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ABSTRACT. Using Hill's modified stability criterium, regions of orbital 
elements are established for conditions of stability. The model of the 
three-dimensional restricted problem of three bodies is used with the 
Sun and Jupiter as the primaries. Four different cases are studied: 
direct and retrograde, outside and inside asteroidal orbits. The 
directions of the asteroidal orbits refer to the synodical reference 
frame and the positions refer to Jupiter's orbit. The orbital para­
meters of the asteroids are the semi-major axis (a), the eccentricity 
(e), and the inclination from Jupiter's orbital plane (i). The effects 
of the other orbital elements are not investigated in this paper. The 
argument of the perihelion and the longitude of the ascending node are 
fixed at fi = 0) = 90° and the time of perihelion passage is T = 0 for 
all orbits. 

The aim of this paper is to give quantitative evaluation of the 
stability of asteroids, the results being also applicable to comets and 
meteor streams. The evolution of the solar system may be studied using 
planets, satellites or smaller bodies like asteroids. The unquestionable 
advantage of approaching the problem via the investigation of asteroids 
is that there are a very large number of asteroids with well defined 
orbital elements while the number of planets and natural satellites in 
the solar system is much smaller. 

Establishing regions of stability enhances the location and 
discovery of additional minor planets. On the other hand, bodies with 
unstable orbits might be, under certain conditions, available for 
capture or for significant orbital changes without large artificial 
perturbations. Furthermore, changes in the observed orbital para­
meters may change the character of the motion from stability to insta­
bility and various evolutionary trends could be observed concerning the 
solar system. 

ANALYSIS 

For simplicity's sake the first results are derived for the 
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two-dimensional case to clarify the underlying ideas. This corresponds 
to the physical simplification of assuming that the asteroids' orbits 
are coplanar with Jupiter's orbit. Our final results do include three-
dimensional effects. 

The key quantity in the analysis is known as the Jacobian constant, 
given by 

C = 2fi - v2, (1) 

where Q is the dimensionless potential function of the restricted 
problem in the synodic system and v is the dimensionless velocity of 
the third particle relative to this system. The potential function is 
a combination of the gravitational and centrifugal effects and is given 
by 

fi = \ (x2 + y2) + ̂  + £ + \ y (1-p), (2) 
1 2 

where y is the mass parameter obtained from the masses of the primaries 
(m and m ) as follows 

1 2 

m 
2 

m + m 
1 2 

, with m < m . (3) 
2 = 1 

The distances between the primaries and the third body are r̂  and r2 . 
The primaries are located on the axis of syzygies which rotates with the 
unit angular velocity around the center of mass. The unit of length is 
the distance between the primaries and the dimensionless time is 
t = t*n where t* the actual time and n is the mean motion of the 
primaries. 

The above-mentioned distances are computed from 

and 

r2 = (x-y)2 + y2 

r2 = (x-y+1)2 + y2 

2 

When computing Jupiter's effect on an asteroid, we have 

m. _ 
y = ^ = 9.53875 x l O * , 

m + m. 
s J 

using for m. and m the recent values given by Circular No. 163 of the 
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U.S. Naval Observatory. 

The basic idea of establishing regions of stability is to find 
regions in the orbital plane where motion may take place. For a given 
asteroid, the value of C is computed using Eqn (1). This requires 
knowledge of its position and velocity, which might be obtained from 
its orbital elements. Once the actual value of the Jacobian constant 

Cc r at which the forbidden regions of motion change. These critical 
values are described in considerable detail in the literature (see for 
instance, Szebehely 1967) and tabulated values are available. If the 
actual value of the Jacobian constant is much higher than the critical 
value, then the motion is confined to a well defined region of the plane, 

that is, no exchanges or escapes are possible. The forbidden and 
allowable regions of motion are separated by the so-called curves of zero 
velocity which close or open up at the critical values of the Jacobian 
constant. These curves intersect the axis of syzygies at the collinear 
equilibrium points located on both sides of Jupiter at a dimensionless 
distance of approximately (u/3)1/3 - 0.06825. The third collinear 
equilibrium point is located approximately at a unit distance from the 
sun on the opposite side from Jupiter. For large values of C we have 

