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Abstract

An extension of ML with continuation primitives similar to those found in Scheme is
considered. A number of alternative type systems are discussed, and several programming
examples are given. A continuation-based operational semantics is defined for a small, purely
functional language, and the soundness of the Damas-Milner polymorphic type assignment
system with respect to this semantics is proved. The full Damas-Milner type system is shown
to be unsound in the presence of first-class continuations. Restrictions on polymorphism
similar to those introduced in connection with reference types are shown to suffice for
soundness.

Capsule Review

Scheme's call-with-current-continuation operator gives programmers great power to implement
control abstractions such as exception handlers, signal handlers, coroutines, debuggers, and
many others. This paper shows that this simple yet powerful control operator can be type-
checked in the ML type system, so that (as with ordinary ML type checking) all types are
checked at compile time yet no computation can 'go wrong' at run time.

There is a subtlety to the typing of polymorphic continuations that the first implementors of
c a l l cc in ML did not fully understand. This paper has set the implementors straight, the
compiler has been fixed accordingly, and now we all can program with c a l l cc and still sleep
nights.
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1 Introduction

First-class continuations are a simple and natural way to provide access to the flow
of evaluation in functional languages. The ability to seize the 'current continuation'
(control state of the evaluator) provides a simple and natural basis for defining
numerous higher-level constructs such as coroutines (Haynes, Friedman, and Wand,
1986), exceptions (Wright and Felleisen, 1990), and logic variables (Felleisen, 1985,
Haynes, 1987), for supporting multiple threads of control (Dybvig and Hieb, 1989,
Haynes and Friedman, 1987, Reppy, 1989, Wand, 1980), for providing asynchronous
signal handlers (Reppy, 1990), and for implementing non-blind backtracking
(Friedman, Haynes, and Kohlbecker, 1985) and dynamic barriers such as unwind-
pro tect (Haynes and Friedman, 1987). Tractable logics for reasoning about program
equivalence in the presence of first-class continuations in an untyped setting have
been developed (Felleisen, Friedman, Kohlbecker and Duba, 1986, Felleisen,
Friedman, Kohlbecker and Duba, 1987, Talcott, 1988). Recent studies of
continuations have addressed the question of their typing in a restricted setting
(Filinski, 1989b, Filinski, 1989a, Griffin, 1990) and their impact on full abstraction
results (Sitaram and Felleisen, 1990).

The subject of this paper is the extension of Standard ML with primitives for first-
class continuations similar to those found in Scheme. The two new primitives are
c a l l c c , for call with current continuation, which takes a function as argument and
calls it with the current continuation, and throw, which takes a continuation and a
value and passes the value to that continuation. In section 2 we give an informal
presentation of the extension of ML with continuation primitives, and illustrate their
use in programming examples. We also discuss the role of continuations in the
implementation of Standard ML of New Jersey, and some problems that they raised.
In section 3 we consider the semantics of type assignment for the functional core of
ML, extended with continuation-passing primitives. A simple and natural-seeming
signature for the continuation primitives turns out to be unsound. We consider two
restrictions of the type system for which a soundness theorem may be obtained.

We are grateful to Andrew Appel, Stephen Brookes, Matthias Felleisen, Andrzej
Filinski, Timothy Griffin, John Reppy, Didier Remy, Olin Shivers, Mads Tofte and
Andrew Wright for their comments and suggestions.

2 Adding first-class continuations to ML

First-class continuations are an abstraction that evolved from various nonstandard
control structures such as Landin's J-operator (Landin, 1965), Reynolds' escape
(Reynolds, 1972), label variables in Gedanken (Reynolds, 1970) and PAL (Evans,
1968), and from the semantic analyses of general control structures, including jumps
(Strachey and Wadsworth, 1974). Scheme (Sussman and Steele, 1975) originally
introduced a binding construct (catch k body) that captured its own expression
continuation and bound it to the variable k, with the expression body as the scope
of the binding. The continuation represents the 'rest of the computation', and
behaves as a function that takes the value of the expression as its argument and yields
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the final result of the evaluation of the remainder of the program. In a typical
implementation the final result is passed to the interactive top-level, which prints the
result, and continues by evaluating the next expression.

Around 1982 the special-form ca tch was replaced by c a l l - w i t h - c u r r e n t -
c o n t i n u a t i o n or c a l l / c c for short (Clinger, Friedman and Wand, 1985). The
act of capturing the current continuation did not require a special variable binding
form, but could be performed by a primitive operator whose argument was a function
that would be applied to the captured continuation. Therefore, (catch x body)
becomes ( c a l l / c c (lambda (x) body)) in Scheme. This is an example of the
well-known technique of replacing a special variable binding form with an operation
acting on a function, so that variable binding is handled solely by lambda abstraction.

