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YOUNGHO AHN 

Let p : G —> U(H) be an irreducible unitary representation of a compact group G 
where U(H) is a set of unitary operators of finite dimensional Hilbert space H. For 
the (pi, • • • ,p£,)-Bernoulli shift, the solvability of p(<j)(x))g(Tx) = g(x) is investigated, 
where <j>(x) is a step function. 

1. INTRODUCTION 

Let (X, B, p) be a probability space and T a measure preserving transformation 
on X. A transformation T on X is called ergodic if the constant function is the only 
T-invariant function and it is called weakly mixing if the constant function is the only 
eigenfunction with respect to T. Let be the characteristic function of a set E and 

n-l 
consider the behaviour of the sequence lE(Tkx) which equals the number of times k=0 
that the points Tkx visit E. The Birkhoff Ergodic Theorem applied to the ergodic 
transformation T : N 4 {Lx} on [0 ,1) , where L is positive integer and {t} is the fractional 
part of t, gives the classical Borel Theorem on normal numbers: 

1 " _ 1 1 
J ™ , -Y,MU-l)/LJ,L)(Tkx) = I k=0 

for 1 ^ j ^ L. This implies that almost everywhere x is L-normal, that is, the relative 
frequency of the digit j in the L-adic expansion of x is 1/L. See [11]. 

In this paper, we are interested in the uniform distribution of the sequence d„ 6 
{ 0 , - - , M - 1 } defined by 

n-l 
dn(x) = ^lE(Tkx) (modM), 

*=o 

for T : x >-> {Lx} and more general transformations. 
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DEFINITION 1: Let T be a transformation on [0,1) denned by 

t-i 
x - 52 Pk r>-l 

T(x) = ^ — on 
k=0 k=0 

L 
where po = 0, pi > 0 for 1 ^ i ^ L and 52Pk = 1- We call this transformation the 
( P i i ' - " ,P£,)-transformation. * 0 

Let P = {Pi, • • • PL) be a partition on [0,1) with P{ 

•i-i t \ 
E P k . E P M for 1 ^ i ^ L. 

U=0 k=0 / 

Recall that the (pi, • • • ,p^)-transformation preserves Lebesgue measure p on [0,1) and 
that V is a generating partition on [0,1) with respect to the (pi, • • • ,pf,)-transformation. 
Hence almost every x £ [0,1) has a symbolic representation [01,02, • • • ] with respect 
to the (pi, • • • ,pi)-transformation and the partition V where 1 ^ Oj ^ L. When x is 
represented by [ai, • • • an] with a finite length, we call it a generalised L-adic number. 

L 

Recall that a one-sided (pi, • • • ,pL)-Bernoulli shift, where 52 Pi = 1 a n ^ Pi > 0 is measure 
i=l 

theoretically isomorphic to the (pi, • • • ,pt)-transformation on X — [0,1) with Lebesgue 
measure p and the partition V — {P\, - • • PL}-

This type of problem was first studied by Veech. He considered the case when the 
transformations are given by irrational rotations on the unit circle and M — 2, and 
obtained results which showed that the length of the interval E and the rotational angle 
6 are closely related. For example, he proved that when the irrational number 6 has 
bounded partial quotients in its continued fraction expansion, the sequence dn is evenly 
distributed if the length of the interval is not an integral multiple of 6 modulo 1 [10]. 

In [1], Ahn, Choe and Lemanczyk consider the case of the (1/L, • • • , 1//.^-transform­
ation on X = [0,1) and M — 2, and show that the sequence {dn} is evenly distributed if 
exp(7ril£;(x)) has finite L-adic discontinuity points 1/L ^ ty < • • • < tn ^ 1. Recently, 
Choe, Hamachi and Nakada [2] show that {dn} is evenly distributed for more general sets 
and that the Z2-extension induced by <p{x) — exp(7rilB(x)) where 1B is the characteristic 
function of B, is ergodic. In this paper, we show that for all Bernoulli shifts the sequence 
{ d „ } is uniformly distributed and that the compact group extension by <p(x) is weakly 
mixing. When T is an irrational rotation, and <f>(x) is a step function, the spectral type 
has been investigated by some mathematicians [3, 4, 6]. In connection with Veech's 
results, we also investigate the sequence { d n } induced by intervals. 

