with independent, uniformly distributed spins.

Theorem 1.2. Let G = (V, E) be a graph on N vertices with maximum degree 
 and |E| edges.
Let X ∈ [q]V be distributed according to the Potts model on G with inverse temperature β, and
Y ∈ [q]V be a random configuration where the colour of each vertex is sampled independently
and uniformly at random. If 
 tanh (β/N) < 1, then for any function h : [q]V →R,

|Eh(X) −Eh(Y)| ≤ ‖L(h)‖∞
β
√

q − 1

1 − 
 tanh (β/N)

√
2|E|
N

.

In particular, Theorem 1.2 holds if β < N/
, since tanh x ≤ x for x ≥ 0. To interpret
Theorem 1.2, observe that the bound tends to zero as β → 0 (i.e. at infinite temperatures).
Furthermore, the bound improves for sparser graphs with fewer edges—intuitively, because
there are fewer interactions between the vertices—and may be simplified by bounding the
average degree 2|E|/N (from the handshaking lemma) by the maximum degree 
. In the case
when |E| = O(N2) and β < 1, the bound implies that the Wasserstein distance between the laws
of X and Y is of order O(

√
N) (see Remark 1.1). Therefore, the Potts model on a dense graph

can be coupled with a sequence of i.i.d. spins such that, on average, O(
√

N) of the vertices
disagree, which is a vanishingly small proportion of the total number of vertices. Finally, we
note that Theorem 1.2 generalizes a similar result for the Ising model given in [36, equation
(1.7)].
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On approximating the Potts model 5

The proof of Theorem 1.2 appears in Section 3, and is relatively straightforward using the
fact that the Glauber dynamics for the Potts model is contracting with respect to the Hamming
distance according to (1.1) whenever 
 tanh (β/N) < 1.

1.2. Curie–Weiss–Potts model

We now turn our focus to the Curie–Weiss–Potts (or mean-field Potts) model, which is the
Potts model defined on the complete graph. The approximation results in this section, sepa-
rated into the high-temperature and low-temperature regimes, describe the Curie–Weiss–Potts
model at all inverse temperatures β, and do not follow from Theorem 1.1 since the Glauber
dynamics is not globally contracting for large β. Here, we will identify the vertices with
[N] = {1, . . . , N}, and denote the state space by � := [q]N . Let S : � → S be the map which
sends any configuration σ ∈ � to the vector of proportions

S(σ ) := (S(1)(σ ), . . . , S(q)(σ )) (1.7)

in the probability simplex S := {x ∈R
q
+ : ‖x‖1 = 1}, where

S(k)(σ ) := 1

N

N∑
j=1

1σ (j)=k, k ∈ [q].

In the absence of geometry, the state of the system is effectively characterized by the vector
of proportions. It is well known [8, 16] that there exists a critical inverse temperature

βc ≡ βc(q) := (q − 1) log (q − 1)

q − 2
(1.8)

separating the disordered and ordered phases of the Curie–Weiss–Potts model. The (canoni-
cal) equilibrium macrostates, which describe equilibrium configurations in the thermodynamic
limit, are the global minimizers of the function

Gβ (s) := β‖s‖2
2 − log

( q∑
i=1

e−2βs(i)

)
, s ∈R

q, (1.9)

which appear in the Gibbs free energy ϕ(β), defined by 2βϕ(β) = mins∈Rq Gβ (s) + log q. Let

Sβ,q := arg mins∈Rq Gβ (s) (1.10)

be the set of global minimizers of Gβ . When β < βc, there is a unique equilibrium macrostate

ê := (1/q, . . . , 1/q),

corresponding to the disordered phase in which the most likely configurations have roughly
equal proportions of each colour. When β > βc, there are q equilibrium macrostates, corre-
sponding to the q ordered phases in which the Gibbs measure is supported almost entirely on
configurations with a particular dominant colour. At criticality, β = βc, there are q + 1 minima
in Sβc,q, reflecting the coexistence of the ordered and disordered phases. Due to the symmetry
of Gβ , its minimizers are in the probability simplex, and therefore define probability distribu-
tions. We defer the precise expressions for the points in Sβ,q when β ≥ βc to Theorem 4.1
later.
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6 R. HE AND J. LOK

Furthermore, a complete analysis of the mixing time of the Glauber dynamics for the Curie–
Weiss–Potts model is provided in [9]. It is shown that the spinodal inverse temperature

βs ≡ βs(q) := sup

{
β ≥ 0 :

(
1 + (q − 1)e2β

1−qx
q−1

)−1

− x �= 0 ∀x ∈ (1/q, 1)

}
(1.11)

is a dynamical threshold: the mixing time is of order O(N log (N)) with cut-off when β < βs;
of order O(N4/3) when β = βs; and is exponentially large in N when β > βs. The critical
slowdown at βs marks the onset of metastability, corresponding to the emergence of local mini-
mizers of the free energy (i.e. of Gβ ). The coexistence of phases (possibly as metastable states)
implies slow mixing since the dynamics must pass through states which are exponentially
unlikely. The critical inverse temperatures satisfy 1 < βs < βc < q/2 for q ≥ 3.

High-temperature regime. Theorem 1.2 can be applied to the complete graph to deduce that
for β < 1 and any h : � →R, |Eh(X) −Eh(Y)| = O(

√
N), where X is distributed according to

the Curie–Weiss–Potts model and Y is a random configuration with i.i.d. uniform spins. Since
the Glauber dynamics for the Curie–Weiss–Potts model mixes rapidly for all β < βs (with
βs > 1), one might expect that a similar bound should hold in the entire high-temperature
regime, based on the heuristic that stationary distributions of rapid mixing Markov chains
should be approximately independent (see [36] for further discussion). Indeed, we prove the
following theorem.

Theorem 1.3. Suppose that β < βs. Let X ∈ � be distributed according to the Curie–Weiss–
Potts model with inverse temperature β, and Y ∈ � be a random configuration where the colour
of each vertex is sampled independently and uniformly at random. Then there exists a constant
θ∗ > 0, depending on β and q, such that for any function h : � →R,

|Eh(X) −Eh(Y)| ≤ ‖L(h)‖∞θ∗√N.

Remark 1.2 (Optimality) By considering the class of 1-Lipschitz functions h, Theorem 1.3
implies that the Wasserstein distance between X ∼ μ and Y ∼ ν satisfies dW (μ, ν) = O(

√
N)

(see Remark 1.1). This bound is optimal (in terms of dependence on N) based on the match-
ing lower bound furnished by the following argument. Let WX := √

N(S(X) − ê) and WY :=√
N(S(Y) − ê) be the centred and rescaled vectors of proportions of X and Y, respectively.

By the usual central limit theorem for the multinomial distribution, WY converges weakly as
N → ∞ to a multivariate normal vector N(0, �Y ), whose covariance matrix �Y has diagonal
entries (q − 1)/q2 and off-diagonal entries −1/q2. From [16, Theorem 2.4], it is known that
WX also converges weakly as N → ∞ to a multivariate normal vector N(0, �X), and it can be
shown that �X has diagonal entries (q − 1)/(q2 − 2qβ) and off-diagonal entries −1/(q2 − 2β)
(see the proof of [16, Proposition 2.2]). Thus, for all β > 0, the limiting distributions of WX and
WY are different (and they coincide when β → 0). Observe that for any 1-Lipschitz function
g : Rq →R with respect to the 	1 norm, and any optimal coupling (X∗, Y∗) of μ and ν such
that EdH(X∗, Y∗) = dW (μ, ν),

|Eg(WX) −Eg(WY )| ≤ √
N E‖S(X∗) − S(Y∗)‖1 ≤ 2N−1/2

EdH(X∗, Y∗), (1.12)

since each location where X∗ and Y∗ differ contributes at most 2N−1 to ‖S(X∗) − S(Y∗)‖1.
Thus, we must have lim infN→∞ dW (μ, ν)/

√
N ≥ c for some constant c > 0, otherwise (1.12)

would imply that WX and WY converge to the same distribution.
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On approximating the Potts model 7

Low-temperature regime. When β ≥ βs, the Glauber dynamics is not rapid mixing. Moreover,
when there exist multiple equilibrium macrostates (when β ≥ βc), it does not make sense to
compare the Curie–Weiss–Potts model to a single sequence of i.i.d. spins. However, in this
low-temperature regime, we will show that the Curie–Weiss–Potts model, conditioned on being
close enough to any equilibrium macrostate x ∈Sβ,q, can be approximated by a sequence of
i.i.d. spins with probabilities given by x. To define the restriction region, let

�̃(x, r) := {σ ∈ � : ‖S(σ ) − x‖2 ≤ r} , (1.13)

where r > 0 is a constant (only depending on β and q) that will be chosen to be sufficiently
small later. Given x ∈Sβ,q, we define ν to be the product measure on � where the colour of
each vertex is sampled independently from the distribution given by x. We denote the Gibbs
measure μ of the Curie–Weiss–Potts model and the product measure ν, conditioned on �̃(x, r)
by, respectively,

μ̃( · ) := μ( · | �̃(x, r)) and ν̃( · ) := ν( · | �̃(x, r)). (1.14)

Theorem 1.4. Suppose that β ≥ βs, and r is a sufficiently small constant. For any x ∈Sβ,q, let
X̃ ∈ �̃(x, r) and Ỹ ∈ �̃(x, r) be random configurations distributed according to the conditional
measures μ̃ and ν̃, respectively. Then there exists a constant θ∗ > 0, depending on β, q and r,
such that for any function h : �̃(x, r) →R,

|Eh(X̃) −Eh(̃Y)| ≤ ‖L(h)‖∞θ∗√N.

A similar observation on the optimality of Theorem 1.4 as in Remark 1.2 can also be for-
mulated by centring the vector of proportions around the chosen x ∈Sβ,q and using known
central limit-type results for the conditional measure μ̃ [16, Theorem 2.5].

As one would expect, it can be shown that in Theorem 1.4, θ∗ → 0 as β → ∞ (assuming
that N → ∞ and r → 0 together at appropriate rates); see Remark 4.1. Similarly, it can be
shown that in Theorem 1.3, θ∗ → 0 as β → 0.

The proofs for Theorems 1.3 and 1.4 are given in Section 4. As discussed before, the
key technical difficulty is that the Glauber dynamics for the Curie–Weiss–Potts model is not
contracting on the entire state space, but only locally around each of the points in Sβ,q.
To address this, we will analyse the restricted Glauber dynamics—this is a Markov chain,
denoted by (σ̃t)t≥0, which has μ̃ as its stationary distribution, and evolves like the usual Glauber
dynamics except that any moves out of �̃(x, r) are rejected. More precisely, given the current
configuration σ̃t ∈ �̃(x, r), its transitions are as follows.

(1) Generate a new configuration σ ′ ∈ � according to the usual Glauber dynamics.

(2) If σ ′ ∈ �̃(x, r), then set σ̃t+1 = σ ′. Otherwise, set σ̃t+1 = σ̃t (i.e. the move is rejected).

We say that the restricted Glauber dynamics σ̃t is on the boundary if there is a possible
transition that can lead to rejection. As a key ingredient for proving Theorems 1.3 and 1.4,
we also prove the following bound on the mixing time of the restricted Glauber dynamics in
Section 4.

Theorem 1.5. Suppose that β ≥ βs, and r is a sufficiently small constant. For any x ∈Sβ,q, let
txmix(ε) be the mixing time of the Glauber dynamics for the Curie–Weiss–Potts model restricted
to �̃(x, r). Then

txmix := txmix (1/4) = O (N log (N)) .
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8 R. HE AND J. LOK

An analogous result for the mean-field Ising model with spins on the complete graph (where
βs = βc = 1) was established in [27], where a variant of the restricted Glauber dynamics was
shown to have mixing time O(N log (N)). The proof of this result exploits the symmetry of the
distribution of the normalized magnetization under the corresponding Gibbs measure, which
is unique to the mean-field Ising model and does not apply in our setting.

1.3. Related works

Limit theorems for the Curie–Weiss–Potts model. For the Curie–Weiss–Potts model X ∼ μ,
the rate of convergence of the proportions vector S(X) is studied in [15], quantifying the
central limit theorems obtained in [16]. In particular, it is proved in [15, Theorem 1.3] that
if WX = √

N (S(X) − x) is the scaled and centred proportions vector for any x ∈Sβ,q, and
�1/2Z is a multivariate normal vector with covariance matrix � =E

[
WXW�

X

]
, then in the

high-temperature regime β < βc,

|Eg(WX) −Eg(�1/2Z)| ≤ CN−1/2

for every three times differentiable function g : Rq →R with bounded derivatives. In the low-
temperature regime β ≥ βc, a similar result with the same O(N−1/2) rate is proved for the
corresponding measures conditional on S(X) ∈ �̃(x, r) in [15, Theorem 1.5]. These results can
be compared to Theorems 1.3 and 1.4, respectively (also see Remark 1.2).

