
JFP 12 (4 & 5): 393–434, July & September 2002. c© 2002 Cambridge University Press

DOI: 10.1017/S0956796802004331 Printed in the United Kingdom

393

Secrets of the Glasgow Haskell Compiler
inliner

SIMON PEYTON JONES and SIMON MARLOW

Microsoft Research Ltd, 7 JJ Thompson Avenue, Cambridge CB3 0FB, UK

(e-mail: {simonpj,simonmar}@microsoft.com)

Abstract

Higher-order languages such as Haskell encourage the programmer to build abstractions by

composing functions. A good compiler must inline many of these calls to recover an efficiently

executable program. In principle, inlining is dead simple: just replace the call of a function by

an instance of its body. But any compiler-writer will tell you that inlining is a black art, full

of delicate compromises that work together to give good performance without unnecessary

code bloat. The purpose of this paper is, therefore, to articulate the key lessons we learned

from a full-scale “production” inliner, the one used in the Glasgow Haskell compiler. We

focus mainly on the algorithmic aspects, but we also provide some indicative measurements

to substantiate the importance of various aspects of the inliner.

1 Introduction

One of the trickiest aspects of a compiler for a functional language is the handling

of inlining. In a functional-language compiler, inlining subsumes several other op-

timisations that are traditionally treated separately, such as copy propagation and

jump elimination. As a result, effective inlining is particularly crucial in getting good

performance.

The Glasgow Haskell Compiler (GHC) is an optimising compiler for Haskell that

has evolved over a period of about ten years. We have repeatedly been through a

cycle of looking at the code it produces, identifying what could be improved, and

going back to the compiler to make it produce better code. It is our experience that

the inliner is a lead player in many of these improvements. No other single aspect

of the compiler has received so much attention.

This paper reports on selected algorithmic aspects of GHC’s inliner, focusing on

aspects that were not obvious to us – that is to say, aspects that we got wrong

to begin with. For the sake of concreteness we focus throughout on GHC, but we

stress that the lessons we learned are applicable to any compiler for a functional

language, and indeed perhaps to compilers for other languages too.

1.1 Overview of the compiler

GHC uses the “compilation by transformation” approach to compiling Haskell (Pey-

ton Jones & Santos, 1998). After parsing, resolving lexical scopes, and typechecking,

https://doi.org/10.1017/S0956796802004331 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004331

394 S. Peyton Jones and S. Marlow

Parse

Rename

Typecheck

Desugar

Opt1 Optn

Occurrence
analyse

Simplify

Core

Core

Back end

...

Fig. 1. Overall structure of GHC.

the Haskell source is desugared into a small, pure, explicitly-typed intermediate

language called the GHC Core language. Many Core-to-Core transformations are

applied to this intermediate form, before it is fed to the back end for code generation.

Figure 1 illustrates this structure.

Some of the Core-to-Core transformations are global, module-at-a-time passes,

such as strictness analysis (Peyton Jones & Partain, 1993), or let-floating (Peyton

Jones et al., 1996); these are depicted “Opti” in figure 1. Many other useful trans-

formations, are purely local, and are collected together into a single pass, called the

simplifier. The most important single transformation performed by the simplifier is

inlining, the focus of this paper. We often refer to the “inliner” meaning “that part

of the simplifier that deals with inlining”. There is no separate pass that deals with

inlining.

The decision whether or not to inline a function clearly depends a great deal on

how often the function is called – in particular, a very important special case is

when the function has exactly one call site. So before each pass of the simplifier,

https://doi.org/10.1017/S0956796802004331 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004331

Secrets of the Glasgow Haskell Compiler inliner 395

GHC runs an occurrence analyser that decorates each binding site with occurrence

information.

The local transformations implemented by the simplifier often cascade. In particu-

lar, inlining a function can often reveal new opportunities for (say) case elimination

or constant folding, and these can in turn make a call site more attractive for

further inlining. Accordingly, the simplifier tries hard to perform as many transfor-

mations as possible in a single pass. Despite this effort, we have found it impossible

to guarantee to complete all transformations in a single pass, so we iterate the

occurrence-analysis/simplify pass, as suggested by the inner loop-back arrow in

figure 1. We iterate the loop until the simplifier indicates that no transformations

occurred, or until some arbitrary number (currently 4) of iterations has occurred.

This entire algorithm is applied between other major passes.

1.2 Contributions of the paper

Most papers about inlining focus on how to choose whether or not to inline a

function called from many places. This is indeed an important question, but we

have found that we had to deal with quite a few other less obvious, but equally

interesting, issues.

Specifically, we describe the following, whose order of presentation roughly follows

the flow of figure 1:

Occurrence analysis. At first we were very conservative about inlining recursive

definitions; that is, we did not inline them at all. But we found that this strategy

sometimes behaves very badly. After a series of failed hacks we developed a

simple, obviously-correct modification to the occurrence analyser, that does the

job beautifully (section 3).

Name capture. A major issue for any compiler, especially for one that inlines heavily,

is name capture. Our initial brute-force solution involved inconvenient plumbing,

but we have now evolved a simple and effective alternative, which we describe in

section 4.

Three-phase inlining. Because the compiler does so much inlining, it is important to

get as much as possible done in each pass over the program. Yet one must steer

a careful path between doing too little work in each pass, requiring extra passes,

and doing too much work, leading to an exponential-cost algorithm. GHC now

identifies three distinct moments at which an inlining decision may be taken for a

particular definition, as we discuss in section 5.

Evaluation state. When inlining an expression it is important to retain the expres-

sion’s lexical environment, which gives the bindings of its free variables. But at

the inline site, the compiler might know more about the evaluation state of some

of those free variables – most notably, a free variable might be known to be (say)

an evaluated pair at the inline site, but not at its original definition. Some key

transformations make use of this extra information, and lacking it will cause an

extra pass over the code. We describe how to exploit our name-capture solution

to support accurate tracking of both lexical and evaluation-state environments in

section 6.

https://doi.org/10.1017/S0956796802004331 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004331

396 S. Peyton Jones and S. Marlow

Implementation sketch. To make the story more concrete, we sketch our implemen-

tation in some detail, give some indicative performance measurements (sections 6

and 7).

None of the algorithms we describe is individually very surprising. Perhaps because

of this, the literature on the subject is very sparse, and we are not aware of published

descriptions of any of our algorithms. Our contribution is to abstract some of what

we have learned, in the hope that we may help others avoid the mistakes that we

made.

2 Preliminaries

We begin by setting the scene. First, we say exactly what we mean by “inlining”

(section 2.1) and introduce the factors that affect the inlining decision (section 2.2).

Then we describe the GHC Core language (section 2.3).

2.1 What is inlining?

Given a definition x = E, one can inline x at a particular occurrence by replacing

the occurrence by E. (We use upper case letters, such as “E”, to stand for arbitrary

expressions, and “==>” to indicate a program transformation.) For example:

let { f = \x -> x*3 } in f (a + b) - c

==>

(a+b)*3 - c

We have found it useful to identify three distinct transformations that collectively

implement what we informally describe as “inlining”:

• Inlining itself replaces an occurrence of a let-bound variable by (a copy of)

the right-hand side of its definition. Inlining f in the example above goes like

this:

let { f = \x -> x*3 } in f (a + b) - c

==> [inline f]

let { f = \x -> x*3 } in (\x -> x*3) (a + b) - c

Notice that not all the occurrences of f need be inlined, and hence that the

original definition of f must, in general, be retained.

• Dead code elimination discards bindings that are no longer used; this usually

occurs when all occurrences of a variable have been inlined. Continuing our

example gives:

let { f = \x -> x*3 } in (\x -> x*3) (a + b) - c

==> [dead f]

(\x -> x*3) (a + b) - c

• β-reduction simply rewrites a lambda application (\x->E) A to let {x = A}

in E. Applying β-reduction to our running example gives:

https://doi.org/10.1017/S0956796802004331 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004331

Secrets of the Glasgow Haskell Compiler inliner 397

(\x -> x*3) (a + b) - c

==> [beta]

(let { x = a+b } in x*3) - c

The first of these is the tricky one; the latter two are easy. In particular, beta

reduction simply creates a let binding. In a lazy, purely functional language, inlining

and dead-code elimination are both unconditionally valid, or meaning-preserving.

(Neither is valid, in general, in a language permitting side effects, such as Standard

ML or Scheme.) In particular, notice that inlining is valid, regardless of

• the number of occurrences of x,

• whether or not the binding for x is recursive,

• whether or not E has free variables (that is, inlining of nested definitions is

perfectly fine), and

• the syntactic form of E (notably, whether or not it is a lambda abstraction).

Concerning the last of these items, notice that we (unconventionally) use the term

“inline” equally for both functions and non-functions. Continuing the example, x

can now be inlined, and then dropped as dead code, thus:

(let { x = a+b } in x*3) - c

==> [inline x]

(let { x = a+b } in (a+b)*3) - c

==> [dead x]

(a+b)*3 - c

In this case, x is used exactly once, but we sometimes also inline non-functions that

are used several times. Consider:

let x = (a,b)

in

...x...(case x of { (p,q) -> p+1 })...

By inlining x we can then eliminate the case to give

let x = (a,b)

in

...x...(a+1)...

In a similar way (when given bindings such as x=y), inlining subsumes copy propa-

gation.

2.2 Factors affecting inlining

To say that inlining is valid does not mean that it is desirable. Inlining might increase

code size, or duplicate work, so we need be careful about when to do it. There are

three distinct factors to consider:

• Does any code get duplicated, and if so, how much? For example, consider

let f = \v -> ...big... in (f 3, f 4)

https://doi.org/10.1017/S0956796802004331 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004331

398 S. Peyton Jones and S. Marlow

where “...big...” is a large expression. Then inlining f would not duplicate

any work (f will still be called twice), but it will duplicate the code for f’s body.

Bloated programs are bad (increased compilation time, decreased cache hit

rates), but inlining can often reduce code size by exposing new opportunities

for transformations. GHC uses a number of heuristics to determine whether

an expression is small enough to duplicate.

• Does any work get duplicated, and if so, how much? For example, consider

let x = foo 1000 in x+x

where foo is expensive to compute. Inlining x would result in two calls to foo

instead of one. Work can be duplicated even if x only appears once:

let x = foo 1000

f = \y -> x * y

in ...(f 3)..(f 4)...

If we inline x at its (single) occurrence site, foo will be called every time f is.

In general, we must be careful when inlining inside a lambda. It is not hard to

come up with examples where a single inlining that duplicates work gives rise

to an arbitrarily large increase in run time. GHC is therefore very conservative

about work duplication. In general, GHC never duplicates work unless it is

sure that the duplication is a small, bounded amount.

• Are any transformations exposed by inlining? Often this is the case, as illustrated

in section 2.1. In general it is hard to predict whether any new transformations

will be exposed and, like other compilers, we use a range of heuristics to

answer this question (section 7).