To investigate the sequence {dn(x)}, we consider the behaviour of the sequence 
exp((27ri/M)d„(x)) and check whether this sequence is uniformly distributed on the 
compact group G generated by exp(27ri/M). Weyl's criterion on uniform distribution 
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says that the sequence exp((27ri/M)d„(2;)) is uniformly distributed if and only if 

^ E e v ( f ^ n ( * ) ) = o 

n=l v ' 

for all 1 < k ^ L - 1. 
We investigate the problem from the viewpoint of spectral theory. Let (X, p) 

be a probability space and T an ergodic measure preserving transformation on X, 
which is not necessarily invertible. Let <j>(x) be the G-valued function defined by 
<f>(x) = exp((2m/M)lE(x)). Consider the skew product transformation T$ on X x G 
defined by 

T4x,g)=(Tx,<t>(x)g). 
Then the problem is equivalent to checking whether 7^ is ergodic or not. 

2. COMPACT GROUP EXTENSION 

Let G be a compact group with normalised right Haar measure u, and (X, p) a 
probability space and T : X —> X an ergodic measure preserving transformation. Given 
a function <j> : X —> G, define a skew product transformation Tj, : X x G -t X x G by 
(x, g) \-¥ (Tx, <f>(x) • g). Then preserves the product measure fix v. The ergodicity of 

can be checked by the decomposition of L2(X x G). The Peter-Weyl Theorem says 
that the matrix coefficients of the irreducible unitary representation form an orthogonal 
basis for L2(G,u). Take any irreducible unitary representation p and let (py) be its 
matrix representation. Then 

UT4 (Pij(9)f(x)) = PiM*) • 9)f(Tx) 
= ^,Pik(9)Pkj(<t>(x))f(Tx). 

k 

Hence we have the following UT^-invariant orthogonal decomposition: 

L2{X x G) = ®L2

p(X x G) 

where the subspace L2(X x G) is spanned by functions of the form Pij(g)f(x), f € L2(X). 
For p is equal to the two Hilbert spaces L2(XxG) and L2(X) are identical. The following 
is a well-known fact. 

LEMMA 1 . 

(i) Tie skew product transformation T<j : X x G —t X x G is not ergodic 
if and only if there exists an irreducible representation p ^ 1 satisfying 
p{<j>(x))h{Tx) = h(x) for some nonzero h = (hi)i^d) hi € L2(X) where d 
is the dimension of p. 
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(ii) is not weakly mixing if and only if there exists an irreducible represen­
tation 1 and some constant A € C, |A| = 1, satisfying p(d>(x))h(Tx) = 
Xh(x). Here, h = (hi)i^d, hi G L2(X) is non zero and d is the dimension 
of p. 

From now on, let i f be a finite dimensional Hilbert space and U(H) be a set of 
unitary operators on H. 

LEMMA 2 . Let f(x) be a U(H)-valued step function with finitely many points 
of discontinuity. For the ( p i , - - ,Pi)-transformation T, if an H-valued function h(x) 
satisfies the equation f(x)h(Tx) — h(x), then h(x) is also a step function with finitely 
many points of discontinuity. 

PROOF: Since }{x) G U(H) and T is an ergodic transformation, we may assume 
that = 1 where \\-\\H is the Hilbert space norm. 

For simplicity of proof we shall prove the theorem for the transformation defined by 
N-l 

(Pi q) where p ^ q. Let V be a partition and VN — V T~kV. Let m be the cardinality 

of the set of discontinuities Y and Y£ be an ^-neighbourhood of Y. Then there exists eo 
such that for all 0 < £ < Co, p(Yc) = 2me. Now choose an integer N such that pN < e0 

and (2m-pN+1)/{l - p) < 1/2. 
If / e VN and if / n Y 0 , then / C Yc for e = pN. Hence the totality of / 6 VN 

with / fl Y 7̂  0 has measure at most 2m • pN. By a similar argument, the totality of 
/ G VN+J, 7 ^ 0 such that / DY ^ 0 has measure at most 2m • pN+j. 