In an untyped language there is not much to choose between the functional and
binding forms of continuation-capturing construct. However, in the context of an
ML-like type system, the two differ substantially. To understand the distinction, it is
helpful to consider the interaction between typing and the invocation of a captured
continuation. There are two main points. First, continuations arise in a program only
by capturing the evaluation context of some expression: there are no expression forms
denoting continuations. Therefore a continuation expects values of the type of the
expression whose evaluation context the continuation represents. Second, the
invocation of a captured continuation discards the current evaluation context,
passing a value to the captured, instead of the current, continuation. Although the
passed value must be consistent with the argument type of the continuation, the result
type is unconstrained, since invocations of continuations do not return to the
evaluation context. (For similar reasons the exception-raising construct of Standard
ML has arbitrary result type.)

For example, if k is bound to a continuation expecting an integer value, we may
invoke k in several incompatible type contexts, as in the following expression1

l + c a l l c c ( f n k=>hd(if b then [ (k 3 ) + l ] e l s e 5 : : (k 4 ) ) )

Here k is invoked in two contexts, one expecting an integer, the other expecting an
integer list. Since continuation invocations never return, it makes sense to regard this
as a well-typed expression (of type in t ) .

The incorporation of continuation primitives in ML involves making two related
extensions, namely the continuation-capturing construct and the continuation-
invoking construct. Since ML is a typed language, continuations should be values of
some type, say T cont, the type of continuations expecting value of type T. The
continuation-capturing constructs may then be given typing rules as follows. The
functional form, written c a l l c c in keeping with the ML lexical conventions, may be
assigned any type of the form (T cont -»• T) -> T since the body may either invoke the
passed continuation, or else return normally. Written polymorphically, we have the
typing

We (temporarily) use ordinary function application notation to indicate invocation of a continuation.
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The variable-binding form, written le tccfcine , has the following typing rule:

A,k:x cont \—e:x
A \— le tcc£ ine:z

where A is a type assignment giving types to the set of free variables of e.
The choice of functional or binding form of continuation-capturing construct

depends on the definition of the type x cont. We consider two possibilities: regard a
continuation as a function that is invoked by application, or regard a continuation
as a new form of value that is invoked by a special primitive. In the first case the type
x cont is rendered as a functional type, whereas in the second it is introduced as a
new primitive type. We consider each in turn.

If continuations are to be regarded as functions, some provision must be made for
ensuring that the result type is allowed to vary according to context. This suggests the
following polymorphic typing:

cal lcc:Va. vp.((a-»P)->a)-*a.

But since k is lambda-bound in the expression c a l l c c ( fn k=> . . . ) this does not
give us the freedom to instantiate the polymorphic type variable P independently at
each applied occurrence of k within the body of the abstraction. Instead we are forced
to chose a single type for p suitable for all applications of k, ruling out examples such
as the one considered above.

There are two ways to proceed. One involves moving the quantifier over P inward
(which could be formally justified by the observation that p occurs in a positive
position in the type expression), yielding the typing

c a l l c c :Va. ((a->vp.p)-^a)->ot,

then replacing the type VP. P, which is not the type of any defined value, by a new
primitive type void, resulting in the typing

c a l l c c : Va.((oc-> void)-*a)-»-a.

The type x cont is then defined to be the type x-» void. To match the type of a
continuation invocation (i.e. void) with its context we could either view void as a
subtype of all types and use a subsumption rule, which introduces many of the
complexities of subtyping into the type system, or we can simply introduce a
polymorphic coercion function

ignore: Vot. void-^a

and surround applications of continuations with a call to ignore , as in

i f b then [ i gno re (k 3 ) + l ] e l s e 5 : : i gnore (k 4)

(where k is an i n t cont).
As an alternative to ignore we can exploit the polymorphic type system of ML,

using l e t c c instead of c a l l c c . The idea is to take type xcont to stand for the
polymorphic type Va.x-^a, leading to the following typing rule for l e t c c :

A \-letcc/c ine:x '

https://doi.org/10.1017/S095679680000085X Published online by Cambridge University Press

https://doi.org/10.1017/S095679680000085X


Typing first-class continuations 469

Since k is assigned a polymorphic type, the result type, a, may be chosen freely on a
case-by-case basis for each applied occurrence of k. This rule is consistent with the
ML type system in that let-like constructs admit assignment of polymorphic types
to the bound identifier. This method cannot be adapted to c a l l c c . The required
type has the form (Va. x -»• a) -> T, which lies outside the scope of the ML type system.
It is here that the two constructs differ in an ML-like setting.

Another way of typing continuations, and the one adopted in Standard ML of New
Jersey (Appel and MacQueen, 1991), is to abandon the view that continuations are
functions in the ordinary sense and to consider xcont as a primitive type with an
operation throw for invoking a continuation. The type of throw is given by

throw:Va.Vp.(acont) -*(a->P),

and hence throw is essentially a coercion that turns a continuation into a function,
introducing a separate instance of the type parameter p at each invocation of the
continuation. Our example becomes

i f b then [ (throw k 3 ) + l ] e l s e 5 : : (throw k 4)

where the first and second occurrences of throw receive the types i n t cont ->• i n t
-» i n t and i n t cont-> i n t -> i n t l i s t , respectively.