These considerations imply that inlining is not an optimisation “by itself”. The direct

effects of careful inlining are small: it may duplicate code or a constant amount of

work, and usually saves a call or jump (albeit not invariably – see the example in the

last bullet above). It is the indirect effects that we are really after: the main reason

for inlining is that it often exposes new transformations by bringing together two

code fragments that were previously separate. Thus, in general, inlining decisions

must be influenced by context.

2.2.1 Trivial expressions

Sometimes we can be absolutely certain that inlining a variable will be beneficial:

namely when the variable is bound to a trivial expression. A trivial expression is:

• A variable, or

• A literal, or

• A type application, where the function is trivial.

It is always good to inline a trivial expression: no code is duplicated, no work is

duplicated, and new transformations may be enabled.

We mention the type-application case only for completeness. It is relevant only in

a language that supports type abstraction and appplication, and then only if types

https://doi.org/10.1017/S0956796802004331 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004331

Secrets of the Glasgow Haskell Compiler inliner 399

are erased at run time, so that type application comes for free. This is the case for

GHC.

2.2.2 Work duplication

If x is inlined in more than one place, or inlined inside a lambda, we have to worry

about work duplication. When will such work duplication be bounded? Answer: at

least in the cases when x’s right-hand side is:

• A trivial expression.

• A constructor application.

• A lambda abstraction.

• An expression that is sure to diverge.

Constructor applications require careful treatment. Consider:

x = (f y, g y)

h = \z -> case x of

(a,b) -> ...

It would plainly be a disaster, in general, to inline x inside the body of h, since

that would potentially duplicate the calls to f and g. Yet we want to inline x so

that it can cancel with the case. GHC therefore maintains the invariant that every

let-bound constructor application has only arguments that can be duplicated with

no cost: variables, literals, and type applications. We call such arguments trivial

expressions, so the invariant is called the trivial-constructor-argument invariant. Once

established, this invariant is easy to maintain (see section 7.1).

The last case, that of divergent computations, is more surprising, but it is useful

in practice. Consider:

sump = \xs ->

let

fail = error ("sump" ++ show xs)

in let rec

go = \xs ->

case xs of

[] -> 0

(x:xs) -> if x<0 then fail

else x + go xs

in

go xs

Here error is the standard Haskell function that prints an error message and brings

execution to a halt. Semantically, its value is just ⊥, the divergent value. In this

example, sump adds up the elements of a list, but reports an error if any element is

negative. As it stands, a closure for fail will be allocated every time sump is called.

It is perfectly OK to inline fail, because if fail is ever called, execution is going

to halt anyway, so there is no work-duplication issue. If we do that, no closure is

https://doi.org/10.1017/S0956796802004331 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004331

400 S. Peyton Jones and S. Marlow

allocated; instead, error is called directly if an element turns out to be less than

zero.

GHC has a predicate whnfOrBot that identifies expressions that are in WHNF or

are certainly divergent:

whnfOrBot :: Expr -> Bool

One could easily imagine extending whnfOrBot to cover cases where a small amount

of work other than allocation is duplicated, such as a few machine instructions.

2.3 The GHC core language

GHC is itself written in Haskell, so we define the core language by giving its data

type definition in Haskell:

type Program = [Bind]

-- Bindings

data Bind = NonRec Var Expr

| Rec [(Var, Expr)]

-- Expressions

data Expr = Var Var

| Const Const

| App Expr Expr

| Lam Var Expr

| Let Bind Expr

| Case Expr Var [Alt]

| Note Note Expr

-- Case alternatives

type Alt = (Const, [Var], Expr)

-- Constants

data Const = Literal Literal

| DataCon DataCon

| PrimOp PrimOp

| DEFAULT

-- Variables

data Var = MkVar String Unique

The Core language consists of the lambda calculus augmented with let-expressions

(both non-recursive and recursive), case expressions, data constructors, literals, and

primitive operations. In presenting examples we will use an informal, albeit hopefully

clear, concrete syntax. We will feel free to use infix operators, and to write several

https://doi.org/10.1017/S0956796802004331 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004331

Secrets of the Glasgow Haskell Compiler inliner 401

bindings in a single non-recursive let-expression as shorthand for a sequence of

let-expressions.

A program (Program) is simply a sequence of bindings, in dependency order. Each

binding (Bind) can be recursive or non-recursive, and the right-hand side of each

binding is an expression (Expr).

The Expr data type has seven constructors, of which application (App), lambda

abstraction (Lam), and let-expressions (Let) should be self-explanatory.

An expression may be a simple expression (constructor Var), containing a variable

(of type Var)1. A variable (data type Var) consists of its name (a string) and a unique

number; the name is used mostly for printing, and the unique number is for fast

comparisons. The name by itself is not necessarily unique; in fact during compilation

when it is necessary to change the unique number of a variable (see section 4), the

original name is retained, so that when dumping out intermediate code it is possible

to relate variable names back to the original source program.

A constant expression is of the form Const c, where c is of type Const. The

Const type includes literals, data constructors and primitive operators; the fourth

case of the Const type, DEFAULT is illegal in an Expr.

The Note form of Expr allows annotations to be attached to the tree. The only

impact on the inliner is discussed in section 6.5.

Case expressions (Case) contain a list of alternatives, each of which is a triple of

a constant, list of binders, and right-hand side. The number of binders must match

the arity of the constant. The constant itself can be DEFAULT, Literal or DataCon,

but it must not be PrimOp2.

One other point about Case expressions is unusual: Var argument to Case.

Consider the following Core expression,

case (reverse xs) of ys {

(a:as) -> ys

[] -> error "urk"

}

The unusual part of this construct is the binding occurrence of “ys”, immediately

after the “of” – the Var argument to the Case constructor records this unusual

binder. The semantics is that ys is bound to the result of evaluating the scrutinee,

reverse xs in this case, which makes it possible to refer to this value in the

alternatives. We could instead insist that a case expression should only scrutinise

a variable, using a let-binding to bind a non-variable scrutinee, but that would

make it less structurally apparent that the scrutinee is sure to be evaluated (let is

non-strict). In any case, this detail has no impact on the rest of this paper – indeed,

1 Note: Haskell allows a data constructor and a (perhaps-unrelated) type to have the same name.
2 Philosophical aside. It would be possible to have a more refined type structure that did not have these

side-conditions about what Const values can appear where, but we found that doing so made the code
of the compiler signficantly longer, without really improving its robustness. There are many constraints
on a Core program that are not statically checkable – for example, that every variable occurrence
is in scope, and that the program is well-typed – so GHC optionally runs a type-checker after each
optimisation phase. This type checker also checks the side conditions on Const values.

https://doi.org/10.1017/S0956796802004331 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004331

402 S. Peyton Jones and S. Marlow

we omit the extra binder in our examples – but we have found that it makes several

transformations more simple and uniform, so we include it here for the sake of

completeness.

GHC’s actual intermediate language is very slightly more complicated than that

given here. It is an explicitly-typed language based on System Fω , and supports

polymorphism through explicit type abstraction and application. It turns out that

doing so adds only one new constructor to the Expr type, and adds nothing to the

substance of this paper, so we do not mention it further. The main point is that this

paper omits no aspect essential to a full-scale implementation of Haskell.

2.4 Separate compilation

GHC is capable of wholesale inlining across module boundaries. Whenever GHC

compiles a module M it writes an “interface file”, M.hi, that contains GHC-specific

information about M, including the full Core-language definitions for any top-level

definitions in M that are smaller than a fixed threshold. (This threshold is chosen so

that few, if any, larger functions could possibly be inlined, regardless of the calling

context.) When compiling any module, A, that imports M, GHC reads in M.hi, and

is thereby equipped to inline calls in A to M’s exports. Since the definition of a

function exported from M might refer to values not exported from M, GHC dumps

into M.hi the transitive closure of all (sufficiently small) functions reachable from

M’s exports. Values that are not exported from M may not be mentioned directly by

the programmer, but may nevertheless be inlined by the inliner.

The consequence of all this is that A may need to be recompiled if M changes. There

is no avoiding this, except by disabling cross-module inlining (via a command-line

flag). GHC goes to some trouble to add version stamps to every inlining in M.hi so

that it can deduce whether or not A really needs to be recompiled.

3 The occurrence analyser

It is clear that whether to inline x depends a great deal upon how often x occurs

in its scope. Before each run of the simplifier, GHC therefore runs an occurrence

analyser, that performs two main functions:

• It decorates each binding site with an indication of how the bound variable

occurs.
• It performs a dependency analysis of recursive binding groups, splitting them

into their strongly-connected components.

This is all perfectly straightforward – we summarise the occurrence information

we actually gather in section 3.1. However, mutually recursive definitions present

the inliner with a bit of a problem: the inliner may fail to terminate if it inlines

them in an un-restrained way (section 3.3). The main contribution of this section

is to describe the simple new approach we have developed, which allows recursive

definitions to be inlined without risking divergence. Our approach is by no means

the only one possible — we review some others in section 3.6 — but it is simple,

effective, and (so far as we know) not previously reported.

https://doi.org/10.1017/S0956796802004331 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004331

Secrets of the Glasgow Haskell Compiler inliner 403

3.1 Simple occurrence analysis

The basic algorithm of the occurrence analyser is extremely simple. It performs

a single bottom-up pass that annotates each binder with an indication of how it

occurs, chosen from the following list:

Dead. The binder does not occur at all. For a let binder (whether recursive

or not), the binding can be discarded, and the occurrence analyser does so

immediately, so that it does not need to analyse the right-hand side(s).

Once. The binder occurs exactly once, and that occurrence is not inside a lambda,

nor is a constructor argument. Inlining is unconditionally safe; it duplicates

neither code nor work. section 2.2 explained why we must not inline an arbitrary

expression inside a lambda, and also described the trivial-constructor-argument

invariant.

OnceInLam. The binder occurs exactly once, but inside a lambda. Inlining will not

duplicate code, but it might duplicate work (section 2.2).

ManyBranch. The binder occurs at most once in each of several distinct case

branches, and none of these occurrences is inside a lambda. For example:

case xs of

[] -> y+1

(x:xs) -> y+2

In this expression, y occurs only once in each case branch. Inlining y may duplicate

code, but it will not duplicate work.

Many. The binder may occur many times, including inside lambdas. Variables

exported from the module being compiled are also marked Many, since the compiler

cannot predict how often they are used.

LoopBreaker. This binder breaks a mutually-recursive group, so do not inline it

at all. The need for this item, and how we compute it, is the subject of much of

the rest of this section.

Notice that we have three variants of “occurs once” (Once, ManyBranch, and

OnceInLam). We have found all three to be important.