Fix L > 0 and consider the collection of I € VN+L having the property that T^ItlY ^ 
0 for some 0 ^ j ^ L — 1. Since T-7 G V^+L-J for these j , and T is measure preserving, 
these intervals have total measure at most 

2m • pN+L~l + 2m • pN+L~2 • • • 2m • pN+l ^ ^'f^ < \ . 

Let Q{N, L) be the sub collection oiVN+L such that TjInY = 0 for all 0 ^ j ^ L-l. 
Then for each / € Q(N, L) 

f{x)f{Tx)---f{TL-lx) 

is constant, say A(I,L) € U{H). Since h(x) = f(x)h(Tx), 
h(x) = f(x)f(Tx) • • • f(TL-lx)h{TLx). 

Hence h(x) = A(I,L)h(TLx) holds almost everywhere on / . Letting TLI = J € T>N, the 
map TL : I -> J is bijective and it is easily shown that 

(1) ^ / Hx) dp(x) = A(/ , h(y) dp(y)). 

Since Q(N,L) measures at least 1/2, the set of x which is interior to some I G 
Q(N,L) for an infinitely number of L must also measure at least 1/2. Fixing such an 
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x, we have that (1) holds. We may assume that x is a Lebesgue point of h. Since Vn 

is finite, it can be assumed that J is always thé same on the right side of (1). By the 

Lebesgue density theorem [8], we can assume that the left side of (1) tends to h(x). By 

the compactness oïU(H), we may assume that lim A(I, L) = A € U{H). Hence 
L-*oo 

--- 1. 

H 

Since = 1 almost everywhere, we may assume that H^a:)!^ = 1. Since 

A e U(H) 

\w)ljh{v)Mv) 

||h(:r)||f f = 1 almost everywhere implies h is constant on J. 

Since f(x) is a U(H)-valued step function with finitely many discontinuities and 

TN J = X, h(x) is also step function with finitely many discontinuities. D 

LEMMA 3 . Let p : G —» U(H) be a unitary representation of the compact group 

G by unitary operators on a Hilbert space H, different from the zero representation. The 

following properties are equivalent: 

(i) p is irreducible; 

(ii) for every nonzero vector h € H, the closed linear subspace generated by 

{p(g)h :geG} is H; 

(iii) the only bounded operators on H commuting with all p(g) (g € G) are of 

the form al where a € C and I is the identity operator. 

PROOF: For the proof, see Hewitt and Ross's Book [5]. D 

THEOREM 1 . Let G be a compact group, H be a finite dimensional Hilbert space 

and U(H) be a set of unitary operators on H. Let p : G —> U(H) be a non triv­

ial irreducible representation of G. Let T be the (pi,-- - ,PL)-transformation. Then 

p[cj){x))h{Tx) = h(x) has no solution if <j>(x) is a step function with discontinuities at 

Pi ^ h < • • • < tn = 1 and the range of <j>(x) is not contained in any closed proper 

subgroup ofG. 

PROOF: Since p ^ 1 is an irreducible representation of G, it is sufficient to prove 

that h(x) is constant by Lemma 3. Letting p(d>(x)) = f{x), h(x) is a .ff-valued step 

function with finite discontinuity points by Lemma 2. Hence there exists 0 < r < px such 

that h(x) = con [0,r). Hence f(x)h(x) = h(x) on [0 ,r). Since f(x) is a unitary operator 

which is constant on [0 ,pi), the conclusion follows. D 

REMARK 1. Let G be a compact group. If <f>(x) satisfies the condition of Theorem 1, 

then the skew product transformation is weakly mixing. Indeed if p(<j){x))h(Tx) = \h(x) 

where A € C and |A| = 1, then by a similar argument to that of Lemma 2, we can 
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show that h(x) is also step function with finitely many points of discontinuity. By the 
irreducible property of p and Lemma 3, the conclusion follows. 