Glauber dynamics for the Curie–Weiss–Potts model. An alternative proof of the rapid mix-
ing of the Glauber dynamics for the (generalized) Curie–Weiss–Potts model in the subcritical
regime β < βs when there is a unique equilibrium macrostate x = ê is given in [25] using the
aggregate path coupling method. Some of the ideas used in the analysis, extended to the low-
temperature regime where there are multiple, possibly asymmetric equilibria x ∈Sβ,q, appear
in the proofs of Theorems 1.3, 1.4 and 1.5 to show that the Glauber dynamics restricted to
�̃(x, r) is contracting as long as it is sufficiently close to x.

The mixing time of the Glauber dynamics for the Curie–Weiss–Potts model, conditional on
being close to an equilibrium macrostate, in Theorem 1.5 is related to different notions of mix-
ing for when there exist metastable states that take the chain exponentially long to escape. In
[9, Theorem∼4], it is shown that in the subcritical regime βs ≤ β < βc, the Glauber dynamics
mixes rapidly with cut-off at (2(1 − 2β/q))−1N log (N) after excluding a set of initial config-
urations with probability exponentially small in N—this is called essential mixing. A set of
intricate couplings is used in this paper to obtain the correct constant for the cut-off time.

The dynamics in the low-temperature regime β ≥ βc, which requires a more delicate treat-
ment of asymmetric equilibrium macrostates in the presence of phase coexistence, is studied
independently in our paper and the concurrent work [3]. The key idea behind the rapid mixing
results for the Glauber dynamics for the Curie–Weiss–Potts model, following [9], is to control
the drift of the proportions chain S(σt) induced by the dynamics. It is shown in [3] that with
a carefully chosen product measure initialization that is not too close to a saddle point of the
free energy, the Glauber dynamics mixes rapidly in O(N log (N)) time in the low-temperature
regime. Their proof technique relies on approximating projections of the high-dimensional
proportions chain by tractable one-dimensional processes. This type of mixing, starting from a
specific initial distribution, is called metastable mixing (see also [6, 20, 29] where this notion
has been studied for the Ising and exponential random graph models). Our focus, on the other
hand, is on bounding the worst-case mixing time of the Glauber dynamics restricted near a par-
ticular equilibrium macrostate. The main difficulty is to control the behaviour of the dynamics
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On approximating the Potts model 9

at the boundary, and we adopt a matrix representation for the drift of the proportions chain that
is well suited for this analysis.

An important property of the usual worst-case mixing time (1.5), which Theorem 1.5
bounds, is that the total variation distance to stationarity decays exponentially fast beyond
this time (see [28, equation (4.33)]). This plays an essential role for our purpose of distri-
butional approximation using Stein’s method (Theorem 1.4). This property is not exhibited
by the mixing time from a specific initial distribution, that ism corresponding to the notions
of essential mixing or metastable mixing described above (see the discussion following
Definition 1.4 in [6]).

Temporal and spatial mixing. Deep connections have been found between rapid mixing and the
spatial properties of spin systems on a lattice [1, 13, 24, 30, 31, 38], and it is widely believed
that a correspondence between temporal and spatial mixing holds for many models in statistical
mechanics. By now, it is well understood that a contracting Markov chain mixes rapidly. The
path coupling method [7] is a fundamental tool for establishing that a chain is contracting by
showing that (1.1) holds for all pairs of neighbouring configurations. This condition has an
intimate relation with Dobrushin’s condition for the uniqueness of the Gibbs measure (see, for
example, [11, 32, 33]), which is known to imply exponential decay of correlations [10, 23, 26];
that is, each spin is asymptotically independent of the vertices far away.

1.4. Organization

The rest of the paper is organized as follows. Section 2 contains preliminaries on the Glauber
dynamics and Stein’s method. Section 3 describes the proof of Theorem 1.2 for the Potts model
on general bounded-degree graphs. In Section 4, a detailed analysis of the Curie–Weiss–Potts
model and its restricted Glauber dynamics is provided, and the proofs of Theorems 1.3–1.5 are
given. Finally, the proofs of some deferred technical lemmas appear in Appendix A.

2. Preliminaries

2.1. Glauber dynamics for the Potts model

Consider the Potts model with inverse temperature β > 0 on a graph G = (V, E) on N
vertices with q ≥ 3 colours. For any vertex v ∈ V , let Nv := {u ∈ V : (u, v) ∈ E} denote the
neighbours of v. For any configuration σ ∈ [q]V , let

Sv(σ ) := (S(1)
v (σ ), . . . , S(q)

v (σ )) ∈R
q (2.1)

be the vector whose coordinates

S(k)
v (σ ) := 1

N

∑
u∈Nv

1σ (u)=k (2.2)

indicate the (scaled) proportion of neighbours of v with each of the q colours. (This definition
essentially coincides with the vector of proportions defined in (1.7) for the Curie–Weiss–
Potts model, where it is convenient to include the colour of the vertex v in the count due to
symmetry.) Moreover, for s ∈R

q, define the vector

gβ (s) :=
(

g(1)
β (s), . . . , g(q)

β (s)
)

∈R
q
+, (2.3)
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10 R. HE AND J. LOK

where for each colour k ∈ [q],

g(k)
β (s) := e2βs(k)∑q

j=1 e2βs(j) . (2.4)

In other words, we can identify gβ with the softmax function which maps vectors in R
q to the

q-dimensional probability simplex S := {x ∈R
q
+ : ‖x‖1 = 1}. Furthermore, we denote by σ (v,k)

the configuration obtained from σ by recolouring the vertex v with colour k, that is,

σ (v,k)(u) =
{

k if u = v,

σ (u) if u �= v.
(2.5)

Using this notation, we can specify the Glauber dynamics for the Gibbs measure μ of the
Potts model more precisely. Given the current configuration σ , the next step selects a vertex v
uniformly at random and recolours it with a new colour k ∈ [q], selected with probability

μv(k | σt) = g(k)
β (Sv(σt)), (2.6)

to obtain the next configuration σ (v,k). That is, the conditional spin distribution for the Potts
model is given by μv(· | σ ) = gβ (Sv(σ )) at each vertex v. If ν is another measure on [q]V , we
will also denote the total variation distance between its conditional spin distribution νv(· | σ )
and μv(· | σ ) by

Tv(σ ) := ‖μv(· | σ ) − νv(· | σ )‖TV, (2.7)

and collect these values in the vector T(σ ) := (Tv(σ ))v∈V ∈R
V+.

2.2. Stein’s method for approximating the stationary distributions of Glauber dynamics

In this section, we provide an overview of the proof of Theorem 1.1, which uses the gener-
ator approach of Stein’s method, in order to establish some intermediary results that we will
use when the chain is not globally contracting.

The idea behind the generator approach to compare two random vectors X ∼ μ and Y ∼ ν

on a finite metric space (�, d) is to find generators Aμ and Aν for Markov processes with
stationary distributions μ and ν respectively, and, for any test function h : � →R, to solve the
Stein equation

Aμfh(σ ) = h(σ ) −Eh(X) (2.8)

for fh : � →R. Since EAν f (Y) = 0 if and only if Y ∼ ν, the two measures μ and ν can be
compared in terms of the solution to the Stein equation by

|Eh(X) −Eh(Y)| = |EAμfh(Y) −EAν fh(Y)|. (2.9)

In particular, if P and Q are Markov chains on � with stationary distributions μ and ν (or
more precisely, their transition kernels), then the Markov processes can be chosen to be the
continuous-time Markov chains with exponential rate 1 holding times and jump probabili-
ties induced by P and Q, which have generators Aμ = P − I and Aν = Q − I, respectively.
If (X̄t)t≥0 denotes the continuous-time Markov chain with stationary distribution μ, then it is
known that the Stein equation has the following well-defined solution if P is irreducible (see,
for example, [35]):

fh(σ ) := −
∫ ∞

0
E
[
h(X̄t) −Eh(X) | X̄0 = σ

]
dt, σ ∈ �. (2.10)
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On approximating the Potts model 11

If P is contracting according to (1.1), then it was shown by [2] that the irreducibility assumption
can be removed (i.e. fh is convergent and remains well defined).

Note that (P − Q)fh(σ ) =E
[
fh(Xσ

1 ) − fh(Yσ
1 )
]
, where (Xσ

1 , Yσ
1 ) is a coupling of P(σ, ·)

and Q(σ, ·). Thus, by definition of the Wasserstein distance (1.2), |(P − Q)fh(σ )| ≤ Ld(fh) ·
dW (P(σ, ·), Q(σ, ·)). Hence, by substituting Aμ = P − I and Aν = Q − I into (2.9), we have

|Eh(X) −Eh(Y)| =E|(P − Q)fh(Y)| ≤ Ld(fh) ·E [dW (P(Y, ·), Q(Y, ·))] . (2.11)

The following argument furnishes the key estimate required to bound Ld(fh), the Lipschitz
constant of fh. Denote the independent jump times of the continuous-time chain (X̄t)t≥0 by 0 =
T0 < T1 < T2 < . . . , and the embedded jump chain by (X	)	∈N (i.e. X̄t = X	 for t ∈ [T	, T	+1)).
By reducing to the discrete skeleton of the continuous-time chain, fh satisfies

|fh(σ ) − fh(τ )| ≤
∫ ∞

0

∣∣E [h(X̄t) | X̄0 = σ
]−E

[
h(X̄t) | X̄0 = τ

]∣∣ dt

≤
∞∑

	=0

E

∫ T	+1

T	

∣∣h(Xσ
	 ) − h(Xτ

	 )
∣∣ dt.

(2.12)

Since the jump times are independent of the discrete skeleton and have mean 1,

|fh(σ ) − fh(τ )| =
∞∑

	=0

E
∣∣h(Xσ

	 ) − h(Xτ
	 )
∣∣ ≤ Ld(h)

∞∑
	=0

dW (P	(σ, ·), P	(τ, ·)), (2.13)

where the inequality follows from the definition of the Wasserstein distance (1.2). Hence,
Theorem 1.1 follows from combining (2.11) and the following estimate for Ld(fh), obtained
from a straightforward application of the contracting assumption (1.1). Indeed, since P is
contracting,

dW (P	(σ, ·), P	(τ, ·)) ≤ κ	 · d(σ, τ )

for all 	 ≥ 0. Therefore, from (2.13), we have

|fh(σ ) − fh(τ )| ≤ Ld(h)
∞∑

	=0

κ	 · d(σ, τ ) = Ld(h)

1 − κ
d(σ, τ ),

which shows that Ld(fh) ≤ Ld(h)/(1 − κ).
To conclude this section, we extract some more specific estimates from the general argument

above when � = [q]V is the set of configurations on an underlying graph G = (V, E), d = dH

is the Hamming distance, and P and Q are the Glauber dynamics for μ and ν. In this setting,
the generator Aμ for the continuous-time Glauber dynamics induced by P takes the form

Aμf (σ ) = 1

N

∑
v∈V

⎡⎣∑
k∈[q]

μv(k | σ )(f (σ (v,k)) − f (σ ))

⎤⎦ , σ ∈ [q]V , (2.14)

recalling that σ (v,k) denotes the configuration obtained from σ by recolouring the vertex v with
colour k, and μv(· | σ ) is the conditional spin distribution. The generator Aν for the continuous-
time chain induced by Q takes the same form as (2.14) with νv(· | σ ) in place of μv(· | σ ).
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12 R. HE AND J. LOK

The following lemmas will be used in the proof of the approximation results for the Curie–
Weiss–Potts model in Section 4. By putting the specific form of the generators Aμ and Aν from
above into the Stein’s method bound (2.9), we immediately deduce the following analogue of
(2.11), specialized to the Glauber dynamics.

Lemma 2.1. Let P and Q be the Glauber dynamics on [q]V with stationary distributions μ and
ν, respectively. For any h : [q]V →R, we have

|Eh(X) −Eh(Y)| ≤ 1

N

∑
v∈V

∑
k∈[q]

E

[
|μv(k | Y) − νv(k | Y)| ·

∣∣∣fh(Y (v,k)) − fh(Y)
∣∣∣] . (2.15)

Furthermore, the following lemma will be used to bound the differences of the solution to
the Stein equation fh, which appears in Lemma 2.1, when the chain P is not contracting.

Lemma 2.2. Let P be the Glauber dynamics on [q]V with stationary distribution μ. For any
σ, τ ∈ [q]V , let (Xσ

	 , Xτ
	 )	∈N be any sequence of couplings of the 	-step distributions of P

starting from σ and τ , respectively. Then, for any h : [q]V →R, we have

|fh(σ ) − fh(τ )| ≤ ‖L(h)‖∞
∑
	≥0
v∈V

P
(
Xσ

	 (v) �= Xτ
	 (v)

)
.