It is easy to define the cont and throw primitives in terms of void and ignore :

type a cont = a-> void

fun throw k x = ignore (k x ) .
Defining void and ignore in terms of cont and throw is a bit trickier, but it

can be done:

abstype void = VOID

with

fun ignore (x: void) : ' a =

l e t fun loop( ) = l o o p ( ) in loop( ) end

va l c a l l c c =

fn f=>cal lcc(fn k=>f( (throw k) : 'a->void))

end

So, in principle there is not much to distinguish the two approaches. In practice, it is
useful to be able to distinguish easily the invocation of a continuation from the
application of a function. This is why cont and throw are the chosen primitives in
Standard ML of New Jersey.

It would seem, then, that there are essentially two alternatives for representing
continuations in ML: as polymorphic functions, using l e t c c as the capturing
construct, and values of a new primitive type, using throw to invoke them. Although
the two are equivalent for the purely functional fragment of ML, the approach based
on a primitive type of continuations is better behaved in the context of the full
Standard ML language than is the polymorphic approach. The problem is that
current schemes for introducing references (assignable cells) in ML preclude the
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possibility of storing objects of polymorphic type. For instance, if the identity
function is stored into a cell, then a single instance of its polymorphic type must be
chosen for all subsequent retrievals: its polymorphic character is lost. (See Tofte's
thesis (Tofte, 1988) for further discussion of this point.) Thus if a continuation was
represented as function of polymorphic result type, then the result type, which is
irrelevant since no result is actually returned, would have to be fixed when the
continuation is stored, rather than when it is invoked. This would significantly limit
the utility of stored continuations because all invocations would have to be in the
same type context. The approach based on a primitive type of continuations does not
suffer from this limitation, and is therefore to be preferred for Standard ML.

We are thus led to adopt the following simple signature for first-class continuations
in Standard ML:

type occont
v a l c a l l c c : (acont->oc) ->a

v a l throw :

As will be demonstrated in section 3, this signature accurately reflects the typing
properties of c a l l c c and throw. However, certain combinations of the poly-
morphic l e t construct and first-class continuations lead to run-time type errors, as
will be explained in section 3. Restrictions on the type system similar to those
considered by Tofte in connection with mutable cells (Tofte, 1988, Tofte, 1990) suffice
to recover soundness without sacrificing too many useful programs. These issues will
be discussed in detail in section 3, and a suitable soundness theorem can be obtained.
For the remainder of this section we gloss over these issues, focusing instead on the
use of first-class continuations. We stress that these programs are well typed in the
restricted type system, and hence do not 'go wrong'.

Some examples will suggest how first-class continuations are used in practice. The
simplest and earliest use of continuations was to provide an escape, as in the following
function that returns the product of a list of integers. If a zero is found the answer
is returned via a continuation, and no multiplications are performed.

fun prod 1 =
callcc (fn exit->

let fun loop [ ] =1

| loop(0: : t) =throw exit 0

|loop(h: : t) =h * loop t

in loop 1 end)

Another common application is to implement coroutines. Here an interesting
typing issue arises. A common technique is to resume a coroutine by passing the
continuation of the current coroutine as the argument to the continuation
representing the resumed coroutine. If s t a t e is the type representing the state of a
coroutine, this leads naively to the circular identification

s t a t e = s t a t e cont

We cannot solve this identify directly, but we can use a datatype declaration to define
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the type s t a t e recursively. This is illustrated by the following example of a pair of
coroutines, one producing and the other consuming a sequence of integers.

datatype state = S of state cont

fun resumes(s k: state) : state=

callcc(fn k': state cont=>throw k (S k'))

val t>uffer = ref 0

fun produce(n: int, cons: state)=

(buffer := n; produce(n + l, resume(cons) ) )

fun consume(prod: state)=

(print(Ibuffer); consume(resume prod))

fun pinit (n: int) : state =

callcc(fn k : state cont=>produce(n,S k))

fun prun ()=consume(pinit(0))

Coroutines can be generalized to lightweight processes or threads. Continuations
have been used as the basis for the implementations of several process facilities for
Standard ML of New Jersey, some of which use pre-emptive scheduling (Reppy,
1989, Cooper and Morrisett, 1990, Ramsey, 1990, Sufrin, 1989).

The following example uses stored continuations to implement a simple back-
tracking scheme.

l e t

val stack : unit cont list ref=ref []

fun pushstate(k : unit cont) =stack : =k :: ! stack

fun popstate() =stack :=tl(!stack)

fun backtrack() : 'a=

case !stack

of []=>raise Error

|k : : r=>( stack : =r; throw k () )

fun alt (a: unit-Hinit, b: unit-^unit) =

callcc(fn exit=>

(callcc(fn k=>(pushstate k;

a();

popstate();

throw exit ()));

b()))

i n . . . backtracking application...

end
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Calls of a l t can be nested (i.e. inside of the actions a and b), and back t rack can
be called in any type context.

Another use of continuations is to provide a clean, typed interface for asynchronous
signal handling (Reppy, 1990). In Standard ML of New Jersey the type of a signal
handler is ( i n t * u n i t con t ) -Hin i t cont , where the argument is a pair
consisting of a count of pending signals of the kind being handled and a continuation
representing the state of the interrupted process. The continuation returned by the
signal handler is typically used to resume the interrupted process after signals have
been unmasked, but it can also provide an alternative continuation, for instance one
that aborts the computation and returns to top-level. The signal handling module
provides functions to set handlers for each signal and to mask all signals.