Let (Y,C,p) be a probability space, / £ Lx(Y,C,p) and B C C a sub a-algebra. 
Put v(B) — fBfdp for B £ B. The Radon-Nikodym Theorem implies that there is 
a function h £ Ll(Y,B,p) such that i>(B) = fBhdp for B £ B. We use the notation 
E(f I B) for h, and call it the conditional expectation of / with respect to B. Let S be 
a transformation defined on Y and B be exhaustive that is, 5 _ 1 B c £ and SnB t C. 
The Martingale Theorem says that E(f \ SnB) converges to / almost everywhere and in 
L^YCp) f o r / e L\Y,C,p) 

LEMMA 4 . Let S be a transformation on (Y,C,p), and B C C be an exhaustive 
sub o-algebra, and let <j>: Y - » U(H) be a B-measurabie. Ifq-.Y-tHisa C-measurable 
solution to the equation <j> • q — q o S, then q is B-measurabie. 

PROOF: We follow an idea of Parry [7]. Applying the conditional expectation oper­
ator E(- I B) to the equation 

(1) <p-q = qoS 

we have 
4>-E(q\B)=E(qoS\ B) 

or 

(2) (p • E(q I B) = E{q \ SB) o 5. 

Multiplying (2) by the Hermitian conjugate of (1) we obtain 

q'(y) • E{q I B)(y) = q'(Sy) • E{q | SB) o S{y) almost everywhere 

where q* is the conjugate of q. 
Hence J q* • E{q \B)dp = J q* • E{q \ SB) dp,. 

By exactly the same argument, using SnB in place of B, we have 

j q* • E{q I SnB) dp = j q' • E(q \ Sn+1B) dp, 
so that 

J q* • E{q \B)dp = j q* • E{q \ SnB) dp. 
Taking limits, and using the Martingale Theorem, we get 

^q*-E(q\B)du = JjqWldp, 

where || • ||H is the Hubert space norm. Thus E(q \ B) = q almost everywhere, and g is 
^-measurable. D 
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REMARK 2. For the (pi, • • • ,p£,)-transformation and <j>{x) which satisfies the condition 
of Theorem 1, consider the corresponding two-sided (pi, • • • ,p£,)-Bernoulli transformation 
and the skew product transformation. Then by Lemma 4, and Remark 1, this skew-
product is weakly mixing. Hence if G is metrisable, it is also Bernoulli by Rudolph's 
Theorem [9]. 

3. M O D M NORMALITY OF BERNOULLI SHIFTS 

To investigate the mod M normality of the (pi,--- ,Pi)-transformation, we con­
sider the function 4>{x) = exp((27rt/M)l£;(a;)). Recall that a function f(x) is called a 
coboundary if f(x)q(Tx) = q{x), \q(x)\ — 1 almost everywhere on X. In the following 
two Lemmas, we consider more general functions <j>(x) with finitely many discontinuity 
points. In the following, the unit circle in the complex plane is denoted by T. 

LEMMA 5 . For the (pi, • • • ,pi)-transformation, if a T-valued function <j>{x) is a 
step function with finitely many discontinuity points p\ ^ t\ < • • • < tn < 1, then <j>(x) 
is not a coboundary. 

PROOF: Assume that <f>(x)h(Tx) = h{x). Since (j>(x) is step function with finitely 
many discontinuity points, h{x) is also a step function with finitely many discontinuity 
points. Hence there exists 0 < r ^ pi such that h{x) is constant on [0, r). Thus 
4>{x)h(x) = h(x) on [0,r). So h(x) is constant on [0,1). Hence the conclusion follows. D 

oo 
EXAMPLE 1. For the (1/2, l/2)-transformation, let I = [3/4,1], F = (J (1/2*)/ and k=0 
E = F A T~lF. Then 0 (x ) = exp(7ril E(x)) is a coboundary even if the dis­
continuity points of <j)(x) are contained in [1/2,1) where the cobounding function is 
h(x) = exp(7rilF(z))-

oo 
Now let F = U(1/2*)J and E — F A T~lF. Then d>(x) = exp(nilE{x)) is a 

coboundary even if there exists r > 0 such that <j>{x) ^ 1 on [r, 1). But this phenomenon 
disappears when <j>(x) has finitely many discontinuity points. Hence we have the following 
Lemma. 

LEMMA 6 . Let <f>(x) be a T-valued step function on X = [0,1) with finitely many 
discontinuity points. If there exists r > 0 such that <j>(x) ^ 1 on [0, r) or [r, 1), then 4>{x) 
is not a coboundary for the (pi, • • • ,px,)-transformation. 