three distinct and separate regions for possible motion. One is outside 
the Sun-Jupiter system which region can not be penetrated by asteroids 
originally moving in this outside regions. Such asteroids cannot be 
captured by either the Sun or by Jupiter. The second region encloses the 
Sun and an asteroid in this region can not be captured by Jupiter nor 
can it leave the system. The third region is around Jupiter and an 
asteroid (or a satellite of Jupiter) can not leave Jupiter's neighborhood, 
cannot become a minor planet governed by the Sun and cannot escape the 
system. This is the case when C > C a - 3.03971. If Ca„ < C * the 

ac cr fc . 
inside two regions (around the Sun and around Jupiter join forming a 
region where the body might join or leave the Sun and/or Jupiter. This 
happens when CCJ. > Ca c > Cc£ ~ 3.03844. The outer region still 
remains separated from the inner region and neither penetration nor escape 
is possible. When C c r > Ca c the outer region joins the inner region 
and outside particles may penetrate and inside particles may escape. 
Further reduction of the value of Ca_ < 3 eliminates all forbidden 
regions and in Hill's sense there is no stability. Since the values of 
C and C 2 are close and anytime C„„ < C * we have the possibil-
cr cr ac cr r 

ity of exchange, of communication, of penetration or of escape we 
select C = C r as our critical value to determine stability and 
introduce a measure of stability by the equation 

C - C 
S = a C

c " , (4) 
cr 

where C = 3.03844 corresponds to the collinear equilibrium point 

usually denoted by L. and located close to Jupiter on the opposite side 
from the Sun. 
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The next step is to evaluate the actual value of the Jacobian 
constant for an asteroid. Given the semi-major axis and the eccentric­
ity of the orbit, the relative velocities are computed at the perigee-
distance, a(l-e) or at the apogee-distance,. a(l+e) with respect to the 
Sun, assuming, once again for simplicity's sake that these points are 
on the axis of syzygies. The Jacobian constant becomes 

c = I ± 2 [a(l-e
2)]^ , (5) 

a 

once the appropriate substitutions are made into Eqn (1). Note that the 
above equation applies at the perigee and uses two-body approximations 
because of the small value of y. The + sign refers to direct and the 

sign to retrograde orbits. For the straightforward but tedious 
derivation see for instance, Szebehely (1967). For circular orbits the 
Jacobian constant is 

C = - ± 2a^ • (6) 
a 

If the limiting critical value, C is substituted for C and the 
° cr 

resulting, essentially cubic equation is solved for a we obtain the 
limiting value(s) of a for direct and for retrograde orbits. These 
values are a = 0.80438 for direct and a = 0.24786 for retrograde 
orbits. If Ca c > Cc r the orbit is stable, consequently, the next 
step is to investigate the effect of changes in the quantity a on the 
Jacobian constant. Since 

da a % 
a 

we see that for retrograde orbits dC/da < 0, for any value of a. There­
fore if a is increased above the previously given value (a = 0.24786) 
Cac will be smaller than C and instability will set in. For example, 
if a = 0.3, the actual value of the Jacobian constant becomes 
Cac = 2.2379 which results in a negative value for the measure of 
stability and according to Eqn (4) it becomes S = -0.2635, indicating 
instability. Similar analysis may be performed for direct orbits. 

Taking the partial derivative of Eqn (5) with respect to the 
eccentricity we may once again establish its role. This is left to the 
reader since our figures and tables given in the next chapter, clearly 
demonstrate the effects of changes in the eccentricity. The only remark 
to be made is that 3C/8e > 0 for retrograde and negative for direct 
orbits. 

The three-dimensional effects are brought into the picture by using 
the zero-velocity surfaces instead of the previously mentioned zero-
velocity curves of the restricted problem of three bodies. The Jacobian 
integral is identical in form in the two and three-dimensional cases, 
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that is, Eqn (1) is still applicable with 

2 *2 , *2 , * 2 

v = x + y + z , 

r2 = (x-y)2 + y2 + z2 , 
1 

and 

r 
2 

2 _ /„ ,,_i_i 1 2 , ..2 . 2 = (x-y+l)z + yz + z' 

The method used is identical to the two-dimensional case excepting 
the complications of the topology of the three-dimensional limiting 
surfaces. 