There is a subtle issue concerning the behaviour of continuations in an interactive
system. Unless the context of a continuation is carefully defined and controlled one
can subvert the type system. The following sequence of top-level declarations
illustrates the problem.

val c = ref NONE : int cont option ref;

val n: int = callcc( fn k=>(c: =S0ME k; 2));

val b:bool = let val SOME k' = ! c in throw k' 3 end;

We are dealing with expression continuations that merely deliver a value; the binding
of that value in the top-level environment and the printing of a report for the user are
the responsibility of the interactive top-level.2 So the evaluation context represented
by the continuation k stored in c is limited to the right-hand side of the declaration
of n, of type i n t . When this continuation is fetched and invoked in the right-hand
side of the declaration of b, that expression returns the value 3, which the top-level
would erroneously interpret as a boolean value. To prevent this anomaly we must
enforce a strict association between a continuation and its top-level context that
determines the type of the answer returned. The continuation should 'expire' when
this context changes, and if it is invoked after it has expired this should be detected
and should generate an error message. In Standard ML of New Jersey, expiration of
continuations is enforced by timestamping continuations. Each time a top-level
evaluation is begun a new stamp v is generated and pushed onto a stack. The initial
continuation used for that evaluation will finish by popping the stack and comparing
the top value with v, and if they differ it will signal an error. A stack of stamps is used
because 'top-level' evaluations may be nested when files are loaded with the use
function.

Another interesting issue is the relation between continuations and exception
handling. (See also Griffin's recent work on this subject (1992).) In the dynamic
semantics of Standard ML, an expression can produce either a normal value or an
exception packet, indicating that an exception has been raised but not handled during
the evaluation of the expression. Therefore the dynamic context of an expression, i.e.
its continuation, must be able to deal with either sort of result. In effect, one could
think of the dynamic context of an expression in ML as a pair of continuations, one

2 The interface between the interactive system and the object level evaluation is similar to a prompt
(Felleisen, 1988).
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for the 'normal' value return, the other giving the exception handling context. This
suggests possible new primitives that would provide access to the exception handling
part of a continuation, either by invoking a continuation with an exception packet
instead of a normal value, or by extracting the 'exception handler' part of a
continuation as a separate object. One reason why such primitives should not be
provided is that in conjunction with asynchronous signal handling they introduce the
possibility of asynchronous exceptions. The existence of asynchronous exceptions
makes it impossible to statically verify that a particular expression cannot raise a
particular exception, precluding some compiler optimizations.

3 Semantics of polymorphic type assignment

In this section we make precise the informal ideas presented in section 2. We begin
by recalling the polymorphic type assignment system introduced by Damas and
Milner (1982). This type system will form the basis of our investigation of the typing
properties of the continuation-passing primitives introduced in section 2. We then
give a continuation-passing structured operational semantics for this language, and
prove the soundness of type assignment with respect to this semantics. We then show
that the extension of the Damas-Milner type system with the continuation-passing
primitives of section 2 is unsound. We consider two approaches to recovering
soundness, one based on the restriction of polymorphism to values, and the other
based on Tofte's notion of imperative type variable (Tofte, 1990).

5.7 The Damas-Milner language

We begin by recalling the polymorphic type assignment system introduced by Damas
and Milner (1982).

The syntax of ordinary expressions is given by the following grammar:

expressions e ••= x \ c\Xx.e\e1e2\ l e t x b e el i n e 2

The metavariable x ranges over a countably infinite set of variables, and the
metavariable c ranges over a countable set of constants. The set FV(e) of variables
occurring freely in e is denned as usual, as is the operation of capture-avoiding
substitution of an expression e for free occurrences of a variable x in another
expression e', written [e/x] e'. Expressions differing only in the names of the bound
variables are identified; we are therefore free to assume that bound variable names
may always be chosen so as to avoid conflicts.

The syntax of type expressions is given by the following grammar:

monotypes T -= b \ t \ x1 -» x2

poly types o ••••= x \ W . o

The metavariable t ranges over a countably infinite set of type variables, and the
metavariable b ranges over a countable set of base types. The set FTV(CT) of type
variables occurring freely in a polytype a is defined as usual, as is the operation of
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capture-avoiding substitution of a monotype T for free occurrences of a type variable
t in a polytype a, written [X/?]CT.

A context is finite sequence of variable declarations of the form x: CT assigning the
polytype cr to the variable x, subject to the condition that no variable may be assigned
more than one polytype. The variable F ranges over contexts. The 'no redeclaration'
condition implies that a context may be regarded as a partial function sending a
variable x to the unique (if it exists) a such that x: CT is in F. We write dom(r) for the
domain of F regarded as a partial function, and F,X:CT, where x^dom(T), for the
extension of F with the given declaration. The set of type variables occurring freely
in a context F, written FTV(F), is defined to be U.re<iom(r> FTV(F(x)). A signature is
a finite sequence of constant declarations of the form c: CT, subject to the condition
that no constant is declared more than once. Notational conventions similar to those
for contexts apply to signatures.