Proof. By definition of the Wasserstein distance (1.2), dW (P	(σ, ·), P	(τ, ·)) can be
upper-bounded by EdH(Xσ

	 , Xτ
	 ) =∑v∈V P

(
Xσ

	 (v) �= Xτ
	 (v)

)
, where (Xσ

	 , Xτ
	 ) is any cou-

pling of the 	-step distributions of P starting from σ and τ . Therefore, since h : [q]V →
R is ‖L(h)‖∞-Lipschitz with respect to dH , we obtain the claimed bound by continuing
from (2.13). �

3. Potts model on general bounded-degree graphs

In this section, we prove Theorem 1.2 for the Potts model on a graph G = (V, E) with N
vertices and maximum degree 
. First, the following lemma establishes a condition for when
the Glauber dynamics for the Potts model is contracting. The proof of this result is essentially
embedded in [40], but we will describe it for completeness.

Lemma 3.1. Let P be the Glauber dynamics for the Potts model with inverse temperature β

on a graph G = (V, E) with N vertices and maximum degree 
. If 
 tanh (β/N) < 1, then for
all σ, τ ∈ [q]V , there exists a coupling (Xσ

1 , Xτ
1 ) of the one-step distributions of P starting from

σ, τ such that

E
[
dH(Xσ

1 , Xτ
1 )
]≤(1 − 1 − 
 tanh (β/N)

N

)
dH(σ, τ ). (3.1)

That is, P is contracting with respect to the Hamming distance dH according to (1.1) with rate
κ = 1 − N−1(1 − 
 tanh (β/N)).

Proof. Recall from (1.4) that μv(· | σ ) is the conditional spin distribution of μ at v, given σ .
It is shown in the proof of [40, Theorem 2.13] that for all u, v ∈ V , the so-called influence of u
on v for the chain P satisfies

R̂u,v := max
σ (w)=τ (w) ∀w�=u

‖μv(· | σ ) − μv(· | τ )‖TV ≤ tanh

(
β

N

)
1(u,v)∈E. (3.2)

Here, the maximum is taken over all pairs σ, τ ∈ [q]V that only possibly differ at u. (Note
that the inverse temperature β in [40] corresponds to 2β/N under our scaling for the Gibbs
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On approximating the Potts model 13

measure.) The rest of the proof follows from a standard path coupling calculation [4, 12] for
which it suffices to show that (3.1) holds for all σ, τ ∈ [q]V with dH(σ, τ ) = 1. Given a pair
σ, τ ∈ [q]V that only differs at a single vertex, say u, let (Xσ

1 , Xτ
1 ) be a coupling of the one-step

distributions of P starting from σ and τ which samples the same vertex v uniformly at ran-
dom and minimizes the probability that the selected colour differs. Observe that the Hamming
distance between the two chains decreases by 1 if v = u with probability 1/N, and increases
by 1 if the sampled colour differs, which occurs with probability at most R̂u,v ≤ tanh (β/N) by
(3.2). Thus, E

[
dH(Xσ

1 , Xτ
1 )
]≤ 1 − N−1(1 − 
 tanh (β/N)). �

Remark 3.1. By using a standard coupling argument, Lemma 3.1 implies that if

 tanh (β/N) < 1 (or more simply β < N/
), then the Glauber dynamics for the Potts model
mixes rapidly with

tmix(ε) ≤ N log (Nε−1)

1 − 
 tanh (β/N)
.

This is the best known range of β for rapid mixing of the Glauber dynamics when q is fixed and
N is large. In the regime where q is large, it has been shown in [2, 4] that the Glauber dynamics

also has optimal O(N log (N)) mixing time if β < 1



log
(

q−1



)
or β < (1 − oq(1)) log (q)


−1 (where

oq(1) → 0 as q → ∞).

Next, the following result specializes the general approximation result in Theorem 1.1 to the
Glauber dynamics on [q]V . Recall that T(σ ) = (Tv(σ ))v∈V , defined in (2.7), denotes the total
variation distances between the conditional spin distributions of μ and ν, given σ .

Theorem 3.1. Let P and Q be the Glauber dynamics on [q]V with stationary distributions μ

and ν respectively, and let X ∼ μ and Y ∼ ν be random configurations. If P is contracting
with respect to the Hamming distance dH according to (1.1) for some 0 ≤ κ < 1, then for any
function h : [q]V →R,

|Eh(X) −Eh(Y)| ≤ ‖L(h)‖∞
N(1 − κ)

E‖T(Y)‖1. (3.3)

Proof. Recall that h is ‖L(h)‖∞-Lipschitz with respect to dH . By definition of the
Wasserstein distance (1.2), dW (P(σ, ·), Q(σ, ·)) can be upper-bounded by E

[
dH(Xσ

1 , Yσ
1 )
]
,

where (Xσ
1 , Yσ

1 ) is the following coupling of the one-step distributions of P and Q starting
from any configuration σ ∈ [q]V . [label=()]

(1) Pick the same vertex v ∈ V uniformly at random.

(2) Update the spin at v to obtain new configurations Xσ
1 and Yσ

1 according to an optimal
coupling of the conditional spin distributions μv(· | σ ) and νv(· | σ ), respectively (i.e.
which minimizes the probability that the selected colour differs).

If v is selected, the probability that Xσ
1 (v) �= Yσ

1 (v), or equivalently dH(Xσ
1 , Yσ

1 ) = 1, is equal
to Tv(σ ) = ‖μv(· | σ ) − νv(· | σ )‖TV. Thus, from Theorem 1.1, we have

|Eh(X) −Eh(Y)| ≤ ‖L(h)‖∞
1 − κ

E

[
1

N

∑
v∈V

Tv(Y)

]
= ‖L(h)‖∞

N(1 − κ)
E‖T(Y)‖1,

as desired. �
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14 R. HE AND J. LOK

Now suppose that μ is the Potts model and that ν is a product measure where each spin is
independently distributed according to the probabilities pv := (p(k)

v )k∈[q] at each vertex v ∈ V .
Note that for any configuration σ ∈ [q]V , νv(· | σ ) = pv, and from (2.6), μv(· | σ ) = gβ (Sv(σ )),
where gβ is the softmax function from (2.4) and Sv(σ ) indicates the (scaled) proportions of
neighbours of v with each colour from (2.1). From Theorem 3.1, Y ∼ ν offers a good approx-
imation of the Potts model if E‖T(Y)‖1 is small. Hence, we seek probabilities that satisfy
p(k)

v ≈ μv(k | Y) to match the transition probabilities of the corresponding Glauber dynamics—a
natural choice is to solve the system of equations

p(k)
v = g(k)

β (E[Sv(Y)]) for all k ∈ [q], v ∈ V . (3.4)

The condition (3.4) is a mean-field approximation and generalizes a similar condition for the
Ising model in [36, equation (1.2)]. An important observation that we will use is that set-
ting p(k)

v = 1/q for all k ∈ [q], v ∈ V (i.e. ν consists of i.i.d. uniform spins) always produces a
solution to (3.4).

By applying Theorem 3.1, we establish the following approximation result for comparing
the Potts model with a product measure ν that satisfies the mean-field condition (3.4).

Lemma 3.2. Let X ∼ μ be distributed according to the Potts model with inverse temperature
β on a graph G = (V, E) with N vertices, and Y ∼ ν be distributed according to a product
measure (pv)v∈V on [q]V that satisfies (3.4). If the Glauber dynamics for X is contracting with
respect to the Hamming distance according to (1.1) for some 0 ≤ κ < 1, then for any h : [q]V →
R,

|Eh(X) −Eh(Y)| ≤ ‖L(h)‖∞
β
√

q

N(1 − κ)

∑
v∈V

E‖Sv(Y) −E [Sv(Y)]‖2.

Proof. The bound follows from Theorem 3.1 once we show that

E‖T(Y)‖1 ≤ β
√

q
∑
v∈V

E‖Sv(Y) −ESv(Y)‖2, (3.5)

where T(Y) = (Tv(Y))v∈V with Tv(Y) = ‖μv(· | Y) − νv(· | Y)‖TV. Fix v ∈ V . Since the condi-
tional spin distribution of P is given by μv(· | σ ) = gβ (Sv(σ )) from (2.6), and νv(k | σ ) = p(k)

v

for the random configuration Y with independent spins that satisfy (3.4), we have

μv(k | Y) − νv(k | Y) = gβ (Sv(Y)) − gβ (E [Sv(Y)] ), k ∈ [q].

By using the equivalence of the 	1 and 	2 norms in R
q, and the fact that the softmax function

gβ is 2β-Lipschitz with respect to the 	2 norm [18, Proposition 4], we deduce that

‖gβ (Sv(Y)) − gβ (E [Sv(Y)] )‖1 ≤ √
q‖gβ (Sv(Y)) − gβ (E [Sv(Y)] )‖2

≤ 2β
√

q‖Sv(Y) −E [Sv(Y)]‖2.

Combining the previous displayed equations implies that

Tv(Y) = 1

2
‖gβ (Sv(Y)) − gβ (E [Sv(Y)] )‖1 ≤ β

√
q‖Sv(Y) −E [Sv(Y)]‖2.

Hence, by summing over all the vertices, we deduce that (3.5) holds, as desired. �
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By combining Lemmas 3.1 and 3.2, we can now prove Theorem 1.2.

Proof of Theorem 1.2. By Lemma 3.1, the Glauber dynamics for the Potts model is contract-
ing with κ = 1 − N−1(1 − 
 tanh (β/N)) whenever 
 tanh (β/N) < 1. Hence, we may apply
Lemma 3.2, where each spin of the random configuration Y is independently sampled from
the uniform distribution p = (p(k))k∈[q] with p(k) = 1/q for all k, which satisfies (3.4). Thus,
it suffices to bound

∑
v∈V E‖Sv(Y) −E [Sv(Y)]‖2. Fix v ∈ V , and denote its degree by deg(v).

Recall from (2.1) that

Sv(Y) =
⎛⎝ 1

N

∑
u∈Nv

1Y(u)=k

⎞⎠
k∈[q]

∈R
q.

Since the colours of the neighbours of v are independently distributed according to p, NSv(Y) ∼
Multinomial(deg(v), p). Thus, Var(NS(k)

v (Y)) = deg(v)p(k)(1 − p(k)) and

E

(
S(k)

v (Y) −E

[
S(k)

v (Y)
])2 = 1

N2
Var(NS(k)

v (Y)) = deg(v)

N2
p(k)(1 − p(k)),

for all k ∈ [q]. Consequently, by Jensen’s inequality,

E‖Sv(Y) −E [Sv(Y)]‖2 ≤
√√√√∑

k∈[q]

E

(
S(k)

v (Y) −E

[
S(k)

v (Y)
])2 =

√
deg(v)

N

√∑
k∈[q]

p(k)(1 − p(k)).

(3.6)
Since p(k) = 1/q for all k,

∑
k∈[q] p(k)(1 − p(k)) = (q − 1)/q. Therefore, applying Lemma 3.2

shows that

|Eh(X) −Eh(Y)| ≤ ‖L(h)‖∞
β
√

q − 1

1 − 
 tanh (β/N)

1

N

∑
v∈V

√
deg(v). (3.7)

In particular, by using Jensen’s inequality and the handshaking lemma, we have

1

N

∑
v∈V

√
deg(v) ≤

√
1

N

∑
v∈V

deg(v) =
√

2|E|
N

. (3.8)

Combining (3.7) and (3.8) completes the proof of the theorem. �

4. The Curie–Weiss–Potts model

In this section, we focus on the Curie–Weiss–Potts model on the complete graph with N
vertices. The analysis of the vector of proportions S(σ ), which lives in the probability sim-
plex S= {x ∈R

q
+ : ‖x‖1 = 1}, will play a crucial part in understanding the dynamics of the

system. By convention, we will consider vectors s ∈R
q as row vectors. In a continuation of

the discussion in Section 1.2, we begin by summarizing known results about the equilibrium
macrostates.

Theorem 4.1 ([16, Theorem 2.1]) For β > 0, let sβ,q ∈R be the largest solution of the equation

s = 1 − e−2βs

1 + (q − 1)e−2βs
. (4.1)
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16 R. HE AND J. LOK

Then, the quantity sβ,q is well defined. On the interval [βc, ∞), it is positive, strictly increasing
and differentiable, where

βc ≡ βc(q) := q − 1

q − 2
log (q − 1)

satisfies 1 < βc(q) < q/2 for all q ≥ 3, and βc(2) = 1. Moreover, one has sβc,q = (q − 2)/(q −
1) and limβ↑∞ sβ,q = 1 for any q ≥ 2.

Define

šβ,q :=
(

1 + (q − 1)sβ,q

q
,

1 − sβ,q

q
, . . . ,

1 − sβ,q

q

)
∈ S.

Let Tk : Rq →R
q denote the operator which interchanges the first and kth coordinates of a

vector. Then, for β = βc, we have

šβc,q =
(

1 − 1

q
,

1

q(q − 1)
, . . . ,

1

q(q − 1)

)
.