RESULTS 

The results of the computations are represented in Figures 1 to 3 
and in the corresponding Tables 1 to 3. Figure 1 represents direct inner 
orbits. The parameter is the semi-major axis, the value of which is 
shown on the curves, using astronomical units (A.U.). Note that the 
unit of distance in the discussion of the previous chapter was the Sun-
Jupiter distance, but the Figures and Tables give results in A.U.-s to 
comply with astronomical conventions. 

Consider Figure 1 and the corresponding Table 1. For zero eccen­
tricity and inclination, the previous section gave for the limiting 
semi-major axis a = 0.80438. Since we now use A.U.-s we multiply 
this value by the Sun-Jupiter distance or by 5.2028 A.U. and obtain 
4.185 A.U., corresponding to the origin of Figure 1, i.e., to the point 
e = i = 0. The same value is shown as the first entry in Table 1. 

As an example consider asteroid No. 25 (Phocaea) with i = 21?59, 
e = 0.254 and a = 2.4 A.U. Locating the point corresponding to the 
given i and e values our Table 1 or Figure 1 gives a - 3.2 (see 
point A). Consequently, if Phocaea's semi-major axis would be larger 
than 3.2 its orbit would show instability. In fact, its semi-major 
axis is 2.4, consequently, its orbit is stable, and its measure of 
stability as defined by Eqn (4) is S = 0.119. The charts, of course 
may be used for finding limiting values of i and e. Moving to the 
curve corresponding to a = 2.4 on Fig. 1 we see that if the eccen­
tricity of Phocaea would be as high as 0.5 (see point B), then its 
limiting inclination should be less than 42?50. In other words, for a 
given semi-major axis higher eccentricity and higher inclination reduce 
the stability, as expected. In fact, the non-existing asteroid mentioned 
above and marked by B on Fig. 1 has a measure of stability S = 0, 
while asteroid #25 is stable. 

In general, therefore, the use of Fig. 1 (or Table 1) is to locate 
the point for a given (e,i) set and read off the corresponding value of 
the limiting semi-major axis, a*. If the minor planet's actual 
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FIGURE 1. DIRECT INSIDE ORBITS 
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semi-major axis, a is smaller we have stability and if a > a* we 
have instability. A new measure of stability could be established by 
evaluating the ratio S' = (a* - a)/a(0,0), where a(0,0) = 4.185. This 
measure for Phocaea becomes (3.2 - 2.4)/4.185 = 0.167. It is not 
recommended that S' should replace S as given by Eqn (4) since this 
latter has more general applications. 

Another observation of general validity may be made from Fig. 1 (or 
from Table 1). Considering a fixed value for the semi-major axis we 
see that small eccentricity allows higher inclination, while high eccen­
tricity requires low inclination for stability. Furthermore, as the 
value of the semi-major axis decreases larger eccentricities and larger 

inclinations are allowed. 

Finally, we note that some of the constant semi-major axis curves 
may be approximated by elliptic arcs, especially, in the middle range of 
the chart. 

Figure 2 and Table 2 represent retrograde orbits inside the limiting 
zero-velocity surface. The topology of the zero velocity surfaces is 
identical to the case discussed in connection with direct orbits but the 
evaluation of the actual values of the Jacobian constants is significantly 
different, as shown by the ± signs in Eqn (5). The origin of Figure 2 
corresponding t o e = i = 0 i s a = 0.24786 x 5.2028 A.U. = 1.2896 A.U. 
and the semi-major axis increases with increasing eccentricity and 
inclination. The reason for this is that, as mentioned before, 
3C/3e > 0 for retrograde orbits. 