PROOF: Assume that d>(x)h{Tx) = h(x). As in the proof of Lemma 5, there exists 
0 < r < pi such that h(x) is constant on [0, r). Hence there exists t > 0 such that 
4>(x) = 1 on [0,t). D 

PROPOSITION 1. For the (pi, • • • ,pL)-transformation, a complex-valued func­
tion <j>(x) = exp((27rz/M)l(a ii,)(i)) is a coboundary if and only if L = 2, M = 2 and 
(a, b) = (p2,p2pi + pi) or (a, 6) = (p?/(l - pi +p?) , (p? - 2p\ + 2 P l ) / ( l - p, +p\)). 
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PROOF: We may assume that 0 < a < 6 < l b y Lemma 6. Assume that 
<p(x)h(Tx) = h(x). Since <pL{x) = 1, <j>L(x)hL(Tx) = hL(x) is equivalent to hL(Tx) = 
hL(x). Since T is ergodic, hL(x) is constant. Hence we may assume that hL(x) = 1. By 
this fact and by Lemma 3, h(x) can be expressed as 

h(x) = E X P F ^ ^ M [ a t , a M . 1 ] ( Z ) J 
V k=l ' 

where bk is an integer and 0 = ax < a2 < • • • < an = 1. We already know that if 
f(x) = Xh(x), then <j>(x)f(Tx) — }{x) also holds. Hence we may also assume that bt = 1 
and 62 = 0. 

Since h(x) has n—2 discontinuity points and h(Tx) has at least L(n—2) discontinuity 
points, h(x)h(Tx) has at most (Z, — l)(n - 2) discontinuity points. Since <j)(x) has two 
discontinuity points, we have 

0 ^ n - 2 ^ j^-j. 

Hence if L ^ 4, then 0(a;) can not be a coboundary. Thus the remaining case is L = 2,3. 
If L = 2, then n = 3,4 and if L = 3, then n = 3. 

In the following, we write by 0 = exp(27ri/M) for convenience. 
CASE I. Assume that L = 2 and n = 3. In this case, we may assume that h(x) = 0 on 
[0, c) and h{x) = 1 on [c, 1). 

If c ^ pi, then (£(2;) = 1 on [0,pic), </>(:r) = /9 on [pic,c), 0 ( : r ) = 1 on [c,pi), <j>{x) = 0 
on [pi,(l - P i ) c + pi) and (j>(x) = 1 on [0,Pic). Hence (^(x)h(Ta;) ^ 

If c > pi, then <p(x) = 1 on [0,pic), = 0 on \p\C,pi), d>(x) — 1 on [pi,c), = 
~P on [c, (1 - Pi)c + pi) , and <f>(x) = 1 on [(1 - pi)c -t-pt, l ) . Hence <j>(x)h(Tx) ^ 

If c = pi, then 0(a;) = 1 on [0,pf), <0(z) = ,9 on [p?,pi), <0(x) = 0 on [p i , ( l -p i )p i + 
P!), and <p{x) = 1 on [(1 - p i ) p i + p i , l ) . 

Therefore 
f = l 

and 
(a, 6) = ( p 2 , ( l - p i ) p i + p i ) . 

CASE II. Assume that L = 2 and n = 4. In this case, we may assume that h{x) — p on 
[0, c), /i(x) = 1 on [c, d) and /i(x) = 7 on [d, 1) where 7 # 1. Indeed, there exists s > pxc 
and t < (1 - p i ) d + pi such that d>(x) — 1 on [0,pic), <j>(x) — 0 on [pic, s), 0 (x) = 7 on 
[t, (1 - pi)d + pi), and <p(x) = 1 on [(1 - Pi)d + pi, l ) . Hence 0 = 7. 