We shall work with a syntax-directed formulation of the Damas-Milner
polymorphic type assignment system inspired by the static semantics of Standard ML
(Milner, Tofte, and Harper, 1990). The rules given in Table 1 define a formal system

Table 1. Polymorphic type assignment

(WAR)

(CONST)

(ABS)

(APP)

(LET)

F,JC:X

r\-\x.
ri-

ri-e.-.x, r,x:

Thx:

The:

, e : X j - > x 2

e1:T2->x

X

•• X

X

(xi&om.(T))

Tl-e2:x2

The^-.x

Closed) He2:x2

F I— l e t x b e e I i n e 2 : x

for deriving judgements of the form F I- e: x, indicating that the expression e may be
assigned the monotype x in context F. The rules are parametric in a signature £ ,
which we leave implicit. We often write T\-e:x, or just e: x when F is empty, to mean
that this typing judgement is derivable in accordance with the rules of Table 1. An
expression e is said to be well-typed in a context F iff there exists a x such that
T\-e:x.

Some of the rules given in Table 1 make use of auxiliary notions that merit further
explanation. Rule VAR makes use of the polymorphic instance relation CT ̂  x which is
defined to hold iff CT is a polytype of the form Wx . . . V/B x' and x is a monotype of the
form [Xj,...,Tn/tv ...,tn]x' for some monotypes x 1 ; . . . ,x n . This relation is extended
to polytypes by defining CT ̂  CT' iff a ̂  X whenever CT' ̂  x. Rule LET makes use of
polymorphic generalization of a monotype x in a context F, Closer(x), defined to be
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the polytype Wj.. . WB T, where FTV(T)/FTV(r) = {/1;..., /„}. We sometimes abbrevi-
ate Closer(T) to just Close(T) when P is the empty context.

The formal system of Table 1 is clearly a subsystem of the system given by Damas
and Milner (1982) in the sense that if D-e:x is derivable in the system of Table 1,
it is derivable in Damas and Milner's system. Conversely, if PI— e:o is derivable in
Damas and Milner's system, Tee.x is derivable in the system of Table 1 whenever
a ^ T. Thus all and only the monotypes derivable for a given term in Damas and
Milner's system are derivable in the system considered here. The advantage of the
formulation given here is that the rules are syntax-directed - there is precisely one rule
for each form of ordinary expression.

The following lemma summarizes some important properties of the type system
that will be of some use in the proof of Theorem 3.2.

Lemma 3.1
1. If Th-e-.z and JceFV(e), then xedom(F).
2. If PI— e:x, x^dom(r), then P,x:cs\-e:x.
3. If Fl— e:x and P,x:o\-e ':x ' with Closest) ^ o% then PI— [e/x]e':x'.

3.2 Operational semantics

The operational semantics of untyped terms is a three-place relation k\-e=>a denned
by a set of inference rules. Here e is the expression being evaluated, k is a
'continuation' representing the current evaluation context, and a is the final 'answer'
obtained by evaluating e in context k.

The semantics is defined in terms of three additional syntactic categories, defined
by the following grammar:

values v ••••= c | Xx. e

continuations k — []\ke\vk\let x b e kine

answers a-=j;|wrong

Values, continuations and answers are all assumed to have no free variables. A
continuation k has precisely one 'hole', designated by the symbol ' [ ] ' . If A: is a
continuation, we write k[e] for the expression obtained by 'filling' the hole in k with
the expression e. Similarly, if A;' is another continuation, k[k'\ is the continuation that
results from filling the hole in k with k', and may be thought of as the 'composition'
of A: with k'.

The operational semantics of the language of untyped terms given above is defined
by the rules of Table 2. We sometimes write e => a to mean [] I— e => a.

The idea underlying the operational semantics is that in judgement k I— e => a the
continuation k represents an ' evaluation context' (in the sense of Felleisen (Felleisen
and Friedman, 1986)), and e represents the expression being evaluated in that context.
If e is a value, evaluation continues by replacing the 'hole' in k with v, and re-starting
the evaluation process. If e is not a value, either it is reducible by rule BETA or SUB,

in which case the reduction is performed, or else evaluation proceeds to a sub-
expression of e, extending the continuation k accordingly.
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Table 2. Operational semantics

[]\-v=>v (VALO)

(k + []) (VALI)
k\—v =>a
I £> — ^ /I

(e, not a value) (FN)
k \— gj e2 => a

n

(e2 not a value) (ARG)
fc(— vle2=>a

k \~ [v2/x] el=>a
(BETA)

k t— (Xx. et) v2=>a

k I— y, y2 => wr ong (t», =t= tac. e) (WRONG)

W l e t x b e [ ] inejl— e, =>a , N . .
2 1 (ej no/ a ufl/«e) (BIND)

1 " J 2 (SUB)
A:l—letxbe D, ine2=>i3

3.3 Soundness of type assignment

The soundness of the polymorphic type system with respect to the operational
semantics is summarized by the slogan 'well-typed programs cannot go wrong'. In
other words, if a program has a type according to the type assignment system,
evaluation of that program, starting in the empty context, cannot result in the answer
wrong. We prove a slightly stronger result admitting general evaluation contexts, and
phrase the theorem in terms of preservation of typing under evaluation. (See Wright
and Felleisen (Wright and Felleisen, 1991) for a similar perspective.)