Furthermore, the set of minimizers of the function Gβ defined in (1.9) is given by

Sβ,q :=

⎧⎪⎨⎪⎩
{ê}, if β < βc,

{ê, T1šβc,q, T2šβc,q, . . . , Tqšβc,q}, if β = βc,

{T1šβ,q, . . . , Tqšβ,q}, if β > βc,

where ê := (1/q, . . . , 1/q) ∈ S is the equiproportionality vector. For β ≥ βc, the points in Sβ,q

are all distinct.

(Note that the inverse temperature β in [16] corresponds to 2β under our scaling for the
Gibbs measure.)

The expression for the critical value βc for the Curie–Weiss–Potts model was first obtained
in [43]. For simplicity of notation, we define

s∗
β,q := š(1)

β,q = 1 + (q − 1)sβ,q

q
, (4.2)

where sβ,q is the largest solution of equation (4.1) in Theorem 4.1, and so

T1šβ,q = šβ,q =
(

s∗
β,q,

1 − s∗
β,q

q − 1
, . . . ,

1 − s∗
β,q

q − 1

)
. (4.3)

Next, we describe some key properties of the softmax function gβ , defined in (2.3), which
will be important for our analysis. Observe that the gradient of the function Gβ (s) defined in
(1.9) is equal to 2β(s − gβ (s)). Therefore, the points in Sβ,q solve the following fixed point
equation:

Lemma 4.1 (Mean-field equation) For all x ∈Sβ,q, we have gβ (x) = x.

Lemma 4.1 essentially corresponds to the mean-field condition (3.4) that previously
appeared when approximating the Potts model on a general graph with a sequence of inde-
pendent spins. This explains why x ∈Sβ,q is a natural choice for the distribution of each spin
of the underlying i.i.d. model Y in Theorems 1.3 and 1.4.
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On approximating the Potts model 17

A crucial step for showing that the Glauber dynamics for the Curie–Weiss–Potts model
is contracting around any equilibrium macrostate is to bound the Lipschitz constant of the
function gβ around any point x ∈Sβ,q. The following technical lemma describes a special
property of the Jacobian matrix of gβ at x, which is essential for establishing such a bound.

Lemma 4.2. (Jacobian) Let J(x) be the q × q Jacobian matrix of gβ at x, such that the kth row

of the matrix is given by the row vector ∇g(k)
β (x). Define the constants a, a′, b > 0 by

a := 2βqs∗
β,q

1 − s∗
β,q

q − 1
, a′ := 2β

1 − s∗
β,q

q − 1
, b := 2β

1 − s∗
β,q

q − 1

(
s∗
β,q − 1 − s∗

β,q

q − 1

)
.

Then, for any x ∈Sβ,q and any s1, s2 ∈ S, we have that

J(x)(s1 − s2)� = A(x)(s1 − s2)�,

where A(x) is the matrix defined as follows. When x = ê, we simply have A(ê) := (2β/q)I,
where I is the q × q identity matrix—that is,

∇g(k)
β (ê)(s1 − s2)� = 2β

q

(
s(k)

1 − s(k)
2

)
for all k ∈ [q].

When x = Tjšβ,q, the entries of A ≡ A(x) are given by

Aj,j := a,

Ak,k := a′, k �= j,
Ak,j := −b,k �= j,

and all the other entries are zero—that is,

∇g(k)
β

(
Tjšβ,q

)
(s1 − s2)� =

⎧⎪⎨⎪⎩
a
(

s(j)
1 − s(j)

2

)
, if k = j,

a′
(

s(k)
1 − s(k)

2

)
− b
(

s(j)
1 − s(j)

2

)
, if k �= j.

We will defer the proof of Lemma 4.2, which relies on Lemma 4.1 and algebraic
manipulations, to Appendix A.1.

The next lemma bounds the Lipschitz constant of gβ with respect to the 	1 norm for points
that are sufficiently close to any equilibrium macrostate x ∈Sβ,q.

Lemma 4.3. Let x ∈Sβ,q, and a > 0 be as defined in Lemma 4.2. Define the positive constant
θ (x, β, q) by

θ (ê, β, q) := 2β

q
and θ (Tjšβ,q, β, q) := a, j ∈ [q].

Then, for all s1, s2 ∈ S satisfying ‖s1 − x‖2 ≤ r and ‖s2 − x‖2 ≤ r, we have

‖gβ (s1) − gβ (s2)‖1

‖s1 − s2‖1
≤ θ (x, β, q) + O(r).

We will also defer the proof of Lemma 4.3 to Appendix A.2.
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18 R. HE AND J. LOK

We now state a crucial technical condition that will be used to ensure that the Lipschitz
constant of gβ around any x ∈Sβ,q is strictly less than 1 for sufficiently small r, and to control
the drift of the proportions chain S(σ̃t) induced by the restricted Glauber dynamics.

Condition 1. We have θ (x, β, q) < 1 and λ(x, β, q) < 1, where θ (x, β, q) is as defined in
Lemma 4.3 and λ(x, β, q) is the maximum absolute eigenvalue of the symmetric part (A +
A�)/2 of the matrix A ≡ A(x) defined in Lemma 4.2.

Recalling that βs < βc < q/2 for q ≥ 3, the following lemma shows that Condition 1 is sat-
isfied under the assumptions on the inverse temperature parameter in Theorem 1.3 (i.e. β < βs)
and Theorems 1.4 and 1.5 (i.e. β ≥ βs). Note that Condition 1 is satisfied under more general
assumptions—for example, λ(ê, β, q) = 2β/q < 1 holds for any β < q/2.

Lemma 4.4. Let a, a′, b > 0 be as defined in Lemma 4.2, θ (x, β, q) be as defined in Lemma
4.3, and λ(x, β, q) be as defined in Condition 1. Then one has λ(ê, β, q) = 2β/q and

λ(Tjšβ,q, β, q) = 1

2

(
a + a′ +

√
(a − a′)2 + (q − 1)b2

)
, j ∈ [q].

Moreover, for all q ≥ 3, the following statements hold.

(1) If x = ê and β ≤ βc, then θ (ê, β, q) = λ(x, β, q) = 2β/q < 1.

(2) If x = Tjšβ,q and β ≥ βc, then 0 < b < a′ < a = θ (x, β, q) < λ(x, β, q) < 1.

The proof of Lemma 4.4, which involves fairly lengthy computations, will also be deferred
to Appendix A.3. Parts of the proof are essentially embedded in the proofs of [16, Theorem
2.1, Proposition 2.2]; however, we will provide a complete, self-contained proof.

The rest of this section focuses on proving Theorems 1.4 and 1.5 in the low-temperature
regime β ≥ βs, and is organized as follows. In Section 4.1, we show that with high probability,
the Glauber dynamics restricted to �̃(x, r) will stay in �̃(x, 4r

5 ) and thus avoid the boundary for
O(N log (N)2) time. Next, in Section 4.2, we specify a coupling of two copies of the restricted
dynamics that is contracting according to (1.1) as long as they stay within �̃(x, 4r

5 ). With
these two results, the proof of Theorem 1.5 is rather straightforward and is given in Section
4.3. Finally, we assemble the proof of Theorem 1.4 in Section 4.4, and briefly describe the
modifications needed to prove Theorem 1.3 in the high-temperature regime β < βs in Section
4.5.

4.1. Concentration of the restricted Glauber dynamics

Consider the Glauber dynamics for the Curie–Weiss–Potts model restricted to �̃(x, r) =
{σ ∈ � : ‖S(σ ) − x‖2 ≤ r}, denoted by (σ̃t)t≥0, with initial state σ ∈ �̃(x, r). We shall denote
the underlying probability measure by P

x
σ , the expectation by E

x
σ , and the corresponding

natural filtration by Ft.
The main goal of this section is to show that if the restricted Glauber dynamics starts

in �̃(x, r
5 ), then, with high probability, it will stay within �̃(x, 4r

5 ) and avoid the boundary
for O(N log (N)2) time, which is sufficiently long relative to the mixing time from Theorem
1.5. Moreover, if the chain starts outside �̃(x, r

5 ), then it will enter the region in O(N) time.
(Note that the factors 4/5 and 1/5 in the nested 	2 balls with radii of order O(r) were chosen
arbitrarily.) More precisely, we will prove the following lemma.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/apr.2025.10036
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.168, on 10 Nov 2025 at 22:51:33, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/apr.2025.10036
https://www.cambridge.org/core


On approximating the Potts model 19

Lemma 4.5 For any x ∈Sβ,q, define the following stopping times for the restricted Glauber
dynamics (σ̃t)t≥0 starting from σ ∈ �̃(x, r):

τout := inf

{
t ≥ 0 : σ̃t /∈ �̃

(
x,

4r

5

)}
and τin := inf

{
t ≥ 0 : σ̃t ∈ �̃

(
x,

r

5

)}
.

Suppose that Condition 1 is satisfied and r is sufficiently small. Then the following statements
hold.

(1) There exists a constant c > 0 such that, for all γ > 0 and N large enough,

P
x
σ

(
τout ≤ γ N log (N)2

)
≤ 2 exp

{
− cN

γ log (N)2

}
,

for all σ ∈ �̃(x, r
5 ).

(2) There exists a constant γ ∗ > 0 and c > 0 such that, for all N large enough,

P
x
σ

(
τin > γ ∗N

)≤ e−cN,

for all σ ∈ �̃(x, r).

For any x ∈Sβ,q, let (St)t≥0 with St := S(σ̃t), considered as a row vector, denote the propor-
tions chain induced by the Glauber dynamics restricted to �̃(x, r), which is a Markov chain on
{s ∈ S : ‖s − x‖2 ≤ r}. We will also define the corresponding centred proportions chain (̂St)t≥0
by

Ŝt ≡ Ŝt(x) := St − x. (4.4)

The following lemma describes the dynamics of the centred proportions chain (̂St)t≥0 up to
leading order by using Taylor series expansions for computing the drift.

Lemma 4.6. Let (σ̃t)t≥0 be the Glauber dynamics restricted to �̃(x, r) for any x ∈Sβ,q, and Ŝt

be defined as above. Assuming that σ̃t is not at the boundary, then

E
x
σ

[̂
St+1 − Ŝt |Ft

]= 1

N

(
−̂St(I − A�) + O

(
‖̂St‖2

2

))
+ O(N−2),

where A ≡ A(x) is the matrix related to the Jacobian of gβ at x from Lemma 4.2, I is the q × q
identity matrix, and the O( · ) terms are understood to hold elementwise.

Proof. Let ek denote the standard basis vectors in R
q (considered as row vectors, following

our convention). Recall that the coordinates of St ∈ S denote the proportions of vertices with
each of the q colours. According to the Glauber dynamics, the randomly selected vertex has
colour k ∈ [q] with probability S(k)

t , and is recoloured with a new colour 	 ∈ [q] with probability
g(	)
β

(
St − N−1ek

)
. Observe that by Taylor expansion of g(	)

β around St with the mean-value form
of the remainder, we have

g(	)
β

(
St − N−1ek

)
= g(	)

β (St) − N−1∇g(	)
β (ξk)e�

k (4.5)

for some vector ξk in the line between St and St − N−1ek. Furthermore, the derivatives of g(	)
β

are bounded by constants (depending on β) on the compact probability simplex. Thus, S(	)
t
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20 R. HE AND J. LOK

increases by N−1 with probability

P
x
σ

(
S(	)

t+1 = S(	)
t + N−1

)
=
∑
k∈[q]
k �=	

g(	)
β

(
St − N−1ek

)
S(k)

t

=
q∑

k=1

g(	)
β

(
St − N−1ek

)
S(k)

t − g(	)
β

(
St − N−1e	

)
S(	)

t

=
(

1 − S(	)
t

) (
g(	)
β (St) + O(N−1)

)
,

where we used Taylor expansion (4.5) and the fact that
∑q

k=1 S(k)
t = 1 for the last equality.

Similarly, S(	)
t decreases by N−1 with probability

P
x
σ

(
S(	)

t+1 = S(	)
t − N−1

)
=
∑
k∈[q]
k �=	

g(k)
β

(
St − N−1e	

)
S(	)

t

=
q∑

k=1

g(k)
β

(
St − N−1e	

)
S(	)

t − g(	)
β

(
St − N−1e	

)
S(	)

t

= S(	)
t

(
1 − g(	)

β (St) + O(N−1)
)

.

Therefore, for all 	 = 1, . . . , q, one has

Ŝ(	)
t+1 − Ŝ(	)

t =

⎧⎪⎨⎪⎩
+ 1

N with probability (1 − S(	)
t )
(

g(	)
β (St) + O(N−1)

)
,

− 1
N with probability S(	)

t

(
1 − g(	)

β (St) + O(N−1)
)

,

and hence
E

x
σ

[
S(	)

t+1 − S(	)
t |Ft

]
= N−1

(
−S(	)

t + g(	)
β (St)

)
+ O(N−2). (4.6)

First, we consider the case x = ê. By Taylor expansion of g(	)
β around ê up to higher order,

recalling that Ŝt = St − ê, we obtain

g(	)
β (St) = g(	)

β

(
ê
)− ∇g(	)

β (ê)̂S�
t +

∑
j,k∈[q]

Rj,k̂S(j)
t Ŝ(k)

t .

