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1. Introduction 

In this paper, I give the present state of the analytical planetary theories by describing the general 
theories and the secular variation theories, the variations of the ecliptic with respect to the ecliptic 
J2000, the utilization of the analytical planetary theories in the calculation of the precession-
nutation of the equator and in the calculation of the expressions of transformation between the 
barycentric and geocentric reference systems. At last, I describe the construction of new planetary 
theories undertaken at the Bureau des longitudes. 

The analytical planetary theories arise in two forms: the general theories give, with a low 
accuracy, the variations of the elements of the planets over several million years; the secular variation 
theories reach a high accuracy over time spans of a few thousands of years. 

In all these solutions, the motion of the planets is represented with 6 elements: a, the semi 
major axis, A, the mean longitude and the variables k = e cos TO, h = esinc?, q = s in |cosf2, 
p = sin | sinfi where e represents the eccentricity of the orbit, w the longitude of the perihelion, 
i the inclination of the orbit about the ecliptic J2000 and fi the longitude of the node. It is not 
possible to represent the variations of the planetary orbits with the elements e, zo, i and U because, 
for most of the planets, e and i can reduce to zero and therefore w and fi are not continuous 
functions. 

2. General planetary theories 

In the general theories, the planetary elements are represented as Fourier series with an additive 
constant for the semi major axis and a linear function in time for the mean longitude. 

di = a;o + 2Z ^i,** cos ̂ * + z2 ̂ '.* cos ̂  

Ai = Ai0 + AJI< + ^ -Si,** s m ** + ^2 #i ,* s i n $ 

8 8 

hi = Y2 \kMk cos ipk + ^T Mi^k cos ipk + ^2 Afi,*« c°s $* + Y2 M>,$ c o s * 
k=l k=\ * • * 

8 8 
h> = ] £ A;fcA4 sin i>k + Yl M',*Pk s i n *l>k + J2 M,** sin $* + ^ Afc,* sin $ 

8 8 

<H = Y, VikNk cos 0k + J2 Nlfik cos 6k + Y^ Nit$. cos $* + ] T Nt^ cos $ 
k=l k=l * • * 

8 8 

Pi = Y. ^N* Sin 0k + Yl Ni,h Sin °k + Yl N'^' Sil1 ** + H N'& Sil1 * 
k=\ fc=l * " * 

The <3? arguments are linear combinations of the angles A, (coefficient TJ), I/>J, and 9j. \3 repre­
sents the argument of the planetary longitude Ao + Ai t, ipj the argument of the Lagrange solution 
in eccentricity, 8j the argument of the Lagrange solution in inclination connected to the planet 
j . The periods of the angles \j are the periods of the planets included between 88 days and 165 
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years if we consider 8 planets from Mercury to Neptune. The periods of the angles tf> and Q are 
included between 46000 years and 2 million years. The matrices (A^) and (fJ-ik) are the matrices 
of the eigenvectors of the Lagrange solution and the part of the solutions which contains (A;*,) and 
{fiik) is the Lagrange-Laplace solution of degree 1 in eccentricity or inclination; the other terms 
are of higher degree. In these expressions, the $* arguments correspond to the case in which all 
the coefficients of the Xj are zeros, that is to say to the long period terms. We have hereunder, 
for example, the long period parts of the variable k of the Earth with the periods in years; h is 
represented by a similar expression with sines instead of cosines. The time t is counted in thousands 
of Julian years from J2000. 

k= 0.004260cos (1.561714 +0.0272157i) 230866 
+ 0.016 135 cos (3.471 568 + 0.03614721) 173 822 
+ 0.010 246 cos (5.610 357 + 0.083 80081) 74 978 
- 0.013 399 cos (5.414 083 + 0.086 7938 t) 72 392 
+ 0.018173 cos (0.540 233 + 0.020 88601) 300 832 
+ 0.001439 cos (2.286 358 + 0.136 46701) 46042 
+ 0.000 598 cos (2.066 687 + 0.015 28801) 410 988 
+ 0.000 013 cos (1.302 756 + 0.003 26501) 1924 406 
+ 0.000182 cos (2.704153 + 0.084 97041) 73 946 
+ 0.000 276 cos (5.926 229 + 0.09169301) 68 524 
- 0.003 367 cos (4.901 937 + 0.081 89461) 76 723 
+ 0.000 378 cos (5.217 809 + 0.089 78681) 69 979 
- 0.002 354 cos (6.122 503 + 0.088 70001) 70836 
+ 0.000 857 cos (5.098 211 +0.078 9016*) 79 633 
+ 0.000 599 cos (5.806 631 + 0.080 80781) 77 755 
- 0.000174 cos (2.310136 + 0.030 52291) 205 852 
+ 0.001 007cos (2.723 146 + 0.032 84001) 191 327 
- 0.000124 cos (3.725 634 + 0.091 30011) 68 819 
- 0.000 337 cos (2.583195 + 0.033 54541) 187 304 
+ ... 
+ periodic terms 

These expressions keep an accuracy of about 10~4 for k and h and therefore for the eccentricity 
over several million years. 