If pid > c, then there exists t < (1 - pi)d + pi such that 4>{x) — 1 on [0,pic), 
<p{x) = 0 on [pic, c), $(x) = 1 on [cpid), <p(x) = 0 on [i, (1 — pi)d + pi) and 0 (x) = 1 on 
[ ( 1 - p i ) d + pi, l ) . Hence p i d ^ c . 
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If pid < c, then there exists t < (1 - pi)d + pi such that <¡>{x) = 1 on [0,pic), 

<¡>{x) — fi on \pic,pid), 4>(x) = 1 on [pid,c), <¡>(x) = /9 on [t, (1 — pi)d + pi) and 0(x) = 1 

on [(1 - p i ) d + pi, l ) . 

Thus p\d < c and by a similar argument, we can show that (1 — pi)c + p — d. 

Therefore c = p?/(l — Pi + p\) and d = pi / ( l - Pi + p 2 ) . In this case, <j>{x) = 1 

on [0,p?/(l - P l + p 2 ) ) , 0(x) = /? on [p?/(l - pi + p 2 ) , p 2 / ( l - p x + p 2 ) ) , 4>(x) =Pon 
[p?/(l-pi+p5),Pi/(l-pi+p?)), = /Jon [pi / ( l -p i+p?) , ( p 3 - 2 p 2 + 2 p 1 ) / ( l - p 1 + p 2 ) ) 

and 4>{x) = 1 on [(p? - 2p2 + 2 P l ) / ( l - pi + p 2 ) , 1). 

Hence 

P2 = l 
and 

r« M ( P ' p 3 - 2 p 2 + 2 P l \ 

\ 1 - Pi + Pi 1 - Pi + Pi / 

CASE III. Assume that L = 3 and n = 3. In this case, we may assume that h(x) = (3 

on [0,c) and h(x) = 1 on [c, 1). 

If c < pi, then 4>(x) = 1 on [0,pic), 0(x) = /? on [pic, c), 0(x) = 1 on [c,pi), cj>(x) = /3 
on [p! + p 2 , (1 - pi - P 2 ) c + pi + P 2 ) and 4>{x) = 1 on [(1 - pi - p 2 ) c + pi + P 2 , l ) . Hence 

<p(x)h(Tx) / h(x). The other case is also similarly verified. D 
REMARK 3. By a similar argument to that of the above proof, we can show that for 

the ( p i , - - ,p¿)-transformation, <¡>(x) — exp((2kni)/Ml(a¿)(x)) is a coboundary if and 

only if L = 2, (fc/M) = 1/2 and (a, 6) - (p2,p2Pi +Pi) or (a, 6) = (p?/(l - pi + p?), (p3 -

2p2 + 2 p i ) / ( l - p i + p 2 ) ) . 

REMARK 4. Let G be the subgroup of T generated by exp(27rz/M), <f>[x) 

= exp((2iri)/MlE{x)) be a G-valued function on X — [0,1) and T̂ , be the skew prod­

uct transformation on X x G defined by T${x,g) = (Tx,4>(x) • g). For the (pi, • • • ,p¿) 

transformation, T¿ is weakly mixing if <¡>(x) has discontinuities pi ^ ti < • • • < t„ < 1 or 

E is an interval and L ^ 3. Hence T¿ is Bernoulli and mod M normality holds almost 

everywhere. 

PROOF: Let UTi be an unitary operator on L2(X x G). Recall that the dual group of 

G consists of the trivial homomorphism 1 and 7* defined by jk(z) = z* for 1 ^ k ^ M—1. 

Hence 
L-l 

L2(X xG)=@L2(X)-zk 

k=0 
and each L2{X) • zk is an invariant subspace of Ut¿- If f{x, z) is an eigen-function with 

L-l 

eigenvalue A then f(x, z) = /*(x) • zk and 
L-l 

t^/(i,2)=^^(x)/t(Tx).r*. 
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Since T is weakly mixing, /0(2;) is a constant function, cf>k(x)fk(Tx) = Xfk(x) and XL = 1 
by the property of <p(x). Since Xcj>k(x) satisfies the conditions of Proposition 1 and Lemma 
5, the conclusion follows. D 

Now we consider the case of the (px^J-transformation, <p{x) = exp(7RZL£;(x)) and 
N 

E being an interval. To check whether lim exp(7rid„(x)) = 0 or not, consider the 
W - > ° ° N = I 

skew product transformation on [0,1) x { - 1 , 1 } defined by T^{x,z) = (Tx,<j>(x) • z). 
Then 