Note that the remainder terms Rj,k can be uniformly bounded by a constant that depends on

the higher-order derivatives of g(	)
β , which are bounded on the compact probability simplex.

Moreover, for all j, k, we can also bound Ŝ(j)
t Ŝ(k)

t ≤ ‖̂St‖2
2. Since g(	)

β

(
ê
)= 1/q from Lemma

4.1, together with Lemma 4.2, we deduce that

g(	)
β (St) = 1

q
+ ∇g(	)

β (ê)̂S�
t + O(‖̂St‖2

2) = 1

q
+ 2β

q
Ŝ(	)

t + O(‖̂St‖2
2).

From (4.6), it follows that for all 	 = 1, . . . , q,

E
ê
σ

[
S(	)

t+1 − S(	)
t |Ft

]
= N−1

(
−
(

1 − 2β

q

)
Ŝ(	)

t + O
(
‖̂St‖2

2

))
+ O(N−2).
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On approximating the Potts model 21

Next, we consider the case x = Tjšβ,q, j ∈ [q]. By symmetry, it suffices to consider x =
T1šβ,q = šβ,q. Similarly to the case above, by using a Taylor series expansion of g(	)

β around

šβ,q, recalling Ŝt = St − šβ,q and Lemma 4.1, we deduce that

g(	)
β (St) = š(	)

β,q + ∇g(	)
β (šβ,q )̂S�

t + O(‖̂St‖2
2).

Furthermore, Lemma 4.2 implies that

∇g(1)
β (šβ,q )̂S�

t = âS(1)
t ,

∇g(	)
β (šβ,q )̂S�

t = −b̂S(1)
t + a′̂S(	)

t , 	 = 2, . . . , q.

Thus, from (4.6), it follows that

E
šβ,q
σ

[̂
S(1)

t+1 − Ŝ(1)
t |Ft

]
= N−1

(
−(1 − a)̂S(1)

t + O
(
‖̂St‖2

2

))
+ O(N−2);

and for 	 = 2, . . . , q, it follows that

E
šβ,q
σ

[̂
S(	)

t+1 − Ŝ(	)
t |Ft

]
= N−1

(
−(1 − a′ )̂S(	)

t − b̂S(1)
t + O

(
‖̂St‖2

2

))
+ O(N−2).

Writing the above displayed expressions in matrix form completes the proof. �
We will now prove Lemma 4.5 using the formula for the drift of the centred proportions

vector given in Lemma 4.6. The proof relies on some standard hitting time estimates for
supermartingale-like processes provided in [9, Lemma 2.1]. For the reader’s convenience, we
restate the parts that we use in the following lemma.

Lemma 4.7 ([9, parts (1) and (2) of Lemma 2.1].) Let (Dt)t≥0 be a discrete-time process,
adapted to (Ft)t>0, with D0 = d0 ∈R and underlying probability measure Pd0 . Suppose that:

• there exists δ ≥ 0 such that Ed0 [Dt+1 − Dt |Ft] ≤ −δ on {Dt ≥ 0} for all t ≥ 0;

• there exists R ≥ 0 such that |Dt+1 − Dt| ≤ R for all t ≥ 0.

Let τ−
d := inf{t : Dt ≤ d} and τ+

d := inf{t : Dt > d}. Then the following statements hold.

(1) If d0 ≤ 0, then for any d1 ≥ R and t2 ≥ 0,

Pd0 (τ+
d1

≤ t2) ≤ 2 exp

{
− (d1 − R)2

8t2R2

}
.

(2) If δ > 0 and d0 ≥ 0, then for any t1 ≥ d0/δ,

Pd0 (τ−
0 > t1) ≤ exp

{
− (δt1 − d0)2

8t1R2

}
.

Proof of Lemma 4.5. Consider the case where the restricted Glauber dynamics σ̃t is not on
the boundary, and thus all possible moves are allowed. If we write Ŝt+1 = Ŝt + ξt+1, then

E
x
σ

[
‖̂St+1‖2

2 |Ft

]
=E

x
σ

[
‖̂St‖2

2 + ‖ξt+1‖2
2 + 2〈ξt+1, Ŝt〉 |Ft

]
= ‖̂St‖2

2 +E
x
σ

[
‖ξt+1‖2

2 |Ft

]
+ 2〈Ex

σ

[
ξt+1 |Ft

]
, Ŝt〉. (4.7)
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22 R. HE AND J. LOK

First, we have the estimate

‖ξt+1‖2
2 = ‖̂St+1 − Ŝt‖2

2 = ‖St+1 − St‖2
2 ≤ 2N−2. (4.8)

Next, if A ≡ A(x) denotes the matrix related to the Jacobian of gβ at x from Lemma 4.2, then
Lemma 4.6 implies that

E
x
σ

[
ξt+1 |Ft

]=E
x
σ

[̂
St+1 − Ŝt |Ft

]= 1

N

(
−̂St(I − A�) + O

(
‖̂St‖2

2

))
+ O(N−2).

We claim that

〈Ex
σ

[
ξt+1 |Ft

]
, Ŝt〉 ≤ − (1 − λ(x, β, q) + O(‖̂St‖2))

N
‖̂St‖2

2 + O(N−2), (4.9)

where λ(x, β, q) is the maximum absolute eigenvalue of the symmetric matrix (A + A�)/2,
which satisfies λ(x, β, q) ∈ (0, 1) assuming Condition 1 holds. The claim (4.9) follows from
the following inequality involving the quadratic form of A: for any s ∈R

q,

〈sA�, s〉 = sAs� = s

(
A + A�

2

)
s� ≤ λ(x, β, q)‖s‖2

2.

The second equality follows from the decomposition A = (A + A�)/2 + (A − A�)/2 of A into
its symmetric and skew-symmetric parts, and using the fact that the quadratic form correspond-
ing to the skew-symmetric part is identically zero. The inequality follows from diagonalizing
the real symmetric matrix (A + A�)/2 to perform an orthogonal change of basis, and bounding
the corresponding eigenvalues by λ(x, β, q).

Hence, by plugging the bounds (4.8) and (4.9) back into (4.7) and using the fact that ‖̂St‖2 ≤
r, it follows that if the restricted dynamics is not on the boundary, then

E
x
σ

[
‖̂St+1‖2

2 − ‖̂St‖2
2 |Ft

]
≤ −2(1 − λ(x, β, q) + O(r))

N
‖̂St‖2

2 + O(N−2). (4.10)

Under Condition 1, the right-hand side of (4.10) is negative for large enough N and small
enough r.

Now consider the case where the restricted dynamics is on the boundary. Since there is a
possible move that leads to rejection, we must have ‖̂S(σt)‖2 > r − √

2N−1. Moreover, since
each move that increases ‖̂St‖2

2 is rejected, we may upper-bound the change in ‖̂St‖2
2 by using

the bound (4.10) from above, where all possible moves are accepted. Therefore, we have

E
x
σ

[
‖̂St+1‖2

2 − ‖̂St‖2
2 |Ft

]
≤ −2(1 − λ(x, β, q) + O(r))

N

(
r −

√
2

N

)2

+ O(N−2). (4.11)

Now, by the triangle inequality and (4.8), one has

‖̂St+1‖2
2 − ‖̂St‖2

2 = (‖̂St+1‖2 + ‖̂St‖2
) (‖̂St+1‖2 − ‖̂St‖2

)≤ 2r‖ξt+1‖2 < 4rN−1.

Thus, from the discussion above, we know that the increments of ‖̂St‖2
2 are negative and satisfy

the conditions of Lemma 4.7 with δ ≥ 0 and R = 4rN−1.
For part (1), given any initial state σ ∈ �̃(x, r

5 ) with ‖̂S0‖2 ≤ r/5, note that the restricted
dynamics is separated from the boundary before τout. Furthermore, observe that if ‖̂St‖2 −
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‖̂S0‖2 > 3r/5, then ‖̂St‖2
2 − ‖̂S0‖2

2 > (3r/5)2. Therefore, applying part (1) of Lemma 4.7 to
the process Dt = ‖̂St‖2

2 − ‖̂S0‖2
2, with t2 = γ N log (N)2 and d1 = (r/5)2, shows that

P
x
σ

(
τout ≤ γ N log (N)2

)
≤ Pd0

(
τ+

d1
≤ γ N log (N)2

)
≤ 2 exp

{
− cN

γ log (N)2

}
,

for some constant c > 0 depending on r, which completes the proof of part 1.
For part (2), given any initial state σ ∈ �̃(x, r), note that before τin, one has ‖̂St‖2

2 > r/5.
Thus, from (4.10) and (4.11), we deduce that during this period, the increments of ‖̂St‖2

2 satisfy
the conditions of Lemma 4.7 with δ = C′N−1 > 0 for some positive constant C’ depending on
r, β, q. Therefore, choosing γ ∗ = 4/C′ and applying part (2) of Lemma 4.7 to the process
Dt = ‖̂St‖2

2 − (r/5)2 with t1 = γ ∗N yields

P
x
σ

(
τin > γ ∗N

)= Pd0

(
τ−

0 > γ ∗N
)≤ e−cN,

for some c > 0 depending on γ ∗ and r, which completes the proof of part (2). �

4.2. A contracting coupling of the restricted Glauber dynamics

Let (Wt, Zt)t≥0 be a coupling for two copies of the Glauber dynamics for the Curie–Weiss–
Potts model restricted to �̃(x, r), with transitions to be specified later. We write P

x
σ,τ for the

underlying probability measure of the coupling with initial states σ, τ ∈ �̃(x, r), Ex
σ,τ for the

expectation, and denote the natural filtration by Ft.
The main result of this section is the following lemma, which states that there exists a

coupling such that the Hamming distance between the two chains is decreasing on average, as
long as they stay within the good region �̃(x, 4r

5 ) and thus avoid the boundary.

Lemma 4.8. For any γ > 0, define the event

B :=
{

for all t ≤ γ N log (N)2, Wt ∈ �̃(x, 4r
5 ) and Zt ∈ �̃(x, 4r

5 )
}

. (4.12)

Suppose that Condition 1 is satisfied and r is sufficiently small. Then, for all σ, τ ∈ �̃(x, r
5 ),

there exists a coupling (Wt, Zt)t≥0 of the Glauber dynamics restricted to �̃(x, r), starting from
σ and τ , such that if r is sufficiently small and N is large enough, then for all t ≤ γ N log (N)2,

E
x
σ,τ

[
dH(Wt+1, Zt+1)1B

]≤(1 − 1 − θ (x, β, q)

2N

)t

dH(σ, τ ) Px
σ,τ (B), (4.13)

where θ (x, β, q) < 1 is as defined in Lemma 4.3.

Proof. We first specify the coupling (Wt, Zt)t≥0 by defining its transitions. Let (W0, Z0) =
(σ, τ ). At time t + 1, choose a vertex v ∈ [N] uniformly at random and draw new colours i, j ∈
[q] according to an optimal coupling of gβ

(
S(Wt) − N−1eWt(v)

)
and gβ

(
S(Zt) − N−1eZt(v)

)
,

which are the conditional spin distributions at v of Wt and Zt. Next, propose two new config-
urations σ ′, τ ′ ∈ � by recolouring the vertex v of Wt and Zt with i and j respectively, that is,

σ ′(u) =
{

Wt(u), if u �= v,

i, if u = v,
and τ ′(u) =

{
Zt(u), if u �= v,

j, if u = v.
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If σ ′ ∈ �̃(x, r), then set Wt+1 = σ ′. Otherwise, reject the move and set Wt+1 = Wt. Similarly,
set Zt+1 = τ ′ if τ ′ ∈ �̃(x, r), and otherwise set Zt+1 = Zt. Note that once the two chains
have coalesced (i.e. they are equal at some time), then they will continue to move together
afterwards.

Given that both proposed moves are accepted, the probability that the colour at v differs
between the two chains is equal to

ρ := dTV

(
gβ

(
S(Wt) − N−1eWt(v)

)
, gβ

(
S(Zt) − N−1eZt(v)

))
= 1

2

∥∥∥gβ

(
S(Wt) − N−1eWt(v)

)
− gβ

(
S(Zt) − N−1eZt(v)

)∥∥∥
1

.

If the two chains have the same colour at v at time t, say Wt(v) = Zt(v) = 	 ∈ [q], then by Taylor
series expansion of the function g(k)

β around S(Wt), we have

g(k)
β

(
S(Wt) − N−1e	

)
− g(k)

β

(
S(Zt) − N−1e	

)
= g(k)

β (S(Wt)) − g(k)
β (S(Zt)) + N−1

(
∇g(k)

β (S(Wt)) − ∇g(k)
β (S(Zt))

)
e�
	 + O(N−2).