Some lambdas are certain to be called at most once. Consider:

let x = foo 1000

f = \y -> x+y

in case a of

[] -> f 3

(b:bs) -> f 4

Here f cannot be called more than once, so no work will be duplicated by inlining

x, even though its occurrence is inside a lambda. Hence, it would be better to give

x an occurrence annotation of Once, rather than OnceInLam.

We call such lambdas one-shot lambdas, and mark them specially. They certainly

occur in practice – for example, they are constructed as join points by the case-

of-case transformation (Peyton Jones & Santos, 1998). We are (still) working on a

https://doi.org/10.1017/S0956796802004331 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004331

404 S. Peyton Jones and S. Marlow

type-based analysis for identifying one-shot lambdas (Wansbrough & Peyton Jones,

1999). Details of this analysis are beyond the scope of this paper, but our point here

is that they are beautifully easy to exploit: the occurrence analyser simply ignores

them when it is computing its “inside-lambda” information.

3.2 Ensuring termination

Inlining, together with beta reduction, corresponds closely to compile-time evaluation

of the program, so we must clearly be concerned about ensuring that the compiler

terminates. Non-termination may arise in two distinct ways:

Recursive bindings. If a recursively-bound variable is inlined at one of its occur-

rences, that will introduce a new occurrence of the same variable. Unless restricted

in some way, inlining could go on for ever.

Recursive data types. Consider the following Haskell definition for loop:

data T = C (T -> Int)

g = \y -> case y of

C h -> h y

loop = g (C g)

Here, g is small and non-recursive, so when processing g (C g), g will be inlined.

But the inlined call very soon rewrites to g (C g), which is just the expression we

started with.

The problem here is that the data type T is recursive, and it appears contravari-

antly in its own definition (Howard, 1996).

Of these two forms of divergence, the former is an immediate and pressing problem,

since almost any interesting Haskell program involves recursion.

In contrast, the latter situation is rather rare, and (embarrassingly) GHC can still

be persuaded to diverge by such examples. The most straightforward solution is to

spot such contravariant data types, and disable the case-elimination transformation

case (C g) of { C h -> ...h... }

==>

...g...

The question of spotting contravariant data types is complicated by the fact that

Haskell data types can be parameterised and mutually recursive. The MLj compiler

(Benton et al., 1998) restricts data types declarations somewhat, but does perform

the analysis for exactly this reason.

Before discussing recursive bindings, it is worth noting two other possible sources

of divergence that a Haskell compiler does not have to deal with. First, in an

untyped setting (such as a Scheme compiler) one can easily construct terms such as

(\x -> x x) (\x -> x x)

https://doi.org/10.1017/S0956796802004331 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004331

Secrets of the Glasgow Haskell Compiler inliner 405

This expression is not explicitly recursive, but it nevertheless reduces to itself.

However, the strong-normalisation theorem for Fω tells us that such terms simply

must be ill-typed.

Secondly, side effects (which Haskell lacks) can create a recursive structure. For

example3:

(let ((foo a-special-value)

(bar a-special-value))

(begin

(set! foo (lambda ..bar..))

(set! bar (lambda ..foo..))

body))

Here, foo and bar are mutable locations, each of which is updated to refer to the

other.

3.3 The problem

From now on we focus our attention on recursive bindings. We call a group of

bindings wrapped in rec a recursive group. Unrestricted inlining of non-recursive

bindings is safe, but unrestricted inlining of recursive bindings might lead to non-

termination. One obvious thing to do, therefore, is to ensure that each recursive

group really is recursive. To discover this, we regard each variable in the group

as a node, and we record an edge from f to g if f’s right-hand side mentions

g (so f depends on g). The resulting collection of nodes and edges describes a

graph, called the dependency graph, whose strongly connected components are the

smallest possible recursive groups (Peyton Jones, 1987). To exploit this observation,

GHC constructs the dependency graph for each let rec, and analyses its strongly-

connected components. If there is more than one component, the let rec is split into

a nest of recursive and non-recursive lets. GHC performs this analysis regularly;

quite often, groups that were mutually-recursive fall into separate strongly-connected

components as a result of earlier transformations.

So much is well known. But what do we do when we are faced with a genuinely

recursive group? The simplest thing to do is not to inline any recursively-bound

variables at all, and that is what earlier versions of GHC did. But this conserva-

tive strategy loses obviously-useful optimisation opportunities. Consider a recursive

group of bindings:

let rec

f = \ x -> ...g...

g = \ y -> ...f...

in

...f...

3 Thanks to Manuel Serrano for pointing this out.

https://doi.org/10.1017/S0956796802004331 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004331

406 S. Peyton Jones and S. Marlow

By convention, other variables of interest, such as g in this case, are assumed not

to be free in ...f.... Since only f is called outside the rec, we can inline g at its

unique call site to give:

let rec

f = \ x -> ...(...f...)...

in

...f...

Here, the gain is modest. But sometimes inlining in recs is critically important.

Consider this:

let

eq = ...

in

let rec

d = (eq, neq)

neq = \a b -> case d of

(e,n) -> not (e a b)

in

...

GHC generates code quite like this for an “Eq dictionary”. A “dictionary” is a

bundle of related “methods” for operating on values of a particular type. Here, the

Eq dictionary, d, is a pair of methods (ordinary functions), eq and neq; the intention

is that eq is a function that determines whether its arguments are equal, and neq

determines whether they are unequal.

In this example, the neq method is specified by selecting the eq method from the

dictionary d, calling it, and negating its result. You might think that it would be

more straightforward to call eq directly, but this code is generated by the compiler

from class and instance declarations in the Haskell source code. We found that

it was very hard, in general, to call the appropriate method directly; it was much

easier to allow the front end to generate naive code, and let the simplifier take care

of the rest.

In this particular example, d and neq are genuinely mutually recursive. Yet, if d

were inlined in the body of neq, the case would cancel with the pair constructor,

leading to the following:

let

eq = ...

neq = \a b -> not (eq a b)

d = (eq, neq)

in

...

Now everything is non-recursive, the definition of neq is improved, and inlining

opportunities in the rest of the program are improved.

This is not an isolated or artificial example. Compiling Haskell’s type-class-based

https://doi.org/10.1017/S0956796802004331 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004331

Secrets of the Glasgow Haskell Compiler inliner 407

overloading, using the dictionary-passing encoding sketched above, gives rise to

pervasive recursion through these dictionaries. Failing to unravel the recursion has

a devastating effect on performance, because overloaded functions include equality,

ordering, and all numeric operations, some of which show up in almost any inner

loop. We originally went to great lengths in the front end to avoid generating

unnecessary dictionary recursion but, no matter how hard we tried, some unnecessary

recs still showed up. Our new approach uses a much simpler translation scheme,

along with an inliner that does a good job of inlining rec-bound variables. This

approach has the merit that it works equally well for complex recursions written by

the programmer, though admittedly these are much less common.

3.4 The solution

The real problem with recursive bindings is that they can make the inliner fall into

an infinite loop. The key insight is this:

• The inliner cannot loop if every cycle in the dependency graph is broken by a

variable that is never inlined.

The conservative scheme works by never inlining any recursively-bound variable,

but that is over-kill, as we saw in the example in section 3.3:

rec

d = (eq, neq)

neq = \a b -> case d of

(e,n) -> not (e a b)

we obtained much better results by inlining d (but not neq) than by inlining neither.

The dependency graph for this group forms a circle, thus:

d neq

To prevent the inliner diverging, it suffices to choose either of d or neq, and refrain

from inlining it. In a more complicated situation, however, it might not be at all

obvious which variable(s) suffice to break all the loops. For example, consider this

more complex dependency graph:

f

h

g q

p

https://doi.org/10.1017/S0956796802004331 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004331

408 S. Peyton Jones and S. Marlow

In this graph, we can break all the loops by picking g alone, or f and q, or h and p, or

a variety of other pairs. To exploit this idea, we enhance the standard rec-breaking

dependency analysis described above, in the following way. For each rec group, we

construct its dependency graph, and then execute the following algorithm:

1. Perform a strongly-connected component analysis of the dependency graph.

2. For each strongly-connected component of the graph, perform the following

steps, treating the components in topologically-sorted order; that is, deal first

with the component that does not refer to any of the other components, and

so on:

(a) If the component is a singleton that does not depend on itself, do nothing.

(b) Otherwise, choose a single variable, the loop-breaker, that will not be inlined.

This choice is made using a heuristic we discuss shortly (section 3.5).

(c) Take the dependency graph of the component (a subset of the original

graph), and delete all the edges in this graph that terminate at the loop-

breaker.

(d) Repeat the entire algorithm for this new dependency graph, starting with

Step 1.

The algorithm is sure to terminate, because each iteration deletes at least one edge.

Its worst-case efficiency is undoubtedly poor, and one could imagine various ways

to improve it; for example, it may be possible to modify the existing strongly-

connected component analysis after deleting some edges, rather than starting again

from scratch. There is much to be said for simplicity, however, and so far we have

not found a case where the algorithm behaves badly enough to be noticed.

Here is an example of the algorithm in action: consider the five-node dependency

graph given above. It forms a single strongly-connected component. Suppose we

pick q as a loop breaker; we delete arcs leading to it and perform the strongly-

connected component analysis again. The reduced dependency graph has three

strongly-connected components, namely {p}, {f, g, h}, and {q}

fh

g

qp

(We use dashed arcs for the arcs that are deleted in step (c).) Suppose now that we

choose f as the loop breaker. Now we have no strongly connected components left

in the reduced graph:

https://doi.org/10.1017/S0956796802004331 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004331

Secrets of the Glasgow Haskell Compiler inliner 409

fh

g

qp

Notice that the only forward arcs are the dashed arcs leading to loop breakers.

Reconstructing the recursive group in topologically sorted order (left to right in the

diagrams) gives the following, where the “*” indicates the loop breakers:

rec

p = ...q...

h = ...f...

g = ...h...

f* = ...g...

q* = ...g...

The result of the algorithm is an ordered list of bindings with the following

property: the only forward references are to loop-breakers. The bindings are still, of

course, mutually recursive, but all the non-loop-breakers can be treated exactly like

non-recursive lets so far as the inliner is concerned: their definition occurs before

any of their uses, and inlining them cannot cause non-termination. The beauty

of the loop-breaking algorithm is that the treatment of recursive lets is thereby

factored into two independent pieces: first cut the loops, and then treat recursive

and non-recursive bindings uniformly.

3.5 Selecting the loop breaker

There are two criteria that one might use to select a loop breaker:

• Try not to select a variable that it would be very beneficial to inline.

• Try to select a variable that will break many loops.

GHC currently uses only the first of these criteria. The second is a bit tricky to

predict, and we have not explored using it. To evaluate the first criterion, GHC

crudely “scores” each variable by how keen GHC is to inline it. Specifically, we pick

the first of the following criterion that applies to the binding in question:

Score = 4, if the right-hand side is trivial (section 2.2.1). In this case the binding

will certainly be inlined.