Theorem 3.2
Let a be an arbitrary monotype. If k \- e => a with e: x and x: Close(x) I— k[x]: a, then
a is a value and a: a.

Proof
The proof proceeds by induction on the structure of the derivation of k h- e => a.

VALO: In this case e = v = a and k = []. It is immediate that a is a value. We assume
v:x and x:Close(x) I— x a since k[x] = x, and it follows from Lemma 3.1, part 3,
that v.a, and hence a:ex.

VALI : Assuming k + [] we have by rule VALI that [] I— k[v] => a. From the assumptions
that v.x and x:Close(x)I— k[x]:a and Lemma 3.1, part 3, it follows that k[v]:a.
Clearly x: Close(a) I— x:a, and hence a:a by induction.

FN : By rule FN we have k[[ ] e2] \-et=>a. By type rule APP we have e1: x2 -» x and e2:
x2 for some type x2. By Lemma 3.1, part 2, and the type assumption on k we have
y: Close(x2 -> x), x: Close(x) I— k[x]: a, and clearly y: Close(x2 -> x) h- ye2: x. Hence by
Lemma 3.1, part 3, we have y: Close(x2 -> x) I- k[[y] e2]: a. It follows by induction
that a:a.
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ARG: Since v1e2:x there is a type x2 such that v1:x2->x and e2:x2. It suffices to show
that j>:Close(T2) I-£[&!.)>]: a, which follows from ^:Close(T2)Ni;1>':T by an
argument similar to that of the FN case.

BETA: We have k\-[vjx]e1 =>a by the BETA rule, and x:Close(t)h-k[x]: a by
assumption. It suffices to show that [v2/x]e1:x. This follows from the assumption
that (kx.e1)v2:x by the typing rules and an application of Lemma 3.1, part 3.

WRONG : By assumption vt v2: T, and hence v1: x2 -*• x for some monotype x2. Since the
value v1 is assumed not to be a ^.-abstraction, it must be a constant. But there are
no constants of functional type, yielding a contradiction. Therefore this rule will
not apply to a well-typed expression.

BIND : By the LET typing rule, there exists a type TX such that e1: xx and x: Closed) I—
e2:x. It suffices to show that x1:C\ose(x1)\-k[letxhex1ine2]:a (where x1 is a
fresh variable), for then we obtain a:a by an application of the induction
hypothesis. Let F be x^ Closed). Then since F contains no free type variables,
Closest') = Close(T') for any type x'. Since Closed) ^ xx we have F I— xx: x^ From
the typing assumption on e2 we have by Lemma 3.1, part 2, and the fact that
CloseCTi) = Closej-Cx^,F,x:Closer(T1)l-e2:T. Hence by the LET rule we have F i -
l e t xbe xl ine2 : x. Then, from the typing hypothesis on k, by Lemma 3.1, part 3,
and the equality Close(x) = Closer(T), we have Fl— k[let xhe xx ine2]:a.

SUB: This case is similar to the BETA case. It suffices to show that [v1/x]e2:x,
which follows from the inductive assumptions by an application of Lemma 3.1,
part 3. •

The soundness of the polymorphic type system with respect to the continuation
semantics follows directly:

Corollary 3.3
If e is a well-typed program of type x, and e => a, then a + wrong.

Proof
Take a = T and k = [] in Theorem 3.2. •

It is worth mentioning that Theorem 3.2. does not directly entail any positive
conditions on typing - the theorem assures us that a well-typed program cannot' go
wrong', but does not provide any information about the actual result of evaluation.
This is in contrast to soundness theorems based on a 'direct' semantics which often
establish, for example, that a program of base type yields a value of that base type,
if it yields a value at all. To obtain such a result in this setting seems to require the
use of an appropriate form of logical relation (Plotkin, 1980, Statman, 1985). An
alternative is to consider the typing properties of the call-by-value cps transform,
from which an observational soundness theorem may be extracted (Duba, Harper,
and MacQueen, 1991, Harper and Lillibridge, 1992, Meyer and Wand, 1985).

3.4 First-class continuations

To account for the continuation-passing primitives introduced in Section 2, we extend
the language of monotypes as follows:

monotypes x ••••=...\x c o n t
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The signature £o o n t is given by the following declarations:

c a l l c c : W(? cont -> i)^ t

throw: VsVt(s cont->s->-t)

The operational semantics of c a l l c c and throw is denned in such a way that
continuations must be 'reified' as values. Accordingly we extend the syntax of values:

values v~=... | thrown | k

(Since throw is represented by a two-place, curried function, it is necessary for
technical reasons to regard the partial application of throw to a single argument to
be a value.) The typing relation v.x is extended to this additional case by defining k:
xcont to hold iff x: x \— k[x]: a, where a is a fixed type of answers.