The long periods of this solution being in between 46 000 years and 2 million years, it is possible 
to develop the sines and the cosines with respect to time and to represent the solution as polynomials 
in time over 1000 years. We get the following polynomials here limited to the fifth degree 

k = - .003 742 - . 000 828 7i! + .000 0270i2 + 11588 x 10~ 1 0 < 3 -231 x 10~10*4 - 7 x 10~10t5 

h = -.016 2 8 6 - .000 608 7 * - .000 034 612 + 8 596 x 10~10 t3 + 312 x 10"10<4 - 5 x 10~10«5 (1) 

[n the same way, we have the long period parts of the variable q of the Earth with the period in 
years and a similar expression for p with sines. The accuracy of the inclination of the ecliptic about 
the ecliptic .12000 given by such expressions is about 10" over several million years. 

q = 0.006 037 cos (0.247 373 - 0.027 20261) 230 977 
+ 0.002 582 cos (5.369126 - 0.032 82691) 191404 
+ 0.010 016 cos (4.366 638 - 0.09128701) 68 829 
+ 0.003 802 cos (4.878 784 - 0.086 38781) 72 732 
+ 0.013 775 cos (1.877845) 
+ 0.001405 cos (2.210 841 - 0.127 06501) 49449 
- 0.000 866 cos (5.554 460 - 0.014 54361) 432 024 
- 0.000 650 cos (3.548 901 - 0.003 3522 it) 1 874 347 
- 0.000 378 cos (3.854 492 - 0.096 18621) 65 323 
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+ 0.000 499 cos (4.170 364 - 0.088 29401) 71162 
+ 0.001 741 cos (5.075 058 - 0.089 38081) 70 297 
- 0.001192 cos (4.562 912 - 0.094 28001) 66 644 
- 0.000124 cos (0.995 795 - 0.023 89541) 262 945 
+ 0.000 903 cos (4.620 704 - 0.036 13411) 173 885 
- 0.000 401 cos (5.509 077 - 0.033 53231) 187 377 
+ ... 
+ periodic terms 

The development with respect to time of the long period terms of q and p gives the polynomials 

g = - 0.0011325i +0.000 01228i2 + 12 661 x 1 0 ~ 1 0 t 3 - 147 x 1 0 - I 0 i 4 - 3 x 10"10*5 

p= -0 .0000960i + 0.00004689t2 - 5 1 2 4 x l O - 1 0 * 3 - 245 x 10"1 0 i 4 + 3 x lO"1 0*5 (2) 

The precision of the general theories is limited because of the very large number of arguments, 
linear combinations of 24 components and these solutions cannot reach the level of accuracy of the 
present observations. On the contrary, the secular variation theories represent the motion of the 
planets with a very high precision. 

3. Secular variation theories 

The secular variation theories build, in a direct way, the polynomial part as well as the Fourier and 
Poisson series Sj, with sines and cosines, which only depend on the 8 planetary mean longitudes. 
In the expression 

x = XQ + x\ t + . . . + Xj+\ + So + tS\ + ... + t3Sj 

with 
8 8 

i k=l fc=l 

XQ is an integration constant, the other quantities are calculated perturbations. 
For the Earth, we obtain the polynomial parts of the variables k, h, q and p 

k= - 0.003 740 8165 -0 .000 822 67421 + 0.000 027 6246 f + 11 696 x 10- '° i3 

-270 x 10" l 0 t 4 - 7 x lO"10*5 

h= - 0.016 284 4766 - 0.000 620 29651 - 0.000 033 826312 + 8 510 x 10"10 t:i 

+ 277x 1 0 - 1 0 t 4 - 5 x lO"1 0*5 

q= -0.001134 68871+ 0.000 012 373112 +12 654 x l O " 1 0 * 3 - 137 x 1 0 - 1 0 < 4 - 3 x 10"10<5 

p= -0.00010180381 + 0.000047020012 - 5 4 1 7 x l O " 1 0 * 3 - 251 x lO"10 t4 + 5 x 10~1 0i5 (3) 

3.1. COMPARISON OF THE POLYNOMIAL PARTS OF THE EARTH'S ELEMENTS WITH THE 
GENERAL THEORIES 

It is interesting to compare the polynomials (3) with the long period terms of the general theories 
obtained from the developments (1) and (2) with respect to time. 

For the Earth over 1000 years, the differences for the variables k and h and therefore for the 
eccentricity are about 10~5; for q and p, the differences are about 5 x 10~6 which corresponds to 2 
arcseconds for the inclination. 

In this comparison, we can see that it is easy to obtain a low accuracy secular variation solution 
from a general theory but, of course, the contrary is not possible. Over 1000 years, to the variables 
k and h correspond the polynomial parts of the eccentricity and of the longitude of the perihelion 

e = 0.016 708 6342 - 0.000 420 3654 / - 0.000 012 673412 + . . . 

ro= 102?93734808 + 11612"352 90« + 53"275 77« 2 + . . . (4) 
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Let us recall that, over 100000 years, the longitude of the perihelion is not a continuous function 
and that the secular variation solutions represent the planetary motion over only 1000 years. When 
the eccentricity becomes zero, we have a discontinuity of the perihelion of 180 degrees. 