By further Taylor series expansion of ∇g(k)
β around x, and using the fact that both ‖S(Wt) − x‖1

and ‖S(Zt) − x‖1 are less than r, we have

g(k)
β

(
S(Wt) − N−1e	

)
− g(k)

β

(
S(Zt) − N−1e	

)
= g(k)

β (S(Wt)) − g(k)
β (S(Zt)) + O(r)N−1 + O(N−2).

Here, the notation O( · ) hides constants related to higher-order derivatives of g(k)
β . Hence, by

summing over the q colours and using the triangle inequality, we obtain the following bound
for the probability that the two chains disagree after an update at v:

ρ ≤ 1

2

∥∥gβ (S(Wt)) − gβ (S(Zt))
∥∥

1 + O(r)N−1 + O(N−2).

On the other hand, if Wt(v) �= Zt(v), we have a cruder bound:

ρ ≤ 1

2

∥∥gβ (S(Wt)) − gβ (S(Zt))
∥∥

1 + O(N−1).

Observe that on the event B, both chains avoid the boundary, and thus none of the proposed
moves are rejected before γ N log (N)2 time. Hence, during this period, the distance between
the two copies will increase by 1 if v is selected to be one of the vertices where Wt and Zt

agree, and i �= j. On the other hand, the distance will decrease by 1 if v is selected to be one
of the vertices where Wt and Zt disagree, and i = j. Otherwise, the distance does not change.
Therefore, we have

E
x
σ,τ

[
dH(Wt+1, Zt+1)1B − dH(Wt, Zt)1B |Ft

]
≤ 1B

(
1 − dH(Wt, Zt)

N

)(
1

2

∥∥gβ (S(Wt)) − gβ (S(Zt))
∥∥

1 + O(r)N−1 + O(N−2)

)
− 1B

dH(Wt, Zt)

N

(
1 − 1

2

∥∥gβ (S(Wt)) − gβ (S(Zt))
∥∥

1 + O(N−1)

)
≤ −1B

(
dH(Wt, Zt)

N

(
1 −

∥∥gβ (S(Wt)) − gβ (S(Zt))
∥∥

1

2dH(Wt, Zt)N−1

)
+ O(r)N−1 + O(N−2)

)
.
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Note that ‖S(σ ′) − S(τ ′)‖1 ≤ 2dH(σ ′, τ ′)N−1 for any pair σ ′, τ ′ ∈ �, since each location where
they differ contributes at most 2N−1 to ‖S(σ ′) − S(τ ′)‖1. Since Lemma 4.3 implies that gβ

is (θ (x, β, q) + O(r))-Lipschitz around x with θ (x, β, q) < 1 assuming Condition 1 holds, we
have

E
x
σ,τ

[
dH(Wt+1, Zt+1)1B − dH(Wt, Zt)1B |Ft

]
≤ −1B

(
dH(Wt, Zt)

N

(
1 −

∥∥gβ (S(Wt)) − gβ (S(Zt))
∥∥

1

‖S(Wt) − S(Zt)‖1

)
+ O(r)N−1 + O(N−2)

)

≤ − (1 − θ (x, β, q) + O(r))dH(Wt, Zt) + O(r) + O(N−1)

N
1B

≤ −1 − θ (x, β, q)

2N
dH(Wt, Zt)1B,

for sufficiently small r and large N. By taking expectations on both sides, we obtain

E
x
σ,τ

[
dH(Wt+1, Zt+1)1B

]≤(1 − 1 − θ (x, β, q)

2N

)
E

x
σ,τ [dH(Wt, Zt)1B] .

The proof is then completed by iterating this bound. �

4.3. Mixing time results for the restricted Glauber dynamics

This section is devoted to the proof of Theorem 1.5. Given any coupling (Wt, Zt)t≥0 of two
copies of the restricted Glauber dynamics, starting from W0 = σ and Z0 = τ , we define the
associated coalescence time by

τcouple := inf{t : Wt = Zt for all s ≥ t}, (4.14)

By standard results for the coupling method (see [28, Corollary 5.5]), the mixing time of a
Markov chain is bounded by the tail probabilities of any coupling of the chain in the worst case
over all pairs of initial configurations σ, τ ∈ �̃(x, r). Therefore, in order to prove Theorem 1.5,
it suffices to prove the following lemma.

Lemma 4.9. Suppose that Condition 1 is satisfied and r is sufficiently small. Then, for all
σ, τ ∈ �̃(x, r), there exists a coupling (Wt, Zt)t≥0 of the Glauber dynamics restricted to �̃(x, r),
starting from σ and τ , such that

lim sup
N→∞

max
σ,τ∈�̃(x,r)

P
x
σ,τ

(
τcouple >

2

1 − θ (x, β, q)
N log (N) + γ ∗N + αN

)
→ 0 as α → ∞,

where θ (x, β, q) < 1 is as defined in Lemma 4.3 and γ ∗ > 0 is the constant from part (2) of
Lemma 4.5.

To prove Lemma 4.9, we shall use the following coupling of the restricted Glauber dynam-
ics, starting from σ, τ ∈ �̃(x, r). In the first phase, we run the two copies independently until
they are both inside �̃(x, r

5 ). In the second phase, the two chains are then coupled using the
coupling previously described in Section 4.2. If at any time the two copies coalesce, the two
chains will move together afterwards.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/apr.2025.10036
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.168, on 10 Nov 2025 at 22:51:33, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/apr.2025.10036
https://www.cambridge.org/core


26 R. HE AND J. LOK

The proof then proceeds in two steps. First, we show that if both copies of the restricted
dynamics start in �̃(x, r

5 ), then the coalescence time is of order O(N log (N)) with high prob-
ability. Note that the following lemma differs from Lemma 4.9 in the set of starting points
considered.

Lemma 4.10. Consider the coupling of the restricted Glauber dynamics described above,
starting from any σ, τ ∈ �̃(x, r

5 ). If Condition 1 is satisfied and r is sufficiently small, then
for all α > 0,

P
x
σ,τ

(
τcouple >

2

1 − θ (x, β, q)
N log (N) + αN

)
≤ exp

{
−1 − θ (x, β, q)

2
α

}
+ 4N exp

{
− cN

γ log (N)2

}
,

where γ = 2/(1 − θ (x, β, q)) + α, θ (x, β, q) < 1 is as defined in Lemma 4.3, and c > 0 is the
constant from part (1) of Lemma 4.5.

Proof. Let B be the event defined in Lemma 4.8 with γ = 2/(1 − θ (x, β, q)) + α. Since the
Hamming distance between any two configurations is bounded by N, we have

E
x
σ,τ [dH(Wt, Zt)] =E

x
σ,τ [dH(Wt, Zt)1B] +E

x
σ,τ [dH(Wt, Zt)1Bc ]

≤E
x
σ,τ [dH(Wt, Zt)1B] + NP

x
σ,τ (Bc). (4.15)

By applying part (1) of Lemma 4.5 to each copy of the restricted Glauber dynamics and using
a union bound, we have

P
x
σ,τ (B) > 1 − 4 exp

{
− cN

γ log (N)2

}
for all initial states σ, τ ∈ �̃(x, r

5 ). It then follows from Lemma 4.8 that for all t ≤ γ N log (N)2,

E
x
σ,τ [dH(Wt, Zt)] ≤

(
1 − 1 − θ (x, β, q)

2N

)t

dH(σ, τ )Px
σ,τ (B) + NP

x
σ,τ (Bc)

≤ exp

{
−1 − θ (x, β, q)

2N
t

}
dH(σ, τ ) + 4N exp

{
− cN

γ log (N)2

}
. (4.16)

Since Px
σ,τ

(
τcouple > t

)= P
x
σ,τ (dH (Wt, Zt) ≥ 1), an application of Markov inequality yields

P
x
σ,τ

(
τcouple > t

)≤E
x
σ,τ [dH (Wt, Zt)] ≤ N exp

{
−1 − θ (x, β, q)

2N
t

}
+ 4N exp

{
− cN

γ log (N)2

}
.

By substituting t = (2/(1 − θ (x, β, q))N log (N) + αN above, we obtain the desired bound. �
Since both chains will enter �̃(x, r

5 ) in O(N) time, starting from any pair of configurations
in �̃(x, r), we can now prove Lemma 4.9 using Lemma 4.10.

Proof of Lemma 4.9. For all σ, τ ∈ �̃(x, r), it follows from applying part 2 of Lemma 4.5 to
each copy of the restricted dynamics, running independently in the first phase of the coupling,
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and then using a union bound, that

P
x
σ,τ

(
τcouple > 2

1−θ(x,β,q) N log (N) + γ ∗N + αN
)

≤ P
x
σ,τ

(
τcouple > 2

1−θ(x,β,q) N log (N) + γ ∗N + αN, Wγ ∗N ∈ �̃(x, r
5 ), Zγ ∗N ∈ �̃(x, r

5 )
)

+ P
x
σ,τ

({Wγ ∗N /∈ �̃(x, r
5 )} ∪ {Zγ ∗N /∈ �̃(x, r

5 )})
≤ P

x
σ,τ

(
τcouple > 2

1−θ(x,β,q) N log (N) + γ ∗N + αN, Wγ ∗N ∈ �̃(x, r
5 ), Zγ ∗N ∈ �̃(x, r

5 )
)

+ o(1).

By using Lemma 4.10, noting that the upper bound is independent of the starting states, and
the strong Markov property, it follows that for generic σ ′, τ ′ ∈ �̃(x, r

5 ),

P
x
σ,τ

(
τcouple > 2

1−θ(x,β,q) N log (N) + γ ∗N + αN, Wγ ∗N ∈ �̃(x, r
5 ), Zγ ∗N ∈ �̃(x, r

5 )
)

≤ P
x
σ ′,τ ′

(
τcouple > 2

1−θ(x,β,q) N log (N) + αN
)

≤ exp

{
−1 − θ (x, β, q)

2
α

}
+ 4N exp

{
− cN

γ log (N)2

}
.

By combining the last two displays, we obtain the bound

P
x
σ,τ

(
τcouple >

2

1 − θ (x, β, q)
N log (N) + γ ∗N + αN

)
≤ exp

{
−1 − θ (x, β, q)

2
α

}
+ o(1)

as N → ∞, which completes the proof. �

4.4. Approximation result in low-temperature regime

In this section, we assemble the results from the previous sections to prove our main result
when β ≥ βs.

Proof of Theorem 1.4. First, we note that Condition 1 holds under the assumption β ≥ βs

by Lemma 4.4. Let X̃t be the Glauber dynamics restricted to �̃(x, r) with stationary distri-
bution μ̃. We will derive an analogue of Lemma 2.1 for the restricted Glauber dynamics.
Analogously to (2.14), the generator Aμ̃ = P̃ − I for the continuous-time restricted dynamics P̃
takes the following form: for σ ∈ �̃(x, r), using the fact that μ̃v(k | σ ) = μv(k | σ )1σ (v,k)∈�̃(x,r)
and

∑
k∈[q] μv(k | σ ) = 1, one has

Aμ̃f (σ ) = 1

N

∑
v∈V

⎡⎣∑
k∈[q]

μ̃v(k | σ )f (σ (v,k)) +
⎛⎝1 −

∑
k∈[q]

μ̃v(k | σ )

⎞⎠ f (σ )

⎤⎦− f (σ )

= 1

N

∑
v∈V

⎡⎣∑
k∈[q]

μv(k | σ )(f (σ (v,k)) − f (σ ))1σ (v,k)∈�̃(x,r)

⎤⎦ . (4.17)

The generator Aν̃ for the restricted Glauber dynamics for ν̃ takes the same form with μv(· | σ )
replaced by νv(· | σ ). By inserting (4.17) into the Stein’s method bound |Eh(X̃) −Eh(̃Y)| =
|EAμ̃fh (̃Y) −EAν̃ fh (̃Y)| from (2.9) with X̃ ∼ μ̃ and Ỹ ∼ ν̃, recalling that μv(k | σ ) = g(k)

β (σ )
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and νv(k | σ ) = x(k), we obtain the following bound for any h : �̃(x, r) →R in terms of the
solution fh to the Stein equation (2.8):

|Eh(X̃) −Eh(̃Y)| ≤ 1

N

N∑
j=1

q∑
k=1

E

[∣∣∣g(k)
β (S(̃Y)) − x(k)

∣∣∣ · ∣∣∣fh (̃Y (j,k)) − fh (̃Y)
∣∣∣ 1Ỹ(j,k)∈�̃

]
. (4.18)

Here, we may extend the definition of fh outside its domain �̃(x, r), with a slight abuse of
notation. Next, we aim to bound

∣∣fh (̃Y (j,k)) − fh(̃Y)
∣∣, uniformly over all the possible pairs of

states Ỹ, Ỹ (j,k). By Lemma 2.2, we have

|fh(σ ) − fh(τ )| ≤ ‖L(h)‖∞
∞∑

t=1

N∑
i=1

P
x
σ,τ (Wt(i) �= Zt(i)) (4.19)

for any σ, τ ∈ �̃(x, r), and any sequence of couplings (Wt, Zt) of the t-step distributions of X̃t,
starting from σ and τ . Let tN := γ N log (N)2, where γ > 0 is a constant to be chosen large
enough later. Then we may decompose the sum in (4.19) as follows:

∞∑
t=0

N∑
i=1

P
x
σ,τ (Wt(i) �= Zt(i)) =

tN−1∑
t=0

E
x
σ,τ [dH (Wt, Zt)] +

∞∑
t=tN

N∑
i=1

P
x
σ,τ (Wt(i) �= Zt(i)) . (4.20)

First, we will control the tail sum in (4.20) by appealing to the mixing time of X̃t, which was
shown to satisfy txmix = O(N log (N)) in Theorem 1.5. Suppose that for each t ≥ tN , we choose
(Wt, Zt) to be an optimal coupling of the t-step distributions of X̃t, so that the probability that
Wt �= Zt is equal to the total variation distance between the corresponding t-step distributions.
Since this decays geometrically for multiples of the mixing time by [28, Lemma 4.10 and
equation (4.33)], there exists a constant c > 0 such that for all t ≥ tN and vertices i ∈ [N],

P
x
σ,τ (Wt(i) �= Zt(i)) ≤ 2−t/txmix ≤ exp

{
− ct

N log (N)

}
.