The extension of the operational semantics to cover c a l l c c and throw is given
in Table 3.

Table 3. Semantics of continuation-passing primitives

k\— vk=>a .
(SEIZE)k\— callccu =>a

k'\—v=> a ,
(JUMP)

k \— throwKD => a
k\-vxv2=> wrong (v1 4= Xx.e,v1 ^{ca l lcc , throw}) (WRONG)

We turn now to the question of soundness of type assignment for the extension of
the semantics with first-class continuations. Despite the superficial plausibility of the
typing rules for c a l l c c and throw, the full polymorphic type assignment system for
the extended language is unsound.3 Specifically, assume that we have base types i n t
and bool, constants t r u e : t o o l and 1 : i n t . The following programs has
type bool in the empty context, but yields answer 1 when evaluated in the empty

context: l e t y b e Cal lcc(M.Jlv . t h r o w f c ( \ ^ x ) ) i n / l ; / t r u e .

In the presence of a primitive operation such as logical negation that 'goes wrong' on
an integer argument this program may be readily adapted to give a counterexample
to soundness. To see what is wrong, it is helpful to consider a naive attempt to extend
the proof of Theorem 3.2 to the present setting. Difficulties arise only in the case of
SEIZE. Specifically, we have by assumption that k \- c a l l c c v => a with c a l l v: x and
x:C\ose(x)\-k[x]:a; we are to show that a: a. For the induction it suffices to show
that vk:x, for which it is sufficient to show that u:xcont-s-x and that fe::cont,
which is to say x: x I— k[x]: a. But all we have is the weaker condition x: Close(x) I—
k[x]: a, which is not sufficient. The counterexample shows that the soundness theorem
fails for the enriched language.

The essential difficulty is that there are continuations which use their arguments

3 This result was obtained jointly by Mark Lillibridge and the first author (1992).
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polymorphically, but this cannot be expressed in the Damas-Milner type discipline
due to the limitation to 'prenex' quantification. The only such continuations are
those of the form l e t x b e [ ] i n e 2 which arise during evaluation of l e t expressions
whose let-bound expression is not a value, reflecting the sequential evaluation
semantics given to such expression in ML. Soundness in the presence of continuation-
passing primitives may be recovered by considering variants of the language in which
such continuations do not arise. We consider two such variants, one in which l e t
expressions are given a 'by name' interpretation, and one in which let-bound
expressions are limited to values. In both of these variants continuations of the form
fc[letxbe[] ine] can be discarded, and all remaining continuations type check
monomorphically, which is sufficient for soundness in the presence of c a l l c c and
throw.

The 'by name' semantics for l e t expressions is defined by replacing rules BIND and

SUB by the following rule:
k \- [ejx] e2 => a .

11 2 — (SUB-NAME)

The 'values only' semantics is defined by restricting l e t expressions so that the
let-bound expression is a value, and dropping rule BIND from the operational
semantics. In either case we omit continuations of the form k[letx\>e [] ine2].

Theorem 3.4
In the language with c a l l c c and throw and with either the 'by-name' or 'values-
only ' interpretation of l e t if &: H e => a with e: T and x: T I— k[x]: a, then a: a.

Proof
Similar to the proof of Theorem 3.2, amended as follows:

SEIZE: By assumption c a l l c c v . z , and hence y:xcont-^T. It suffices to show that
vk:\, which follows from &:xcont, which follows from x:TI— k[x]: a, which holds
by assumption.

JUMP: By the inductive assumptions throwuA::T, which implies that v.x and k:x
cont, and consequently that x:x\— k[x]:a. The result then follows by an
application of the inductive hypothesis.

WRONG: If vl is neither a ^.-abstraction nor c a l l c c nor throw, then it cannot be
well-typed.

The SUB case is handled as before; the BIND case no longer arises. •
The ' by name' and ' values only' variants of the language recover soundness in the

presence of continuation-passing primitives at the expense of disturbing the semantics
of l e t expressions even in those programs that make no use of c a l l c c and throw.
The pure functional core language has the appealing property that a polymorphic
expression is evaluated once but used many times at many different types. Neither the
'by name' nor the 'values only' variants enjoy this property. Under the 'by name'
interpretation of polymorphism, the bound expression may be evaluated multiply (if
at all). Under the 'values only' restriction the single evaluation property is preserved
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only in a trivial sense, since no non-value expression can be used polymorphically. It
is natural to inquire whether it is possible to smoothly integrate continuation-passing
primitives into the language in such a way as to retain soundness but nevertheless
retaining the semantics of the pure functional core language. This can be achieved to
a limited extent, at the expense of introducing a somewhat more complex type system
adapted from Tofte's treatment of polymorphic references (1990).

The set of type variables is divided into two disjoint infinite subsets, the applicative
and the imperative type variables. Imperative type variables are written here with an
underscore; applicative type variables are left unadorned. A type is said to be
imperative iff all type variables occurring within it are imperative. The universal
quantifier may bind either sort of type variables, and the polymorphic instantiation
relation is restricted so that an imperative type variable may only be instantiated by
an imperative type; ordinary type variables may be freely instantiated by any type
expression without restriction. The polymorphic closure operation is defined as
before, retaining the applicative/imperative distinction when type variables are
bound by a quantifier. The applicative closure operation is defined similarly, except
that only applicative type variables may be quantified, according to whether or not
they occur in the given typing context. We write AppCloser(x) for the applicative
closure of the type x relative to the type assignment P.