Score = 3, if the right-hand side is a constructor application. Thus, we avoid select-

ing “d” in the example in section 3.3, because its right-hand side is a pair.

Score = 2, if the variable is marked with an INLINE pragma, indicating that the

programmer was keen to inline it.

https://doi.org/10.1017/S0956796802004331 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004331

410 S. Peyton Jones and S. Marlow

Score = 2, if the variable occurs just once (counting both the right- hand sides of

the rec itself and the body of the let). The variable is likely to be inlined if it

occurs only once.

Score = 1, if the variable has rewrite rules or specialisations attached to it. Details

of this are beyond the scope of this paper.

Score = 0, otherwise.

Then we pick a loop breaker by arbitrarily choosing one of the variables with lowest

score. While this scoring mechanism is very crude, it seems adequate. In practice,

we have never come across a rec in which a different choice of loop breaker would

have made a significant difference. This amounts to anecdotal evidence only; we

have not tried systematically to measure the effectiveness of loop-breaker choice.

3.6 Other approaches

A much more common approach to termination, taken by both Serrano (1997) and

Wadell & Dybvig (1997), is to bound both the effort that the inliner is prepared

to invest, and the size of the expression it is prepared to build, when inlining a

particular call. If either limit is exceeded, the inliner abandons the attempt to inline

the call. Bounding effort deals with expressions, such as (\x->x x)(\x->x x), that

do not grow, but do not terminate either. The effort bound is typically set quite high,

to allow for cascading transformations, so an effort bound alone might produce very

large residual programs; that is why the size bound is necessary as well.

A variant of the approach retains a stack of inlinings that have been begun but

not completed. When examining a call, the function is not inlined if an inlining

of that same function is already in progress, or “pending”. In effect, that function

becomes the loop breaker, but it is chosen dynamically rather than statically.

This approach has the very great merit that it deals readily with all forms of

non-termination: recursive functions, recursive data types, untyped languages and

side effects, for example, all cause no problems. Even pathological programs that are

not actually recursive, but which grow exponentially if one unconditionally inlines

all non-recursive functions, can be dealt with.

The difficulty with this approach in our setting is that the simplifier is applied

repeatedly, a dozen times or more, between applying other transformations (strictness

analysis, let-floating, etc). If each iteration accepts a given amount of code growth,

or effort applied, then each iteration might unroll a recursive function further. The

effort/size bound mechanism uses an auxiliary parameter (the effort/size budget)

that is not recorded in the tree between successive iterations of the simplifier; it

records the state of the inliner itself. Appel solves this by adding a fudge factor that

makes successive applications of the inliner less and less keen to inline (parameter

“E” in Appel, 1992, p. 92) — but that means that whole-module transformations

applied late in the day are less likely to have their results exploited by the inliner.

Our approach does not have this problem: applications of the simplifier will

eventually terminate. However, our more static analysis required that recursive

functions and recursive data types be handled differently, which is undesirable. And

yet more would be needed in an untyped or impure setting.

https://doi.org/10.1017/S0956796802004331 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004331

Secrets of the Glasgow Haskell Compiler inliner 411

A quite separate, complementary, approach to inlining recursive functions is var-

iously described as “loop headers” (Appel, 1994), “labels-inline” (Serrano, 1997),

“lambda-dropping” (Danvy & Schultz, 1997), and “the static argument transfor-

mation” (San95). The common idea is to turn a recursive function definition into

a non-recursive function containing a local, recursive definition. Thus we can, for

example, transform the standard recursive definition of map:

map = \f xs -> case xs of

[] -> []

(x:xs) -> f x : map f xs

into the following non-recursive definition:

map = \f xs ->

let mp = \xs -> case xs of

[] -> []

(x:xs) -> f x : mp xs

in mp xs

With the original definition, inlining would simply unroll a finite number of iterations

of map. With the new definition, inlining map creates a new, specialised function

definition for mp into which the particular f used at the call site can be inlined,

perhaps resulting in better code – claimed benefits range from 1% to 10%. The

overall effect is much better than that achieved by simply unrolling the original

definition of map; unrolling a loop reduces the overheads of the loop itself, whereas

creating a specialised function, mp, reduces the cost the computation in each iteration

of the loop.

The static argument transformation may indeed be useful, but it is orthogonal to

the main thrust of this paper. It is best considered as a separate transformation,

performed on map before inlining is begun, that enhances the effectiveness of inlining.

Another orthogonal question is that of loop unrolling. A loop breaker could be

inlined a fixed number of times to gain the effect of loop unrolling.

Identifying loop breakers can be useful for other purposes besides guiding the

inliner. Compilers that support pre-emptive concurrency sometimes require that a

garbage-collection safe point breaks every loop, and loop-breaker information can

clearly be used to identify where such safe points must be inserted. The SML NJ

compiler does exactly this, using an (unpublished) branch and bound algorithm,

although it does not use the information to guide inlining.

3.7 Results

It is hard to offer convincing measurements for the effectiveness of the loop-breaker

algorithm, because GHC is now built in the expectation that recs that can be

broken will be. Nevertheless, Table 1 gives some indicative results.

For a deterministic measure of runtime, we use the amount of memory alloca-

tion performed by the compiled Haskell program. For Haskell programs, memory

allocation tends to vary reasonably linearly with execution time.

https://doi.org/10.1017/S0956796802004331 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004331

412 S. Peyton Jones and S. Marlow

Table 1. Effect on total allocation of switching off the loop-breaker algorithm

Allocations No libs (%) Libs too (%)

Mean +23 +78

Min −15 0

Max +200 +1125

To measure the effects of switching the loop-breaker algorithm off, we arranged to

mark every rec-bound variable as a loop breaker. In the results table, the “Mean”

row shows the geometric mean of the ratio between the switched-off version and

the baseline version – we use a geometric mean because we are averaging ratios

(FW86). The “Min” and “Max” rows show the most extreme ratios we found.

The effects are dramatic. The column headed “No libs” has the loop-breaking

algorithm switched off when compiling the application, but not when compiling the

standard libraries. The column “Libs too” shows the effect of switching off the loop-

breaking algorithm when compiling the standard libraries as well. The importance

of the libraries is that they contain implementations of arithmetic over basic types;

if that is compiled badly then performance suffers horribly. (We are investigating

the strange −15% figure, which suggests that switching off loop breakers improved

at least one program.)

3.8 Summary

In retrospect, the algorithm is entirely obvious, yet we spent ages trying half-baked

hacks, none of which quite worked, before finally biting the bullet and finding it

quite tasty. It is more likely to be important for compilers for lazy languages than

for strict ones, because only non-strict languages allow recursive data structures, and

it is there that the most important performance implications show up. However, as

our first example demonstrated, even where no data structures are involved, useful

improvements can be had.

4 Name capture

We now turn our attention to the inliner proper, beginning with the tiresome but

pervasive problem of name capture. It is well known that any transformation-based

compiler must be concerned about name capture (Barendregt, 1985). Consider, for

example:

let x = a+b in

let a = 7 in

x+a

It is obviously quite wrong to inline x to give:

https://doi.org/10.1017/S0956796802004331 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004331

Secrets of the Glasgow Haskell Compiler inliner 413

let a = 7 in

(a+b) + a

because the a that was free in x’s right-hand side has been captured by the let

binding for a.

4.1 The sledge hammer

Earlier versions of GHC used a brutal approach to avoid the name-capture problem:

during inlining, GHC would simply rename, or clone, every single bound variable,

to give:

let s796 = 7

in (a+b) + s796

This renaming made use of a supply of fresh names that, in this example, has

arbitrarily renamed a to s796. This approach suffers from two disadvantages:

• It allocates far more fresh names than are actually necessary, and there is sure

to be a compile-time performance cost to this.

• Plumbing the supply of fresh names to the places those names are required is

sometimes very painful.

Why is there a compile-time performance cost to the sledge-hammer approach?

First, because a variable is a structure containing a name; to rename the variable we

must copy the structure, inserting the new name. Secondly, the substitution mapping

old names to new names becomes larger. Lastly, if the substitution is empty we can

sometimes avoid looking at an expression or type at all – but if all names are cloned

the substitution is never empty.

If the compiler were written in an impure language, fresh names could be allocated

by side effect, but GHC is written in Haskell, which does not have side effects. Using

the trees of Augustsson et al. (1994) is the best solution we know of, but it still

involves plumbing a tree of fresh names everywhere they might be needed. Worse, the

fresh names usually aren’t needed, but the tree is nevertheless built. This unnecessary

work is deeply irritating. Finally, even if we were not worried about performance,

it is sometimes extremely painful to get the name supply to where it is needed. For

example, in a typed intermediate language it should be possible to have a function:

exprType :: Expr -> Type

that figures out the type of an expression. But suppose the expression is something

like:

filter Int pred xs

The function filter has the polymorphic type

filter :: forall a. (a -> Bool) -> [a] -> [a]

So to figure out the type of the subexpression (filter Int) we must instantiate

filter’s type, substituting Int for a. Oh no! Substitution! That can, in general,

give rise to name capture. So we need to feed a name supply to exprType:

https://doi.org/10.1017/S0956796802004331 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004331

414 S. Peyton Jones and S. Marlow

exprType :: NameSupply -> Expr -> Type

This “solution” is deeply unattractive, and the situation is only different in its

cosmetics if the name supply is hidden in a monad. Something better is required.

4.2 The rapier

Suppose we write the call subst M [E/x] to mean the result of substituting E for

x in M. The standard rule for substitution (Barendregt, 1985) when M is a lambda

abstraction is:

subst (λx.M) [E/x] = λx.M

subst (λx.M) [E/y] = λx.(subst M [E/y])

if x does not occur free in E

If the side condition does not hold, one must rename the bound variable x to

something else. The brute-force solution does this renaming regardless.

Suppose that we lacked a name supply, but instead knew the free variables of E.

Then we could test the side condition easily and, in the common case where there is

no name capture, find that there was no need to rename x. But what if x was free

in E? Then we need to come up with a fresh name for x that is not free in E. A

simple approach is to try a variant of x, say “x1”. If that, too, is free in E, try “x2”,

and so on.

When we finally discover a name, xn, that is not free in E, we can augment

the substitution to map x to xn and apply this substitution to M, the body of the

lambda. In general, then, we must simultaneously substitute for several variables at

once.

To make this work at all, though, we need to know the free variables of E, or,

more generally, the free variables of the range of the substitution. One way to find

this is simply to compute the free variables directly from E, but if E is large this

might be costly. However, it suffices to know any superset of these free variables.

One obvious choice is the set of all variables that are in scope. If we made this

choice, then we would end up renaming any bound variable for which there was an

enclosing binding. We call this the no-shadowing strategy, for obvious reasons. The

no-shadowing strategy will rename some variables when it is not strictly necessary

to do so, but it has the desirable property of idempotence: a complete pass of the

simplifier that happens to make no transformations will clone no variables. This is a

good thing. Usually, some parts of the program being compiled are fully-transformed

before others; the no-shadowing strategy reduces gratuitous “churning” of variable

names.