Therefore, by using the inequality e−a ≤ 1 − a/2 for 0 ≤ a ≤ 3/2 to simplify the geometric
series, and choosing γ to be large enough (e.g. γ > 3/c), for large enough N, we have

∞∑
t=tN

N∑
i=1

P
x
σ,τ (Wt(i) �= Zt(i)) ≤

∞∑
t=tN

N exp

{
− ct

N log (N)

}
≤ 2

c
N2−cγ log (N) ≤ N−1. (4.21)

Next, we will bound the finite sum in (4.20), which requires a more delicate analysis to
show that X̃t can be coupled such that it is contracting on a good set. For t < tN , let (Wt, Zt)
be the coupling of two copies of X̃t described in Lemma 4.8. In the proof of Lemma 4.10, we
showed in (4.16) that if σ, τ ∈ �̃(x, r

5 ), then for all t ≤ tN , this coupling satisfies

E
x
σ,τ [dH (Wt, Zt)] ≤

(
1 − 1 − θ (x, β, q)

2N

)t

dH(σ, τ ) + 4N exp

{
− cN

γ log (N)2

}
.

Therefore, for any arbitrary σ ∈ �̃(x, r) and τ = σ (v,k) (with dH(σ, τ ) = 1), we have

tN−1∑
t=0

E
x
σ,τ [dH (Wt, Zt)] ≤

tN−1∑
t=0

(
1 − 1 − θ (x, β, q)

2N

)t

1σ,τ∈�̃(x, r
5 ) + 4Ne

− cN
γ log (N)2 1σ,τ∈�̃(x, r

5 )

+ NtN1{σ /∈�̃(x, r
5 )}∪{τ /∈�̃(x, r

5 )}. (4.22)
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Note that we may further bound the geometric series by 2N/(1 − θ (x, β, q)). Furthermore,
since σ and τ differ in at most one site, σ ∈ �̃(x, r

10 ) implies that both σ, τ ∈ �̃(x, r
5 ). By

combining the bounds (4.20)–(4.22) in (4.19), we obtain∣∣∣fh(σ (j,k)) − fh(σ )
∣∣∣≤ ‖L(h)‖∞N

(
2

1 − θ (x, β, q)
+ 4 exp

{
− cN

γ log (N)2

}

+N−1 + tN1σ /∈�̃(x, r
10 )

)
.

Plugging this bound back into (4.18) yields

|Eh(X̃) −Eh(̃Y)| ≤ ‖L(h)‖∞
(

2

1 − θ (x, β, q)
+ o(1)

)
N E‖gβ (S(̃Y)) − x‖1

+ ‖L(h)‖∞qγ N2 log (N)2
P
(
Ỹ /∈ �̃(x, r

10 )
)

. (4.23)

It remains to show that the first term in (4.23) is of order O(
√

N) and the second term is of
order o(1) by analysing the concentration of the random vector Ỹ .

Let Y be the product measure on �(x, r) where the colour of each vertex is independently
distributed according to the probability vector x. Observe that N S(Y) is a multinomial random
vector with N trials and probabilities E [S(Y)] = x, and the variance of each component is given
by Var

(
S(k)(Y)

)= N−1x(k)(1 − x(k)). By using concentration inequalities for the multinomial
distribution (e.g. the Bretagnolle–Huber–Carol inequality [41, Proposition A.6.6]), we have

P
(
Y /∈ �̃(x, r

10 )
)≤ O(e−c1N) and P

(
Y ∈ �̃(x, r)

)≥ 1 − O(e−c2N) ≥ 1

4
, (4.24)

for some constants c1, c2 > 0, and N large enough. Therefore, we may pass from the
conditional distribution Ỹ to the i.i.d. vector Y by using (4.24) to obtain

P
(
Ỹ /∈ �̃(x, r

10 )
)= P

(
Y /∈ �̃(x, r

10 ) | Y ∈ �̃(x, r)
)≤ P

(
Y /∈ �̃(x, r

10 )
)

P
(
Y ∈ �̃(x, r)

) ≤ 4e−c1N . (4.25)

Furthermore, since the Lipschitz constant of gβ is bounded by θ (x, β, q) + O(r) from
Lemma 4.3, for sufficiently small r, we have

E‖gβ (S(̃Y)) − gβ (x)‖1 ≤ (θ (x, β, q) + O(r)) ·E‖S(̃Y) − x‖1

≤ 2θ (x, β, q) ·E‖S(̃Y) − x‖1.
(4.26)

Since the 	1 norm in R
q is bounded by

√
q times the 	2 norm, applying Jensen’s inequality

and then using (4.24) to pass from the conditional distribution Ỹ to Y shows that

E‖S(̃Y) − x‖1 ≤ √
q

√√√√ q∑
k=1

E
(
S(k)(̃Y) − x(k)

)2 ≤ 2
√

q

√√√√ q∑
k=1

E
(
S(k)(Y) − x(k)

)2 ≤ q√
N

. (4.27)

To conclude, by combining (4.25), (4.26) and (4.27) in (4.23), we have shown that

|Eh(X̃) −Eh(̃Y)| ≤ ‖L(h)‖∞
(

4qθ (x, β, q)

1 − θ (x, β, q)
+ o(1)(1 + 2qθ (x, β, q))

)√
N,

which completes the proof. �
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Remark 4.1. We proved that the main result of Theorem 1.4 holds with constant

θ∗ ≤ 4qθ (x, β, q)

1 − θ (x, β, q)
+ o(1)(1 + 2qθ (x, β, q)) (4.28)

for any x ∈Sβ,q, where o(1) → 0 as N → ∞. Note that if θ (x, β, q) → 0 and N → ∞
simultaneously, then this implies that θ∗ → 0. We will show that this indeed occurs in the
low-temperature regime, as β → ∞, and in the high-temperature regime, as β → 0. First, if
x = Tjšβ,q, j ∈ [q], then recall that from Lemmas 4.3 and 4.4 we have

θ (x, β, q) = a = 2βqs∗
β,q

1 − s∗
β,q

q − 1
< λ(x, β, q).

Using the fact that s∗
β,q → 1 as β → ∞ (Theorem 4.1) and expression (A.7) for λ(x, β, q) given

in the appendix, it can be shown that λ(x, β, q) → 0 as β → ∞. Hence, we conclude that in the
low-temperature regime, θ (x, β, q) → 0 as β → ∞. Similarly, in the high-temperature regime,
if x = ê, then θ (x, β, q) = 2β/q → 0 as β → 0.

4.5. Approximation result in high-temperature regime

We conclude by discussing the modifications of the proof in the previous section needed to
prove our main result when β < βs and there is a unique equilibrium macrostate x = ê in Sβ,q.

Proof of Theorem 1.3. When β < βs, Theorem 1.3 can be proved by considering the usual
Glauber dynamics for μ and ν directly, instead of the restricted dynamics. The proof follows
the same structure as the proof of Theorem 1.4 in Section 4.4, with the following changes
required:

(1) obtaining a similar bound to Theorem 1.5 for the mixing time of the Glauber dynamics
for the Curie–Weiss–Potts model;

(2) showing that the proportions chain of the Glauber dynamics concentrates around ê in a
ball of constant order (or smaller) for a sufficiently long period, analogously to part (1)
of Lemma 4.5;

(3) proving that the Glauber dynamics is contracting as long as it is close enough to ê, as
described by (4.13) in Lemma 4.8.

The first two items have already been proved in [9]: [9, Theorem 1] shows that the mixing
time of the Glauber dynamics is of order O(N log (N)), and [9, Proposition 3.3, part (1)] is a
direct analogue of part 1 of Lemma 4.5. Finally, since the two chains in the proof of Lemma
4.8 are separated from the boundary in the analysis, it is apparent that (4.13) also holds for the
same coupling of the Glauber dynamics without the rejection step. �

In the temperature regime βs ≤ β < βc, where there is still a unique equilibrium macrostate
x = ê in Sβ,q, we may want to approximate the unconditional Curie–Weiss–Potts model by
a sequence of i.i.d. uniform spins. In this setting, the Glauber dynamics mixes rapidly after
excluding a subset of initial configurations (that are far from ê) with a probability mass
exponentially small in N [9, Theorem 4]. However, since the (worst-case) mixing time is expo-
nentially large in N [9, Theorem 3], the proof of Theorem 1.3 described above does not work
(in particular, the approach used to control the tail sum in (4.20) fails). Since the Curie–Weiss–
Potts model still concentrates in �̃(ê, r), we are able to prove the following weaker result by
using Theorem 1.4 and the definition of conditional expectation.
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Proposition 4.1. Suppose that βs ≤ β < βc. Let X ∈ � be distributed according to the Curie–
Weiss–Potts model and Y ∈ � be a random configuration with i.i.d. uniform spins. Then there
exist constants θ∗ > 0 and c, C ≥ 0 such that for any function h : � →R,

|Eh(X) −Eh(Y)| ≤ ‖L(h)‖∞θ∗√N + C‖h‖∞e−cN .

Proof. Let X̃ and Ỹ be the conditional random configurations in �̃(ê, r) as defined in

Theorem 1.4 with r chosen to be sufficiently small. Note that X̃
d= X | X ∈ �̃(ê, r) and Ỹ

d=
Y | Y ∈ �̃(ê, r). Observe that we can write Eh(X) as

E
[
h(X) | X ∈ �̃(ê, r)

]+ P
(
X /∈ �̃(ê, r)

) (
E
[
h(X) | X /∈ �̃(ê, r)

]−E
[
h(X) | X ∈ �̃(ê, r)

])
,

and we have a similar expression for Eh(Y). By taking the difference between these two
expressions and bounding h uniformly by ‖h‖∞, we obtain

|Eh(X) −Eh(Y)| ≤ ∣∣Eh(X̃) −Eh(̃Y)
∣∣+ 2‖h‖∞

(
P
(
X /∈ �̃(ê, r)

)+ P
(
Y /∈ �̃(ê, r)

))
.

By using large deviations results for the Curie–Weiss–Potts model (see, for example, [9,
Section 2.2]) and the multinomial distribution (4.24), we deduce that X and Y are not in �̃(ê, r)
with exponentially small probability. Applying Theorem 1.4 to the first term completes the
proof. �

Appendix A. Deferred proofs

We collect the proofs of Lemmas 4.2, 4.3 and 4.4 for the Curie–Weiss–Potts model in this
section. Recall from (2.3) that the vector gβ (s) ∈ S has entries

g(k)
β (s) = e2βs(k)∑q

j=1 e2βs(j) for k ∈ [q], s ∈R
q.

Furthermore, recall from (4.2) and (4.3) that

s∗
β,q = 1 + (q − 1)sβ,q

q
and šβ,q =

(
s∗
β,q,

1 − s∗
β,q

q − 1
, . . . ,

1 − s∗
β,q

q − 1

)
∈ S,

where sβ,q is the largest solution of equation (4.1) in Theorem 4.1. Finally, recall the definitions
of a, a′, b > 0 from Lemma 4.2:

a = 2βqs∗
β,q

1 − s∗
β,q

q − 1
, a′ = 2β

1 − s∗
β,q

q − 1
, b = 2β

1 − s∗
β,q

q − 1

(
s∗
β,q − 1 − s∗

β,q

q − 1

)
.