Imperative type variables are used in the signature £'0™*t given by the following
declarations:

c a l l c c : V )

throw: Vs. W.s cont

The type of c a l l c c differs from that in the signature £cont by requiring that
instances of the quantified type be imperative.

In the simplest version of the imperative type discipline the l e t typing rule is
restricted so that only applicative type variables may be polymorphic.

T\-e,:x, F, •x:AppCloser(T1)l— e2:x,
1 1 1 ^ - . (LET-APPL)r I— 1 e t * b e ^ i n e2: x2

In the absence of imperative type variables AppCloser(x) = Closer(x), and hence
programs that make no use of c a l l c c will type check exactly as in the functional
core language.

The soundness of this type system relative to the dynamic semantics given in Table
2 is stated as follows.

Theorem 3.5
If e: x and k \-e =>a, where x: AppClose(x) \-k[x]: a, then a is a value such that a: a.

Proof
The proof is very similar to the proof of Theorem 3.2. We give here only the two most
interesting cases.

SEIZE If c a l l c c v: x, then v: x cont ->x, and x is imperative. Therefore AppClose(x)
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= x, and hence the assumption on k ensures that k:x cont. Therefore vk:x, and
the result follows by an application of the induction hypothesis.

BIND I fe = l e t x b e e j i n e 2 where e1 is a not a value, then if follows from the
assumptions that ex: x1 and x: AppClose^) I— e2: x for some type xl and that A:[let
xbe [] ine2] \— e1=> a. It suffices to show that xx: AppClose(x,) h- A:[let xbexx in
e2]:a (where xl is a fresh variable). Let F be xx:AppClose(Xj), and note that
AppCloser(x') = AppClose(x') for any type x' since F contains no free applicative
type variables. Since AppClose^!) ^ xx, we have F h- x1: xx. By the typing
assumption on e2 we have by Lemma 3.1, part 2, and the fact that AppClose(Xj)
= AppCloser(Xj), we have F, x:AppCloser(x1)l—e2:x. Consequently, by the LET
rule, we have F h - l e t xbexx ine2:x and therefore Fl— AJletxbeXj ine2]:oc by
an application of Lemma 3.1, part 3, bearing in mind that AppCloser(x) =
AppClose(x).

SUB If l e t xbe Dj ine2:x2, then i^Xj and AppClose(x1)l—e2:x2, and hence [vl/x]e2:
x2 by Lemma 3.1, part 3, since Close(x1) ^ AppClose^j). The result follows by an
application of the induction hypothesis. •

The imperative type discipline allows us to track conservatively the occurrence of
type variables in the argument type of a continuation so that we may suppress
polymorphism whenever a continuation might be seized by an instance of c a l l c c .
However, the analysis is excessively conservative since it tracks those type variables
that occur in the type of some instance of c a l l c c without regard to whether or not
that instance can actually lead to the capture of a polymorphic continuation. In
particular, the simple imperative type discipline will preclude polymorphic gen-
eralization in the expression l e t cbe c a l l c c ine, even though it is safe to do so.
This situation, and many like it, can be handled by admitting fully polymorphism in
the case that the let-bound expression is either a variable or a value. The typing rule
LET-APPL is replaced by the following two rules:

Fl-e^Xj F,x:Closer(x1)l-e2:x2 .
-fr-1 -±-^ —- (e, is a variable or a value) (LET-VAL)
Fl-letxbee1ine2:x2

T\-e1:xl r,.
ine2:x2

(e1 is not a variable nor a value) (LET-COMP)

The soundness of the strengthened imperative type system is stated as follows.

Theorem 3.6
Let e be an expression such that e: x and let A: be a continuation such that x: a I— k[x]:
a, where a = Close(x) if e is a value and a = AppClose(x) otherwise. If A: I— e => a, then
a is a value such that a: a.

The proof is a straightforward adaptation of the arguments given earlier for the
simple imperative type discipline and for the 'values only' restriction. The condition
on k is phrased so that a continuation may use its argument polymorphically only if
the next expression to be evaluated is a value. The two l e t rules ensure that this
invariant is preserved.
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4 Conclusions

First-class continuations are a powerful tool for implementing sophisticated control
constructs like coroutines, processes, backtracking, and asynchronous signals. Until
now they have been studied and employed in the context of dynamically typed
languages like Scheme. We have been pleasantly surprised to discover that first-class
continuations can also be accommodated in a polymorphically typed language like
ML simply by adding a new primitive type with a couple of associated operations. In
fact, the added discipline of the ML type system seems to simplify programming with
first-class continuations. We have made the first steps toward integrating first-class
continuations into the semantics of Standard ML and verifying the metaproperties of
soundness and observational soundness, but it is clear that extensive work is required
to integrate continuations fully into the definition of Standard ML.
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