Thus, we are led to a substitution algorithm that has three parameters, instead of

two: the expression to which the substitution is applied, the substitution itself, φ,

and the set of in-scope variables, θ:

subst (λx.M) φ θ = λx.subst M (φ \ x) (θ ∪ {x})
if x 6∈ θ

subst (λx.M) φ θ = λy.subst M (φ[x 7→ y]) (θ ∪ {y})
where y 6∈ θ

https://doi.org/10.1017/S0956796802004331 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004331

Secrets of the Glasgow Haskell Compiler inliner 415

Table 2. Cloning rates

Number of attempts (%)

0 1 2 3–9 10+

Mean 93.2 1.3 0.7 1.6 3.2

Min 0.94 0 0 0 0

Max 100 10 6.13 18.2 94

Notice how conveniently the set of in-scope variables can be maintained. Almost

all the time, it simply travels everywhere with the substitution; we shall see some

interesting exceptions to this general rule in section 7.

There is one other important subtlety in this algorithm: in the case where x is not

in θ we must delete x from the substitution, denoted φ \ x. How could x be in the

domain of the substitution, but not be in scope? Here is an example:

let x = a*b in (x, \x -> x+3)

The outer x occurs exactly once, so the simplifier discards the outer let binding

and simply adds [x 7→ a*b] to the substitution. This mapping must be deleted from

the substitution inside the \x abstraction, else we will erroneously get \x -> a*b+3.

Situations like this certainly occur in practice — we have the scars to show for it.

Occasionally, the set of in-scope variables is not conveniently to hand when

starting a substitution. In that case, it is easy to find the set of free variables of the

range of the substitution, and use that to get the process started.

4.3 Choosing a new name

The other choice that must be made in the algorithm is to choose a fresh name,

in the (hopefully rare) cases where that proves necessary. We could just try x1, x2,

and so on, but there is a danger that once x1 . . . x20 are in scope, then any new x

will make 20 tries before finding x21. A simple way out is to compute some kind of

hash value from the set of in-scope variables, and use that, together perhaps with

the variable to be renamed, to choose a new name. Indeed, simply using the number

of enclosing binders as the new variable name gives something not unlike de Bruijn

numbers (see section 4.5). The nice thing is that any old choice will do; the only

issue is how many iterations it takes to find an unused variable.

4.4 Measurements

We made some simple measurements of the effectiveness of our approach. We

compiled the entire nofib suite, some 370 Haskell modules, comprising around

50,000 lines of code in total (Par92). The size of each module varied from a few

dozen lines to a thousand lines or so.

Table 2 summarises how many “tries” it took to find a variable name that was

https://doi.org/10.1017/S0956796802004331 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004331

416 S. Peyton Jones and S. Marlow

not in scope. The columns show what proportion of binders required zero, one,

two, 3–9 and 10 or more attempts, to find a variable name that was not already in

scope. We measured these proportions separately for each module, and then took

the arithmetic mean of the resulting figures. The “min” (resp “max”) rows show the

smallest (resp largest) proportions encountered among the entire set of modules.

The zero column corresponds to the situation where the binder is not shadowed;

as expected, this is the case for the vast majority (93%) of binders. Our hash

function (we simply picked an arbitrary member of the in-scope set as a hash value)

is obviously too simple, though: on average 3.2% of all binders required more than

ten attempts to find a fresh name, and in one pathological module almost all binders

required more than ten attempts. This pathological case suggests that there is plenty

of room for improvement in the hash function.

4.5 Other approaches

Another well-known approach to the name-capture problem to use de Bruijn num-

bers (deBruijn, 1980). Apart from being entirely unreadable, this approach suffers

from the disadvantage that when pushing a substitution inside a lambda, the entire

range of the substitution must have its de Bruijn numbers adjusted. That operation can

be carried out lazily, to avoid a complexity explosion when pushing a substitution

inside multiple lambdas, but that means yet more administration.

It is far from clear that using de Bruijn numbers gains any efficiency, and they carry

a considerable cost in terms of the opacity of the resulting program. (Programmers

will not care about this, but compiler writers do.)

There is one fairly compelling reason for using de Bruijn numbers. Precisely

because they do discard the original variable names, many more common sub-

expressions can arise. These CSEs increase sharing of the compiler’s representation

of the program; they do not in general represent run-time sharing. However this

compile-time sharing can be particularly important when dealing with types, which

can get large. Shao, for example, reports substantial savings when using de Bruijn

numbers (for types) together with hash-consing (Shao et al., 1998). However, our

types are smaller than his (we are not compiling SML modules) so type sizes only

become an issue for deliberately pathological programs whose types are exponential

in the size of the program (Lassez & Plotkin, 1991).

Another popular approach to the name-capture problem is this: establish the

invariant that every bound variable is unique in the whole program. Appel et al

only inline functions called exactly once, and then the situation is even easier: inlining

preserves the unique-variable invariant without any cloning at all (Appel & Jim,

1997). GHC inlines functions called more than once, but it could still maintain the

invariant by cloning all the locally-bound variables of an inlined expression. There are

three difficulties here. First, we found in practice that (in GHC at least) there were

many transformations (other than inlining) that had to do extra work to maintain

the global-uniqueness invariant. Secondly, this strategy will do more cloning than is

really necessary. Thirdly, cloning the local binders of an inlined expression implies a

whole extra pass over that expression, prior to simplifying the expression in its new

https://doi.org/10.1017/S0956796802004331 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004331

Secrets of the Glasgow Haskell Compiler inliner 417

context. Our approach, of maintaining an in-scope set, combines the cloning pass

with the simplification pass, and simultaneously reduces the amount of cloning that

has to be done.

4.6 Summary

Our new substitution algorithm is a simple re-working of the standard algorithm

in Barendregt (1985). What is interesting is that the resulting algorithm seems

quite practical. Even if the compiler were written in a language where name-supply

plumbing was not an issue, maintaining the set of in-scope variables makes it easy

to reduce the amount of cloning that is done.

5 The three-phase inlining strategy

The simplifier tries hard to perform as many transformations in a single pass as

possible. Driven by this goal, the simplifier now makes an inlining decision about

a particular let bound variable at no fewer than three distinct moments. Consider

again the expression:

let x = E in B

Here are the three occasions on which we may consider inlining x:

PreInlineUnconditionally. When the simplifier meets the expression for the first time,

it considers whether to inline x unconditionally in B. It does so if and only if x is

marked Once (see section 3). In this case, the simplifier does not touch E at all;

it simply binds x to E in its current substitution, discards the binding completely,

and simplifies B using this extended substitution. This is the main use of the

substitution beyond dealing with name capture, but it needs a little care, as we

discuss in section 6.2.

Notice, crucially, that the right-hand side of the definition is processed only once,

namely at the occurrence site. It turns out that this is very important. If the

right-hand side is processed when the let is encountered, and then again at the

occurrence of the variable, the complexity of the simplifier becomes exponential in

program size. Why? Because the right-hand side is processed twice; and it might

have a let whose right-hand side is then processed twice each time; and so on.

In retrospect this is obvious, but it was very puzzling at the time!

PostInlineUnconditionally. If the pre-inline test fails, the simplifier next simplifies

the right hand side, E, to produce E’. It then again considers whether to inline x

unconditionally in B. It decides to do so if and only if

• x is not exported from this module (exported definitions must not be dis-

carded), and

• x is not a loop breaker (section 3.5), and

• E’ is trivial (section 2.2.1).

If so, then again the binding is dropped, and x is mapped to E’ in the substitution.

This case is quite common; it corresponds to copy propagation in a conventional

https://doi.org/10.1017/S0956796802004331 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004331

418 S. Peyton Jones and S. Marlow

compiler. It often arises as a result of β-reduction. For example, consider the

definitions:

f = \x -> E

t = f a

If f is inlined, we get a β redex, and thence

f = \x -> E

t = let x = a in E

The interesting question is why we do not make this test at the PreInlineUncon-

ditionally stage, something we discuss in section 5.1.

CallSiteInline. If neither of the above holds, GHC retains the let binding, adds x

to the in-scope set. While processing B, at every occurrence of x, GHC considers

whether to inline x. This decision is based on a fairly complex heuristic, that we

discuss in section 7. If the decision is “Yes”, then GHC needs to have access to

x’s definition; this can be achieved quite elegantly, as we discuss in section 6.3.

5.1 Why three-phase?

One obvious question is this: why not combine PostInlineUnconditionally with

PreInlineUnconditionally? That is, before processing E, why not look to see if it is

trivial (e.g. a variable), and if so inline it unconditionally? Doing so is a huge, but

rather subtle, mistake.

The mistake is to do with the correctness of the pre-computed occurrence infor-

mation. Suppose we have:

let

a = ...big...

b = a

in

...b...b...b...

a will be marked Once, and hence will be inlined unconditionally. But if PreInline-

Unconditionally now sees that b’s right-hand side is just a, and inlines b everywhere,

a now effectively occurs in many places. This is a disaster, because a is now inlined

unconditionally in many places.

The cause of this disaster is that a’s occurrence information was rendered invalid

by our decision to inline b. Several solutions suggest themselves – for example,

provide some mechanism for fixing a’s occurrence information; or get the occurrence

analyser to propagate b’s occurrences to a – and we tried some of them. They were

all complicated, and the result was a bug farm. Appel and Jim describe one way to

update occurrence information on the fly, depending critically on their assumption

that functions are only inlined if they are called exactly once, but even that was very

tricky (Appel & Jim, 1997).

We finally discovered the three-phase inline mechanism we have described. It is

simple, and obviously correct. The PreInlineUnconditionally phase only inlines a

https://doi.org/10.1017/S0956796802004331 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004331

Secrets of the Glasgow Haskell Compiler inliner 419

Table 3. Relative frequency of inlining

Pre (%) Post (%) CallSite (%)

Mean 47.4 17.4 35.2

Min 0.25 0.92 0.72

Max 80 95 98

variable x if x occurs once, not inside a lambda. That means that the occurrence

information for any variable, y, free in x’s right-hand side is unaffected by the inlining.

On the other hand, once the right-hand side has been processed, if y is going to

be inlined unconditionally, then that will have happened already. In our example,

PreInlineUnconditionally will decide to inline a. Now the simplifier moves on to the

binding for b. PreInlineUnconditionally declines to inline, so the right-hand side of

b is processed; a is inlined, and (a processed version of) ...big... is produced.

This is not trivial, so PostInlineUnconditionally declines too.

Another obvious question is whether PostInlineUnconditionally could be omitted

altogether, leaving CallSiteInline to do its work. Here the answer is clearly “yes”;

PostInlineUnconditionally is just an optimisation that allows trivial bindings to be

dropped a little earlier than would otherwise be the case.