N N 

lim y"exp(7RID„(x)) -z = lim ^ ^ / ( 1 , 2 ) 
1 1 

where UT^ is an isometry on L2(X x { — 1,1}) induced by T$ and f(x, z) — z. Hence if T̂ , is 
N 

ergodic, then lim 52 exp(7RID„(x)) = 0 by an application of the Birkhoff Ergodic theorem 
to f(x, z) = z. If T$ is not ergodic, then there exists q(x) such that q(x) = exp(7RILP(x)) 
for some measurable set F and exp(7RIL£;(x)) — q(x)q(Tx). Furthermore, 

N . 

lim \ ^ exp(Trid„(x)) = q(x) I q(t)dp(t). 
J[O,I) 

Hence 

(i) if (a, b) = (pf, (1 -P i )p i + Pi), then 

N 

N-*oo 
lim ^exp (7RZD n (x) ) = (2pi - 1) exp(7NL ( c , d)(x)) 

where (c,d) = (pi, 1). 

(ii) If (a, 6) = (p?/(l - P l + p\), (p\ - 2p\ + 2 P l ) / ( l - P! + p 2 ) ) , then 

J ™ E E X P K W ) = ( 1

1 _ 3 p | + p 2 > 1 ) « P M M W ) 

where (c,d) = (p?/(l - p i +p 2 ) ,P i / ( l - p i +p? ) ) . 

Now we consider some spectral properties of the skew product T$(x). 

PROPOSITION 2 . Let T be an weakly mixing transformation on a probability 
space {X, p) and Hk = {h(x) | (pk(x)h(Tx) = Xh(x)} where <j>(x) is a T-valued function. 
Then the dimension of Hk is 0 or 1. For each k, there exists at most one X such that the 
dimension of Hk is 1. 

PROOF: Assume that f(x), g(x) € H$. Then 4>k(x)f{Tx) = Xf{x) and d>k(x)g(Tx) = 
Xg{x). Hence f(Tx)g{Tx) = f(x)gjx). By the ergodicity of T, f{x)~g[x) = C where C is 
constant. Thus the first assertion is proved. 
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Now we shall prove the second assertion. Assume that d>k(x)f(Tx) — A/(x) and 

4>k(x)g{Tx) = \'g{x). Hence j{Tx)g{Tx) = A • X'f(x)g~(x). By the mixing property of T, 

f(x)g(x) = C where C is constant and A • A' = 1. D 

PROPOSITION 3 . Let T be an ergodic transformation on X, G the finite sub­

group of T generated by exp(27ri/M) and <j>(x) be a G-vaiued function. Let T$ be 

the skew product transformation defined by T^(x, g) = (Tx, <f>(x) • g) on X x G. If 

(j>k(x)h(Tx) = h(x), then there exists q(x) such that the following diagram commutes 

XxG — X x G 

Q[ [Q 

X x Gk — X xGk 

where Q(x,g) = (x,g(x)gf c) and S(x,g) — (Tx,g). Hence T<j, has at least r ergodic 

components where r is the cardinality of Gk. 

PROOF: Since (<j>k{x))M(h(Tx))M = (h(x))M is equivalent to (h(Tx))M = (h(x))M 

and T is ergodic, we may assume that ( / i (x ) ) M = 1. Hence there exists a G-valued 

function q(x) such that <j>k{x)q{Tx) = q(x). For this q(x), it is easy to see that the 

diagram commutes. D 

EXAMPLE 2. Consider the (1/2, l/2)-transformation and <f>(x) = exp(7ril[1/4i3/4](x)). 

Let q(x) = exp(jril(i / a , i](i)). Since [1/4,3/4] = [1/2,1] A T - ^ l / 2 , 1 ] , ip(x) = q(x)q(Tx). 

Hence has two ergodic components. Indeed, we can give many examples in which 

has two ergodic components: For a given F, let E = F A T_1F, <j>(x) = exp(7nl£(x)) 

and q(x) = exp(7rilf (x)) . Then has two ergodic components, {(x,q(x)) : x € X} 

and {(x , — q{x)) : x G X}. 
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