Therefore the secular term of 11"612 352 90 per year in the formula (4) is not the frequency of 
a periodic term with a 111 605 year period reckoned from the equinox J2000 or with a 20937 year 
period reckoned from the equinox of date. 

There are not such periods in the solar system and there is no meaning to introduce such periods 
in the heliocentric motion of the Earth or in the precession-nutation theory. 

3.2. ACCURACY OF THE SECULAR VARIATION THEORY OF THE EARTH 

The integration constants of the VSOP82 (Bretagnon, 1982) and VSOP87 (Bretagnon and Francou, 
1988) solutions have been determined by fitting to the numerical integration DE200 (Standish, 
1982) of the JPL. The comparison, between 1900 and 2000, of VSOP with DE200 shows differences 
of a few mas, 5 mas for the longitude of the Earth and about 10~8 for the other variables. The 
inclination of the true ecliptic about the ecliptic J2000 is defined with an accuracy of 3 mas but 
the main reason of the uncertainty of the analytical and numerical planetary solutions comes from 
the quality of the observations used to determine the integration constants. Thus, between DE200 
and DE403, we have differences which reach 30 mas for the Earth over 1900-2000. 

The accuracy of VSOP82 is therefore consistent with the quality of the observations used in 
DE200. 

4. Utilization of the analytical theories in the calculation of the precession-nutation 

This accuracy of the VSOP solutions allows us to build the contributions of the Sun and the 
planets to the analytical precession-nutation series at the level of 0.1 ^jas. The perturbations of the 
terrestrial equator due to the Moon are calculated with an uncertainty of about 1 /ias by using 
the analytical solution ELP. The comparison for the three Euler angles i/>, ui and ip between the 
analytical precession-nutation solution SMART97 (Bretagnon et at., 1997a, 1997b) and a numerical 
solution using the numerical integration DE403/LE403 gives residuals are 2 /jas for ifi, 0.6 /uas for 
u>, and 2 /jas for <p over 55 years between 1968 and 2023. 

Note that, as in the analytical solution of the Sun, there is no meaning to introduce the 20 937 
year period term in the nutation series. One find also, in the classical nutation series, similar period 
arguments which are in phase every 20 937 years or 10 468 years such as the arguments of period 
18.6 years, 6 months, one year. There is no meaning to keep 2 arguments with similar periods that 
it is impossible to discriminate over the 20 year time span of the high precision observations. 

5. Utilization of the analytical theories in the calculation of the expressions of trans­
formation between the barycentric and geocentric reference systems 

The analytical solutions of the planetary motions are used to calculate the expressions of transfor­
mation between the barycentric and geocentric reference systems. Several solutions have been built 
at the first order in c~2 where c is the light velocity. 

The analytical solution for TCB — TCG (Fairhead and Bretagnon, 1990) has been compared 
with a numerical integration of the JPL. The differences are smaller than 3.4 nanoseconds over 
1900-2000. 

Fukushima has completed the analytical solution by taking into account the post-Newtonian 
effects and the perturbations due to the asteroids. The comparison to numerical integrations he 
has performed gives an accuracy of the analytical solution of 1.8 nanosecond over the time span 
1980-2000. 

6. New planetary theories 

We have seen that the VSOP82 and VSOP87 planetary solutions allow us to determine the vari­
ations of the rigid Earth equator with an accuracy of 1 fj,a.s and the relation between TCB and 
TCG with an accuracy of 1.8 nanosecond. 

https://doi.org/10.1017/S1539299600020323 Published online by Cambridge University Press

https://doi.org/10.1017/S1539299600020323


162 JD 3 - PAPER 2: PLANETARY THEORIES 

Nevertheless, it is useful to have today better analytical planetary theories, specially to pro­
vide very precise relations between the barycentric and geocentric coordinates, relations which are 
essential to the reduction of the observations VLBI, SLR, LLR. 

Moisson (Bureau des longitudes) has undertaken the construction of a new planetary theory by 
using recent values of the planetary masses. The first step of the work gives solutions three times 
more precise than VSOP82. The improvement is particularly important for the variables q and p 
which define the inclination and the longitude of the node of the ecliptic. In a comparison with 
DE403, the residuals in inclination do not exceed 0.1 mas over 1900-2000 which is 30 times more 
precise than the VSOP82 solution. His new solution shall be expressed in two forms: as a function 
in Barycentric dynamical time {TDB) and as a function in Barycentric coordinate time (TCB). 
This is necessary because, till now, in the expression of TCB — TCG, the time is TCB but the 
potential due to all the bodies of the solar system except the Earth and the velocity of the Earth 
are functions in TDB which involves an error depending on c~4 not negligible when we consider 
the post-Newtonian effects. 
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