To summarise, the key feature of our three-phase inlining strategy is that it allows

the use of simple, pre-computed occurrence information, while still avoiding the

exponential blowup that can occur if PreInlineUnconditionally is omitted.

5.2 Measurements

Table 3 gives some simple measurements of the relative frequency of each form of

inlining. We used the same set of benchmark programs in in section 4.4, gathered

statistics on how often each sort of inlining was used, and averaged these separately-

calculated proportions. We took arithmetic means of the percentages, because here

we are averaging “slices of the pie”, so the “Mean” line should still sum to 100%.

The figures indicate that on average, each sort of inlining is actually used in

practice, and that each dominates in some programs.

6 The inliner’s data types

We have now described the key design decisions in our inliner. In this section

we make the description more concrete by sketching the implementation itself. In

this section we say more about the types involved: the type of the simplifier itself

(section 6.1), the substitution (section 6.2), the in-scope set (section 6.3) and the

context (section 6.4). In the next section we return to the implementation of the

inlining algorithm itself.

https://doi.org/10.1017/S0956796802004331 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004331

420 S. Peyton Jones and S. Marlow

6.1 The type of the simplifier

The simplifier takes a substitution, a set of in-scope variables, an expression, and a

“context”, and delivers a simplified expression:

simplExpr :: Subst -> InScopeSet

-> InExpr -> Context

-> OutExpr

The real simplifier’s type is a bit more complicated than this: it takes an argument

that enables or disables individual transformations; it gathers statistics about how

many transformations are performed; and it takes a name supply, to use when it

has to conjure up a fresh name not based on an existing name4. However, we will

not need to consider these aspects here.

The substitution and in-scope set perform the roles described in section 4, and

we describe their implementation in more detail in sections 6.2 and 6.3 respectively.

they both have further uses. The context tells the simplifier something about the

context in which the expression appears (e.g. it is applied to some arguments, or it

is the scrutinee of a case expression). This context information is important when

making inlining decisions (section 6.4).

We refer to an un-processed expression as an “in-expression”, and an expression

that has already been processed as an “out-expression”, and similarly for variables.

The reasons for making these distinctions are described in section 6.2.

type InVar = Var

type InExpr = Expr

type InAlt = Alt

type OutVar = Var

type OutExpr = Expr

type OutAlt = Alt

As indicated in section 2.3, the simplifier treats an entire Haskell module (which

GHC treats as a compilation unit) as a sequence of bindings, some recursive and

some not. It deals each of these bindings in turn, just as if they were in a nested

sequence of lets.

6.2 The substitution

As we have just seen, the simplifier (simplExpr) carries along (a) the current

substitution, and (b) the set of variables in scope. But since the simplifier is busy

transforming the expression and cloning variables, we have to be more precise:

• The domain of the substitution is in-variables.

4 We could certainly do without this name supply, by conjuring up names based on an arbitrary base
name, but it turns out that it can conveniently piggy-back on the (monadic) plumbing for the other
administrative arguments.

https://doi.org/10.1017/S0956796802004331 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004331

Secrets of the Glasgow Haskell Compiler inliner 421

• The in-scope set consists of out-variables.

But what is the range of the substitution? When used for cloning or PostInlineUn-

conditionally the range was an out-expression, but when used in PreInlineUncon-

ditionally the range was an in-expression. We have to distinguish these two cases,

because an in-expression makes no sense without the substitution in force at the

original site of that in-expression. Thus, we are led to the following definition for

the substitution:

type Subst = FiniteMap InVar SubstRng

data SubstRng = DoneEx OutExpr

| SuspEx InExpr Subst

A DoneEx is straightforward, and is used both by the name-cloning mechanism, and

by PostInlineUnconditionally. A SuspEx (Susp for “suspended”) is used by PreIn-

lineUnconditionally, and pairs an in-expression with the substitution appropriate to

its let binding; you can think of it as a suspended application of simplExpr. Notice

that we do not capture the in-scope set as well. Why not? Because we must use the

in-scope set appropriate to the occurrence site – section 7 amplifies this point.

6.3 The in-scope set

We mentioned at the beginning of section 5 that the simplifier needs access to

a let-bound variable’s right-hand side at its occurrence site(s). A simple way to

achieve this is to turn the in-scope set into a finite mapping:

type InScopeSet = FiniteMap OutVar Definition

data Definition = Unknown

| BoundTo OutExpr OccInfo Level

| NotAmong [Const]

data Level = TopLevel | Nested

Whether or not a variable is in scope can be answered by looking in the domain

of the in-scope set (we still call it a “set” for old times sake). But the range of the

mapping records what value the variable is bound to:

Unknown is used for variables bound in lambda and case patterns. We don’t know

what value such a variable is bound to.

BoundTo is used for let bound variables (both recursive and non-recursive), and

records the right-hand side of the definition and the occurrence information left

with the binding by the occurrence analyser, and whether the binding is a top-level

definition or a nested one. All this information is needed when making the inlining

decision at occurrence sites.

NotAmong lists constants that the variable is not bound to (section 6.3.1).

The in-scope set is also a convenient place to record information that is valid in

only part of a variable’s scope. Consider:

\x -> ...(case x of (a,b) -> E)...

https://doi.org/10.1017/S0956796802004331 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004331

422 S. Peyton Jones and S. Marlow

When processing E, but not in the “...” parts, x is known to be bound to (a,b). So,

when processing the alternative of a case expression whose scrutinee is a variable,

it is easy for the simplifier to modify the in-scope set to record x’s binding. Why is

this useful? Because E might contain another case expression scrutinising x:

...(case x of (p,q) -> F)...

By inlining (a,b) for x, we can eliminate this case altogether. This turns out to be

a big win (Peyton Jones & Santos, 1998).

To summarise, the in-scope set, extended to be an in-scope mapping, plays the role

of a evaluation-state environment. It records knowledge of the value of each in-scope

variable, including knowledge that may be true for only part of that variable’s scope.

The nice thing is that this evaluation-state knowledge can elegantly be carried by

the in-scope set, which we need anyway. The details of the transformations that

exploit that evaluation-state knowledge are beyond the scope of this paper, but one

simple one is this: if a case expression scrutinises a variable whose value is known,

the case can be eliminated. For example:

case x of (a,b) ->

....(case x of (p,q) -> ...) ...

At the inner case, the value of x is known to be (a,b), so the inner case can be

eliminated.

6.3.1 The NotAmong variant

The NotAmong variant of the Definition type allows the simplifier to record negative

information:

case x of

Red -> ...

Blue -> ...

Green -> ...

DEFAULT -> E

The DEFAULT alternative matches any constructors other than Red, Blue, and Green.

GHC supports such DEFAULT alternatives directly, rather than requiring case ex-

pressions to be exhaustive, which is dreadful for large data types. Inside E, what is

known about x? What we know is that it is not bound to Red, Blue, or Green. This

can be useful; if E contains a case expression that scrutinises x, we can eliminate any

alternatives that cannot possibly match. Similarly, the expression x ‘seq‘ F inside

E can be transformed to just F, since NotAmong implies that x is evaluated5. Even

the value NotAmong [] is useful: it signals that the variable is evaluated, without

specifying anything about its value.

5 The expression E1 ‘seq‘ E2 evaluates E1, discards the result, and then evaluates and returns E2.

https://doi.org/10.1017/S0956796802004331 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004331

Secrets of the Glasgow Haskell Compiler inliner 423

6.4 The context

It should by now be clear that the context of an expression plays a key role in inlining

decisions. For example, a function that is called should be inlined more vigorously

than a function that is simply passed as an argument to another function.

For a long time we passed in a variety of ad hoc flags indicating various things

about the context, but we have now evolved a much more satisfactory story. The

context is a little like a continuation, in that it indicates how the result of the

expression is consumed. But this continuation must not be represented as a function

because we must be able to ask questions of it, as the earlier sub-sections indicate.

So GHC’s contexts are defined by the following data type:

data Context

= Stop

| AppCxt InExpr Subst Context

| CaseCxt InVar [InAlt] Subst Context

| ArgCxt (OutExpr -> OutExpr)

| InlineCxt Context

The Stop context is used when beginning simplification of a lazy function argument,

or the right-hand side of a let binding. The AppCxt context indicates that the

expression under consideration is to be applied to an argument. The argument is as

yet un-simplified, and must be paired with its substitution. Similarly, the CaseCxt

context is used when simplifying the scrutinee of a case expression.

simplExpr simply recurses into the expression, building a context “stack” as it

goes. Here, for example, is what simplExpr does for App and Case nodes:

simplExpr sub ins (App f a) cont

= simplExpr sub ins f (AppCxt a sub cont)

simplExpr sub ins (Case e b alts) cont

= simplExpr sub ins e (CaseCxt b alts sub cont)

We have already seen how useful it is to know the context of a variable occurrence.

The context also makes it easy to perform other transformations, such as the

case-of-known-constructor transformation:

case (a,b) of { (p,q) -> E }

==>

let {p=a; q=b} in E

simplExpr just matches a constructor application with a CaseCxt continuation.

The next case, ArgCxt, is used when simplifying the argument of a strict function

or primitive operator. Here, a genuine, functional continuation is used, because no

more needs to be known about the continuation.

The InlineCxt context is discussed in the next subsection. In practice, GHC’s

simplifier has another couple of constructors in the Context data type, but they are

more peripheral so we do not discuss them here.

https://doi.org/10.1017/S0956796802004331 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004331

424 S. Peyton Jones and S. Marlow

6.5 INLINE pragmas

Like some other languages, GHC allows the programmer to specify that a function

should be inlined at all its occurrences using a pragma in the Haskell source language:

{-# INLINE f #-}

f x = ...

GHC also allows the Haskell programmer to ask the compiler to inline a function

at a particular call site, thus:

...(inline f a b)...

The function inline has type ∀α.α -> α, and is semantically the identity function.

Operationally, though, it asks that f be inlined at this call site. Such per-occurrence

inline pragmas are less commonly offered by compilers (Baker, 1992).

Both these pragmas are translated to constructors in the Note data type, which

itself can be attached to an expression (section 2.3):

data Note = ...

| InlineMe -- {-# INLINE #-}

| InlinePlease -- inline

If they are so similar in the Core language, why do they appear so different in

Haskell? Haskell allows functions to be defined by pattern-matching, using multiple

equations, so there is no convenient syntactic place to ask for f to be inlined

everywhere. At an occurrence site, however, it is natural just to use a pseudo-

function.

The effects of InlineMe and InlinePlease are as follows:

• The effect of InlineMe is to make the enclosed expression look very small,

which in turn makes the smallEnough predicate reply True. When simplExpr

finds an InlineMe in a context where someBenefit is True, it drops the

InlineMe, because its work is done.

• The effect of InlinePlease is to push an InlineCxt onto the context stack.