Comparing Figs. 1 and 2 we observe the low values of the semi-major 
axes for retrograde orbits indicating that asteroids in retrograde orbits 
must be closer to the Sun than those in direct orbits. This is the 
consequence of using Hill's criterion for stability and it should be kept 
in mind that this criterion is a necessary but not sufficient condition. 
In previous papers the difference between linearized stability investi­
gations and Hill's method have been subjected to analysis (Szebehely, 
1978). The linear analysis shows considerably higher stability for 
retrograde orbits than Hill's method. 

Figure 3 and Table 3 refer to outer direct orbits. These are 
asteroids or meteoroids outside of Jupiter's orbit and the limiting 
value for the semi-major axis may be computed from Eqn (6). We use the 
plus sign and find the solution to the equation 

C = - + 2a^ (8) 
cr a 

for a > 1. Note that the solution of this equation for a < 1 was 
already established before (a = 0.80438 or a = 4.185 A.U.). The 
solution of Eqn (8), using once again, C = 3.03844 is a = 1.25 or 
a = 6.504 A.U. If the semi-major axis (for i = e = 0) is larger than 
this value we have C > C and stability occurs. It is important to 

ac cr 
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FIGURE 2, RETROGRADE INSIDE ORBITS 
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FIGURE 3. DIRECT OUTSIDE ORBITS 
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clarify the meaning of Hill's stability criteria for inside and for 
outside orbits. If a direct inside orbit has larger semi-major axis 
than 4.185 A.U. its Jacobian constant is below C and the separation 

cr 
of the outside and inside regions ceases to exist. In other words, the 
asteroid will not be confined to a closed region including the Sun and 
Jupiter. On the other hand, if an outside direct orbit has smaller semi-
major axis than 6.504 A.U. then, once again the inside and outside 
regions may communicate and the orbit of the outside asteroid may enter 
the region including the Sun and Jupiter, in fact it may be captured by 
Jupiter. So Hill's criteria for "inside" and "outside" are quite 
different. Stability for inside asteroids means they cannot leave a 
region including the Sun and Jupiter, while stability for outside aster­
oid means they cannot enter the same region. This explains the differ­
ent trends shown on Figs. (1) and (3). The larger the semi-major axis 
is of an outside asteroid, the larger its inclination and eccentricity 
may be without instability setting in (see Fig. 3). The opposite is the 
situation for inside orbits as we have seen on Fig. 1. (Note that other 
perturbations such as Saturn's for outside and Mars' for inside orbits 
are not included in these considerations.) 

Finally, a discussion is offered of retrograde outside orbits. These 
orbits are all unstable according to Hill's definition since Eqn (6) with 
a negative sign does not have real solutions for a > 1. In other words, 
all outside retrograde orbits may enter the inner region since their 
Jacobian constant is smaller than C . (Note that this does not apply 
to inside retrograde orbits since Eqn (6) has a real solution (using 
the negative sign) for a < 1. 

Further consequences (and in some respect disadvantages) of Hill's 
method are that stability for inside orbits means that they cannot 
escape the Sun-Jupiter system. Outside orbits may escape but are not 
allowed to enter the inside regions. In terms of instability this 
means that if an inside orbit is unstable it may in fact escape the 
system and an unstable outside orbit may enter the Jupiter-Sun region. 
Stable inside bodies may have chaotic orbits, may be captured by the Sun 
or by Jupiter, may have figure-eight orbits, etc., but cannot leave 
the region. Stable outside orbits, once again may take any shape (includ­
ing escape) as long as they do not enter the region of the inside orbits. 

CONCLUSIONS 

Well defined regions of stability and instability of minor planetary 
orbits are established using Hill's stability criterion. For direct 
inside orbits the maximum value of the semi-major axis is 4.185 A.U. when 
the eccentricity and inclination are zero. For retrograde inside orbits 
the minimum value of the semi-major axis is 1.290 A.U., again for 
e = i = 0. For outside direct orbits, the minimum value of the semi-
major axis is 6.504 A.U. for e = i = 0. There are no stable outside 
retrograde orbits. 
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For given orbital parameters (a,e,i) and direction of motion the 
Hill-type stability of minor planets or of meteor-streams can be 
determined by the tables and charts given. 
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