Observe that these constants are related by the identity

a − a′ = 2β
(
qs∗

β,q − 1
)1 − s∗

β,q

q − 1
= (q − 1)b. (A.1)
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A.1. Proof of Lemma 4.2

Let s1, s2 ∈ S. Since s1, s2 are both in the probability simplex S, we have
∑q

k=1

(
s(k)

1 −
s(k)

2

)
= 0. It can also be verified that

∂

∂s(j)
g(k)
β (s) =

⎧⎪⎨⎪⎩
−2βg(j)

β g(k)
β , k �= j,

−2β
(

g(k)
β

)2 + 2βg(k)
β , k = j.

First, we consider the case x = ê. Since gβ (ê) = ê from Lemma 4.1, for all k = 1, . . . , q, we
have

∇g(k)
β (ê)(s1 − s2)� =

(
−2β

q2
+ 2β

q

) (
s(k)

1 − s(k)
2

)
+
∑
j �=k

(
−2β

q2

) (
s(j)

1 − s(j)
2

)

= 2β

q

(
s(k)

1 − s(k)
2

)
+
(

−2β

q2

) q∑
j=1

(
s(j)

1 − s(j)
2

)
= 2β

q

(
s(k)

1 − s(k)
2

)
.

Next, we will consider the case x = T1šβ,q = šβ,q. By symmetry, the proof for the other
Tjšβ,q, j = 2, . . . , q, is identical. Again, by Lemma 4.1, we have gβ (šβ,q) = šβ,q. Since the first
coordinate of šβ,q differs from the rest, we will consider the first coordinate separately:

∇g(1)
β (šβ,q)(s1 − s2)� =

(
−2β(s∗

β,q)2 + 2βs∗
β,q

) (
s(1)

1 − s(1)
2

)
+

q∑
k=2

(
−2βs∗

β,q

1 − s∗
β,q

q − 1

) (
s(k)

1 − s(k)
2

)
= 2βs∗

β,q

(
1 − s∗

β,q + 1 − s∗
β,q

q − 1

) (
s(1)

1 − s(1)
2

)
−
(

2βs∗
β,q

1 − s∗
β,q

q − 1

) q∑
k=1

(
s(k)

1 − s(k)
2

)
= 2βs∗

β,q

(
1 − s∗

β,q + 1 − s∗
β,q

q − 1

) (
s(1)

1 − s(1)
2

)
.

For the remaining coordinates k = 2, . . . , q, it suffices to consider k = 2 by symmetry. We have

∇g(2)
β (šβ,q)(s1 − s2)� =

(
−2βs∗

β,q

1 − s∗
β,q

q − 1

) (
s(1)

1 − s(1)
2

)

+
⎛⎝−2β

(
1 − s∗

β,q

q − 1

)2

+ 2β
1 − s∗

β,q

q − 1

⎞⎠(s(2)
1 − s(2)

2

)

+
q∑

k=3

⎛⎝−2β

(
1 − s∗

β,q

q − 1

)2
⎞⎠(s(k)

1 − s(k)
2

)
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= 2β
1 − s∗

β,q

q − 1

(
s(2)

1 − s(2)
2

)
− 2β

1 − s∗
β,q

q − 1

(
s∗
β,q

(
s(1)

1 − s(1)
2

)
+

q∑
k=2

1 − s∗
β,q

q − 1
(s(k)

1 − s(k)
2 )

)

= 2β
1 − s∗

β,q

q − 1

((
s(2)

1 − s(2)
2

)
+
(

−s∗
β,q + 1 − s∗

β,q

q − 1

) (
s(1)

1 − s(1)
2

))
.

Writing the above-displayed expressions in matrix form completes the proof. �

A.2. Proof of Lemma 4.3

Let x ∈Sβ,q. Observe that gβ is a smooth function (in particular, it has continuous and
bounded second partial derivatives on the compact probability simplex S). We claim that for
any s1, s2 ∈ S,

‖J(x)(s1 − s2)�‖1 ≤ θ (x, β, q)‖s1 − s2‖1, (A.2)

where J(x) denotes the Jacobian matrix of gβ at x (see Lemma 4.2). Assuming that (A.2) holds,

then by using a Taylor series expansion of g(k)
β around s1 for any k ∈ [q], we obtain

g(k)
β (s1) − g(k)

β (s2) = ∇g(k)
β (s1)(s1 − s2)� + O(‖s1 − s2‖2

1).

By assumption, ‖s1 − s2‖1 ≤ ‖s1 − x‖2 + ‖s2 − x‖2 ≤ 2r. By summing coordinates and writ-
ing J(s1) to denote the Jacobian matrix of gβ at s1, this implies that

‖gβ (s1) − gβ (s2))‖1 ≤ ‖J(s1)(s1 − s2)�‖1 + O(r)‖s1 − s2‖1.

Furthermore, by the triangle inequality, we have

‖J(s1)(s1 − s2)�‖1 ≤ ‖J(x)(s1 − s2)�‖1 + ‖(J(s1) − J(x))(s1 − s2)�‖1.

By (A.2), the first term is bounded by θ (x, β, q)‖s1 − s2‖1. Due to the smoothness of gβ (i.e.
using its higher derivatives, which are bounded on the compact probability simplex), the second
term can be bounded by O(r)‖s1 − s2‖1. This implies that the desired claim holds:

‖gβ (s1) − gβ (s2)‖1 ≤ (θ (x, β, q) + O(r))‖s1 − s2‖1.

We will now prove that (A.2) holds. Let A(x) denote the matrix related to the Jacobian of
gβ at x from Lemma 4.2 such that J(x)(s1 − s2)� = A(x)(s1 − s2)� for any s1, s2 ∈ S. If x = ê,
then we simply have

‖J(ê)(s1 − s2)�‖1 = 2β

q
‖s1 − s2‖1 = θ (ê, β, q)‖s1 − s2‖1.

Next, we consider x = šβ,q ≡ T1šβ,q. By symmetry, the proof is identical for the other Tjšβ,q,

j = 2, . . . , q. Since s1, s2 ∈ S,
(

s(1)
1 − s(1)

2

)
= −∑q

k=2

(
s(k)

1 − s(k)
2

)
, and so by the triangle

inequality,

|s(1)
1 − s(1)

2 | ≤
q∑

k=2

|s(k)
1 − s(k)

2 |. (A.3)

https://www.cambridge.org/core/terms. https://doi.org/10.1017/apr.2025.10036
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.168, on 10 Nov 2025 at 22:51:33, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/apr.2025.10036
https://www.cambridge.org/core


34 R. HE AND J. LOK

By putting in the form of A(šβ,q), and then using the triangle inequality and (A.3), we obtain

‖J(šβ,q)(s1 − s2)�‖1 = a|s(1)
1 − s(1)

2 | +
q∑

k=2

|a′(s(k)
1 − s(k)

2

)
− b
(

s(1)
1 − s(1)

2

)
|

≤ a|s(1)
1 − s(1)

2 | +
q∑

k=2

(a′ + (q − 1)b)
∣∣∣s(k)

1 − s(k)
2

∣∣∣. (A.4)

Since we have the identity a′ + (q − 1)b = a from (A.1), this shows that (A.2) holds:

‖J(šβ,q)(s1 − s2)�‖1 ≤ a‖s1 − s2‖1 = θ (šβ,q, β, q)‖s1 − s2‖1.

This completes the proof. �

A.3. Proof of Lemma 4.4

Let A(x) be the matrix related to the Jacobian of gβ at x defined in Lemma 4.2. For part
(1), when x = ê and A(ê) = (2β/q)I, we have λ(ê, β, q) = 2β/q < 1 for β ≤ βc, since βc < q/2
from Theorem 4.1.

For part (2), when x = Tjšβ,q, we can use Theorem 4.1 again to deduce that 0 < b < a′.
Since sβ,q is strictly increasing on [βc, ∞), we have 1 > s∗

β,q >
(
1 − s∗

β,q

)
/(q − 1) > 0 for β ≥

βc, which implies that 0 < b < a′. Furthermore, a′ < a follows from the identity a = a′ + (q −
1)b from (A.1). Thus, it remains to show that a < λ(x, β, q) < 1 for β ≥ βc. By symmetry,
it suffices to consider the case x = T1šβ,q = šβ,q. Due to the special form of (A + A�)/2, its
eigenvalues can be explicitly computed: it has a repeated eigenvalue λi := a′, i = 2, . . . , q − 1,
with multiplicity q − 2, and its remaining two eigenvalues are given by

λ1 := 1

2

(
a + a′ +

√
(a − a′)2 + (q − 1)b2

)
,

λq := 1

2

(
a + a′ −

√
(a − a′)2 + (q − 1)b2

)
.

Recall the identity a − a′ = (q − 1)b from (A.1). Thus, we may write λ1 and λq as

λ1 = 1

2

⎛⎝a + a′ + (a − a′)

√
1 + (q − 1)b2

(a − a′)2

⎞⎠= 1

2

(
a + a′ + (a − a′)

√
1 + 1

q − 1

)

and

λq = 1

2

⎛⎝a + a′ + (a − a′)

√
1 − (q − 1)b2

(a − a′)2

⎞⎠= 1

2

(
a + a′ − (a − a′)

√
1 + 1

q − 1

)
.

By further simplifying, we may write

λ1 = a + 1

2

(√
q

q − 1
− 1

)
(a − a′) and λq = a′ − 1

2

(√
q

q − 1
− 1

)
(a − a′).
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Since we know that a − a′ > 0, we deduce that λ1 > λ2 = · · · = λq−1 > λq and a < λ1. (Note
that a ≤ λ1 holds for all β > 0.) By further plugging in the expressions for a and a’, we obtain

λ1 = 2β
1 − s∗

β,q

q − 1

((
qs∗

β,q + 1
)+√ q

q − 1

(
qs∗

β,q − 1
))

, (A.5)

λq = 2β
1 − s∗

β,q

q − 1

((
qs∗

β,q + 1
)−√ q

q − 1

(
qs∗

β,q − 1
))

. (A.6)

Since 2β
(
1 − s∗

β,q

)
/(q − 1) > 0 and

(
qs∗

β,q + 1
)−√ q

q − 1

(
qs∗

β,q − 1
)≥ (q + 1) −

√
q

q − 1
(q − 1) > 0, for all q ≥ 3,

it follows from (A.6) that λq > 0. Hence, all the eigenvalues of (A + A�)/2 are positive, and
its maximum absolute eigenvalue is given by λ(x, β, q) = λ1. It remains to show that λ1 < 1.
First, by Lemma 4.1 (or a simple substitution), s∗

β,q solves the equation

s = g1
β

((
s,

1 − s

q − 1
, . . . ,

1 − s

q − 1

))
= e2βs

e2βs + (q − 1)e2β 1−s
q−1

.

By rearranging this equation, we deduce that s∗
β,q satisfies

exp

{
−2β

qs∗
β,q − 1

q − 1

}
= 1 − s∗

β,q

(q − 1)s∗
β,q

.

By using this identity in (A.5), the maximum absolute eigenvalue λ1 can be written as

λ1 = 1 − s∗
β,q

2
(
qs∗

β,q − 1
) ((qs∗

β,q + 1
)+√ q

q − 1

(
qs∗

β,q − 1
))

log

(
(q − 1)s∗

β,q

1 − s∗
β,q

)
, (A.7)

and therefore

λ1 − 1 = 1 − s∗
β,q

2
(
qs∗

β,q − 1
) ((qs∗

β,q + 1
)+√ q

q − 1

(
qs∗

β,q − 1
))

f (s∗
β,q),

where f is the function defined by

f (s) = log

(
(q − 1)s

1 − s

)
− 2(qs − 1)

(1 − s)
(

(qs + 1) +
√

q
q−1 (qs − 1)

) .

Since s∗
β,q ∈ [1 − 1/q, 1], to show that λ1 − 1 < 0, it suffices to show that for all q ≥ 3, the

function f is decreasing for s ∈ [1 − 1/q, 1] and f (1 − 1/q) < 0. This may be verified through
an exercise in calculus as follows. First, define

g(s) = log

(
(q − 1)s

1 − s

)
− 2(qs − 1)

(1 − s) ((qs + 1) + (5/4)(qs − 1))
.
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Note that for all q ≥ 3 and s ≥ 1 − 1/q, we have f (s) ≤ g(s). Hence, it suffices to show that
g(1 − 1/q) < 0 and g′(s) < 0 for s ∈ [1 − 1/q, 1]. It may be shown that

g(1 − 1/q) = 2 log (q − 1) − 8(q − 2)q

9q − 10
< 0

for all q ≥ 3. Moreover,

g′(s) = −153q2s3 + 81q(q + 2)s2 − (82q + 9)s + 1

(1 − s)2s(1 − 9qs)2
.

Since the denominator is positive, this reduces to the task of showing that the numerator

h(s) = −153q2s3 + 81q(q + 2)s2 − (82q + 9)s + 1

is negative for all q ≥ 3 and s ∈ [1 − 1/q, 1]. Indeed, since this is a cubic polynomial in s, this
is much simpler to verify and we omit the remaining details. �
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