The smallEnough predicate returns True if it finds such a context, regardless

of the size of the expression.

There is an important subtlety, however. Consider

g = \a b -> ...big...

{-# INLINE f #-}

f = \x -> g x y

and suppose that this is the only occurrence of g. Should we inline g in f’s right-

hand side? By no means! The programmer is asking that f be replicated, but not

g! The right thing to do is to switch off all inlining when processing the body of an

InlineMe; when f is inlined, then (and only then) g will get its chance.

https://doi.org/10.1017/S0956796802004331 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004331

Secrets of the Glasgow Haskell Compiler inliner 425

7 Implementing the three-phase algorithm

We can now say what happens when the simplifier encounters a binding

let x = E in B

with substitution subst, and an in-scope set in-scope. It uses the three-phase

strategy described in section 5, with the following effect on the substitution and

in-scope set.

PreInlineUnconditionally. The substitution is extended by binding x to SuspEx E

subst. The in-scope set is not changed.

PostInlineUnconditionally. The substitution is extended by binding x to DoneEx E’,

where E’ is the simplified version of E. The in-scope set is not changed.

Otherwise. If x is not already in scope, the substitution is not changed, but the

in-scope set is extended by binding x to E’. If x is already in scope, then a new

variable name x’ is invented (section 4.3); the substitution is extended by binding

x to DoneEx x’, and the in-scope set is extended by binding x’ to E’.

So much for what happens at the binding site of a variable. Next we consider what

happens at its occurrence(s), which is the third occasion on which the simplifier

considers inlining.

When the simplifier encounters the occurrence of a variable, the latter (being an

InVar) must be looked up in the substitution:

simplExpr sub ins (Var v) cont

= case lookup sub v of

Just (SuspEx e s) -> simplExpr s ins e cont

Just (DoneEx e) -> simplExpr empty ins e cont

Nothing -> callSiteInline ins v cont

There are three cases to consider. If the substitution maps the variable to a SuspEx,

then the simplifier is (tail) called again, passing the captured substitution, and the

current in-scope set. The substitution and the in-scope set usually travel together,

but here they do not. We must use the in-scope set from the occurrence site (because

that describes what variables are in scope there), and the substitution from the

definition site.

The second case is when the variable maps to DoneEx e. In this case you might

think we were done. But suppose e was a variable. Then we should consider inlining

it, given the current context cont, which may differ from that at the variable’s

definition site. What if e was a partial application of a function? Again, the context

might now indicate that the function should be inlined. So the simple thing to do is

simply to pass e to simplExpr again.

However, notice that that the substitution must be discarded at this point – we pass

empty to simplExpr – because the expression e is already an out-expression. To see

https://doi.org/10.1017/S0956796802004331 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004331

426 S. Peyton Jones and S. Marlow

why, consider this example:

\x -> let

f = x

in

\x -> ...f...

When the binding for f is encountered, PostInlineUnconditionally will extend the

substitution, binding f to DoneEx x. When the inner \x is encountered, the substi-

tution will again be extended to bind x to DoneEx x1, because x is already in scope.

Now, at the occurrence of f, we will look up f in the substitution, finding DoneEx x.

We must not definitely not apply the same substitution again, lest we replace x by

x1! The right thing to do is to continue with the empty substitution.

The third case is that the variable v might not not be in the substitution at all – for

example, it might be a variable that did not need to be renamed. In that case, the next

thing to do is to consider inlining it, a task that is performed by callSiteInline,

which we will discuss next. Before we do, it is worth noticing two further points.

First, the substitution is again discarded (i.e. not passed to callSiteInline) for the

same reason as above. Second, the variable we previously thought of as an InVar

is now an OutVar. This is one reason that InVar and OutVar are simply synonyms

for Var, rather than being truly distinct types.

The code is simple enough, but it took us a long time before the interplay between

the substitution and the in-scope set became as simple and elegant as it now is.

7.1 Inlining at an occurrence site

Once the simplifier has found a variable that is not in the substitution (and hence is

an OutVar), we need to decide whether to inline it. The first thing to do is to look

up the variable in the in-scope set:

callSiteInline ins v cont

= case lookup ins v of

Nothing -> error "Not in scope"

Just (BoundTo rhs occ lvl)

| inline rhs occ lvl cont

-> simplExpr empty ins rhs cont

Just other -> rebuild (Var v) cont

If the value information is BoundTo, and the predicate inline says “yes, go ahead”,

we simply tail-call the simplifier, passing the in-scope set and the empty substitution

(as in the DoneEx case of the substitution). In all other cases we give up on inlining.

The function rebuild, which we do not discuss further here, simply combines the

variable with its context.

The inline predicate is the interesting bit. It looks first at the variable’s occurrence

information:

https://doi.org/10.1017/S0956796802004331 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004331

Secrets of the Glasgow Haskell Compiler inliner 427

inline :: OutExpr -> OccInfo -> Level -> Context -> Bool

inline rhs LoopBreaker lvl cont = False

inline rhs Once lvl cont = error "inline: Once"

inline rhs OnceInLam lvl cont = whnfOrBot rhs &&

someBenefit rhs lvl cont

inline rhs ManyBranch lvl cont = inlineMulti rhs lvl cont

inline rhs Many lvl cont = whnfOrBot rhs &&

inlineMulti rhs lvl cont

The LoopBreaker case is obvious. The Once case should never happen, because

PreInlineUnconditionally will have already inlined the binding.

The OnceInLam case uses the whnfOrBot predicate (section 2.2), to ensure that

inlining will not happen if there is any work duplication. However, as noted in

section 2.2, even if the variable occurs just once, it is not always a good idea to

inline it. The someBenefit predicate is discussed in section 7.2.

The ManyBranch and Many cases deal with the situation where there is more than

one occurrence of the variable. Both make use of inlineMulti to do the bulk of

the work; in addition, Many uses whnfOrBot to avoid work duplication.

Incidentally, since whnfOrBot rhs depends only on rhs, it is actually (lazily)

cached in the BoundTo constructor rather than being re-calculated at each occurrence

site.

7.2 Checking for benefits

The predicate someBenefit tries to guess whether some benefit will arise from

inlining the expression in a given context:

someBenefit :: OutExpr -> Level -> Context -> Bool

It is intended to deal with situations like this:

g = \a -> E

f = \xs -> map g xs

where we suppose that the only call to g is the one in f’s right-hand side. Should

we inline g? No! Then we would get

f = \xs -> map (\a -> E) xs

and now we will allocate the lambda abstraction (\a -> E) each time f is called.

Nothing gained by inlining, but something is lost.

Here is another example:

f = \x -> let g = \y -> E

h = \a b -> (g y, g z)

in ...

https://doi.org/10.1017/S0956796802004331 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004331

428 S. Peyton Jones and S. Marlow

There is very little point in inlining g at its two call sites, because we can guarantee

that no new transformations (beyond those already performed on E itself) will be

enabled by doing so; the only saving is the call to g, and there is a code duplication

cost to pay. How do we know that no transformations will be enabled? Because:

(a) the arguments y and z are lambda-bound and hence uninformative; and (b) the

result of both calls are simply stored in a data structure.

So someBenefit rhs lvl cont returns True if any of the following holds:

(a) The expression rhs is a constructor, and the context cont scrutinises the

constructor with a case. In this case, inlining will allow us to eliminate the

case.

(b) The expression is a function (lambda abstraction), and at least one of the

arguments in the context is a non-trivial expression, or is a variable with value

information other than Unknown.

(c) The expression is a function, and after consuming enough arguments from the

context to satisfy the lambdas at the top of the function, the remaining context

scrutinises the result with a case, or applies the result to further arguments.

(d) The expression is a Nested function, and the context has enough arguments

to saturate the lambdas in the function. In this case, inlining the function may

decrease allocation by eliminating the nested binding (which would otherwise

lead to allocation), and without increasing allocation at the call sites. This is

the main reason we record the Level in the function’s Definition.

As an example of (d), consider this:

f = \xs -> let g = \y -> x+y

in

zipWith (\a b -> g b a) xs xs

Should we inline g? It’s calling context is completely uninteresting, but if we inline

it we can eliminate g’s binding altogether, giving:

f = \xs -> zipWith (\a b -> a+b) xs xs

If g had been a TopLevel definition, however, we would have had no allocation

benefit to trade for the increase in code size, simply the elimination of the call itself.

A Nested definition is also likely to have fewer call sites than a top-level one, and

we have to inline at all of them to eliminate the definition.

Notice that if a variable is the argument of a constructor, someBenefit will

return False, and so the variable will not be inlined, thus maintaining the trivial-

constructor-argument invariant (section 2.2).

7.3 Inlining multiple-occurrence variables

Now we are left with the case of inlining a variable that occurs many times.

inlineMulti :: OutExpr -> Level -> Context -> Bool

inlineMulti rhs lvl cont

= noSizeIncrease rhs cont

|| (someBenefit rhs lvl cont && smallEnough rhs cont)

https://doi.org/10.1017/S0956796802004331 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004331

Secrets of the Glasgow Haskell Compiler inliner 429

smallEnough is the function that every inliner has: is the function small enough to

inline? We discuss noSizeIncrease in the next section.

The call to someBenefit prevents inlining if there is no benefit (even if

smallEnough would have returned True).

Even if there is no direct benefit, however, it is still worth while inlining the

function if the result of doing so is no bigger than the call (Appel, 1992). That is

what the predicate noSizeIncrease tests. Again, one might expect this case to be

rare, but it isn’t. For example, Haskell data constructors are curried functions, but

in GHC’s intermediate language constructor applications are saturated (section 2.3).

We bridge this gap by producing a function definition for each constructor such as:

cons = \x xs -> Cons {x,xs}

where the Cons {x,xs} is the saturated constructor application. (In reality there

are a few type abstractions and applications too, but the idea is the same.) These

definitions also make a convenient place to perform argument evaluation (and

perhaps unboxing) for strict constructors. For the simple definitions, such as cons,

it is clearly better to inline the definition, even in the case when someBenefit is

False.

7.4 Size matters

We have now finally arrived at the smallEnough predicate, the main aspect of

this paper for which there is a reasonable (albeit small) literature. We do not

claim any new contribution here, though (unlike some proposals) smallEnough is

context-sensitive:

smallEnough :: Expr -> Context -> Bool

For the record, however, the algorithm is as follows. We compute the size of the

function body (having first split off its formal parameters, namely the lambdas at

the top). From this size we subtract:

• The size of the call.
• An argument discount for each argument (extracted from the context) that (a)

has evaluation-state information other than Unknown, and (b) is scrutinised by

a case, or applied to an argument, in the function body.
• A result discount if someBenefit is True and the function body returns an

explicit constructor or lambda.

Actually, the two discounts are multiplied by a keenness factor, to allow us to

experiment with the weighting given to the discounts. If the result of this computation

is smaller than the inline threshold, then we inline the function:

Inline the function iff

(Body-size − Size-of-call − Keenness ∗ Discounts) 6 Threshold

The argument discount, result discount, keenness factor, and inline threshold are all

settable from the command line, though we expect that only experts will wish to do

so. Santos gives more details of GHC’s heuristics in section 6.3 of his thesis (Santos,

1995).

https://doi.org/10.1017/S0956796802004331 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004331

430 S. Peyton Jones and S. Marlow

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1
N

o
in

lin
in

g
Ju

st
co

ns
tru

ct
or

s

Kee
nn

es
s

0,
th

re
sh

ol
d

0

Kee
nn

es
s

1.
5,

th
re

sh
ol

d
0

Kee
nn

es
s

1.
5,

th
re

sh
ol

d
8

Kee
nn

es
s

1.
5,

th
re

sh
ol

d
16

Allocations
Binary Size

Fig. 2. Effect of inlining threshold on allocations and binary size.

7.5 Measurements

As mentioned in section 7.4, our implementation makes use of an “inline threshold”

and a “keenness factor” to determine whether a given expression is small enough

to inline. Figure 2 shows the effect of different inlining strategies on the amount of

memory allocation done by several test programs, and also the size of the binary

generated by the compiler. We measure allocations rather than run-time because

we have found that both values tend to vary together, but measuring allocations is

repeatable. Our measurements are obtained by taking the geometric mean of the

normalised allocations and binary sizes from 18 test programs taken from the “real”

section of the nofib test suite.

The strategies we measured were applied to the program only; the libraries in all

cases were compiled with the default inlining settings. The measurements we took

were:

• No inlining at all. This is likely to produce poor results, because the compiler

is built around the assumption that certain essential inlining will be performed,

even when all other optimisation is disabled.

• Inlining of constructor wrappers only.

• Keenness zero, threshold zero. This should cause the compiler to inline only

when it can be sure that doing so will reduce the code size; the keenness of

zero means that possible subsequent transformations will not be taken into

account.

https://doi.org/10.1017/S0956796802004331 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004331

Secrets of the Glasgow Haskell Compiler inliner 431

• Keenness 1.5, threshold zero. Inlinings that reduce the code size may happen,

discounts for possible subsequent transformations are taken into account.

• Keenness 1.5, threshold 8 (this is the default setting). Increasing the threshold

to 8 allows inlinings that may increase the code size slightly.

• Keenness 1.5, threshold 16.

The actual values for the threshold are fairly arbitrary, and are affected by some

of the other parameters: discounts for evaluated arguments and so on.

The results shown here aren’t particularly dramatic; this is partly due to the

fact that the libraries weren’t recompiled each time. Any time spent in library code

will be benefitting from the normal inlining behaviour. Nevertheless, we achieve a

respectable 30% speedup with the default settings.

There is a rather pronounced jump in performance as soon as we move to a

non-zero keeness factor. This appears to be the point at which certain important

inlinings (such as integer arithmetic operations) start to happen.

The effects on binary size are small, but there is a pronounced “dip” in the results.

Early on, beneficial inlinings lead to further transformations with a net reduction in

code size. Beyond a certain point, fewer inlinings are beneficial, leading to an increase

in the binary size. Ideally, we should be aiming to achieve maximum performance at

the same point as the smallest binary size; in fact the maximum performance point

is reached slightly later. This simply means that our heuristics for deciding when

an inlining is beneficial aren’t perfect; sometimes we have to inline “blind” and see

what happens.

8 Related work

There is a modest literature on inlining applied to imperative programming lan-

guages, such as C and FORTRAN – some recent examples are Davidson & Holler

(1992), Chang et al. (1992) and Cooper et al. (1991, 1992). In these works the focus

is exclusively on procedures defined at the top level. The benefits are found to be

fairly modest (in the 10–20% range), but the cost in terms of code bloat is also very

modest. Considerable attention is paid to the effect on architecture-specific effects,

such as cache behaviour and register pressure in larger basic blocks, which we do

not consider at all.

It seems self-evident that the benefits of inlining are strongly related to both

language and programming style. Functional languages encourage the use of ab-

stractions, so the benefits of inlining are likely to be greater. Indeed, Appel reports

benefits in the range 15–25% for the Standard ML of New Jersey compiler (Appel,

1992), while Santos reports average benefits of around 40% for Haskell programs

(Santos, 1995). Chambers reports truly dramatic factors of 4–55 for his SELF

compiler (Chambers, 1992); SELF takes abstraction very seriously indeed!

The most detailed and immediately-relevant work we have found is for two Scheme

compilers. Waddell & Dybvig (1997) report performance improvements of 10–100%

in the Chez Scheme compiler, while Serrano (1995, 1997) found a more modest 15%

benefit for the Bigloo Scheme compiler. Both use a dynamic, effort/size budget

https://doi.org/10.1017/S0956796802004331 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004331

432 S. Peyton Jones and S. Marlow

scheme to control termination. The Chez Scheme inliner uses an explicitly-encoded

context parameter that plays exactly the role of our Context (section 6.4).

A completely different approach to the inlining problem is discussed by Appel

& Jim (1997). In this paper the focus is on inlining functions that are called

precisely once, something that we have been very concerned with. Appel and Jim

show that this transformation, along with a handful of others (including dead-

code elimination), are normalising and confluent, a very desirable property. Their

focus is then on finding an efficient algorithm for applying the transformations

exhaustively. Their solution involves adjusting the results of the occurrence analysis

phase as transformations proceed. Their initial algorithm has worst-case quadratic

complexity, but they also propose a more subtle (and unimplemented) linear-time

variant. We too are concerned about efficient application of transformation rules,

but our set of transformations is much larger, and includes general inlining, so their

results are not directly applicable to our setting. Nevertheless, it is a unique and

inspiring approach.

Copious measurements of many transformations in GHC (not only inlining) can

be found in Santos’s thesis (Santos, 1995); although these measurements are now

several years old, we believe that the general outlines are unlikely to have changed

dramatically. Another paper contains briefer, but more up-to-date, measurements

(Peyton Jones & Santos, 1998).

This paper has focused on the task of compiling a lazy, purely functional language,

but almost all of it applies to strict, impure languages as well. From an inlining point

of view the principal difference is that only values (lambda abstractions, constructors,

variables) can be inlined freely. Non-values need more careful treatment:

let x = f y in ...x...

Even if x occurs exactly once in its scope, it is only valid to inline it if function f has

no side effects. Sophisticated compilers for such languages may perform an effects

analysis to identify such functions.

9 Conclusion

This paper has told a long story. Inlining seems a relatively simple idea, but in

practice it is complicated to do a good job. The main contribution of the paper is

to set down, in sometimes-gory detail, the lessons that we have learned over nearly

a decade of tuning our inliner. Everyone who tries to build a transformation-based

compiler has to grapple with these issues but, because they are not crisp or sexy,

there is almost no literature on the subject. This paper is a modest attempt to

address that lack.

Acknowledgements

We warmly thank Nick Benton, Oege de Moor, Andrew Kennedy, John Matthews,

Sven Panne, Alastair Reid, Julian Seward, the four anonymous IDL Workshop

referees, and the two anonymous JFP referees, for comments on drafts of this paper.

https://doi.org/10.1017/S0956796802004331 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004331

Secrets of the Glasgow Haskell Compiler inliner 433

Special thanks are due to Andrew Appel, Manuel Chakravarty, Manuel Serrano,

Oscar Waddell and Norman Ramsey, for their particularly detailed and thoughtful

remarks.

References

Appel, A. W. and Jim, J. (1997) Shrinking lambda-expressions in linear time. J. Functional

Programming, 7(5): 515–541, September.

Appel, A. W. (1992) Compiling with Continuations. Cambridge University Press.

Appel, A. W. (1994) Loop headers in lambda-calculus or CPS. Lisp & Symbolic Computation,

7: 337–343.

Augustsson, L., Rittri, M. and Synek, D. (1994) On generating unique names. J. Functional

Programming, 4(1): 117–123, January.

Baker, H. G. (1992) Inlining semantics for subroutines which are recursive. ACM Sigplan Not.

27(12): 39–49, December.

Barendregt, H. P. (1985) The lambda calculus: its syntax and semantics. Studies in Logic 103.

North Holland.

Benton, N., Kennedy, A. and Russell, G. (1998) Compiling Standard ML to Java bytecodes.

Int. Conf. Functional Programming, pp. 129–140. Baltimore.

Chambers, C. (1992) The Design and Implementation of the SELF Compiler, an Optimizing

Compiler for Object-Oriented Programming Languages. Technical report STAN-CS-92-1240,

Stanford University, Departement of Computer Science, March.

Cooper, K. D., Hall, M. W. and Torczon, L. (1991) An experiment with inline substitution.

Software—Practice & Exper. 21: 581–601, June.

Cooper, K., Hall, M. and Torczon, L. (1992) Unexpected side effects of inline substitution: A

case study. ACM Lett. Program. Lang. Syst. 1(1): 22–31.

Chang, P. P., Mahlke, S. A., Chen, W. Y. and Hwu, W. M. (1992) Profile-guided automatic

inline expansion for C programs. Software–Practice & Exper. 22: 349–369, May.

de Bruijn, N. (1980) A survey of the project AUTOMATH. In: J. P. Seldin and J. R. Hindley,

editors, To HB Curry: Essays on combinatory logic, lambda calculus, and formalism, pp.

579–606. Academic Press.

Davidson, J. W. and Holler, A. M. (1992) Subprogram inlining: a study of its effects on

program execution time. IEEE Trans. Softw. Eng., 18: 89–102, February.

Danvy, O. and Schultz, U. P. (1997) Lambda-dropping: transforming recursive equations

into programs with block structure. ACM SIGPLAN Symposium on Partial Evaluation

and Semantics-Based Program Manipulation (PEPM ’97); SIGPLAN Notices, 32: 90–106.

Amsterdam.

Fleming, P. J. and Wallace, J. J. (1986) How not to lie with statistics – the correct way to

summarise benchmark results. Comm. ACM, 29(3): 218–221, March.

Howard, B. T. (1996) Inductive, co-inductive, and pointed types. Int. Conf. on Functional

Programming. Philadelphia.

Lassez, J.-L. and Plotkin, G. D., editors (1991) Unification and ML type Reconstruction, pp.

444–478. MIT Press.

Partain, W. D. (1992) The nofib benchmark suite of Haskell programs. In: J. Launchbury and

P. M. Sansom, editors, Functional Programming, Glasgow 1992, Workshops in Computing,

pp. 195–202. Springer-Verlag.

Peyton Jones, S. L. (1987) The Implementation of Functional Programming Languages. Prentice

Hall.

https://doi.org/10.1017/S0956796802004331 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004331

434 S. Peyton Jones and S. Marlow

Peyton Jones, S. L. and Santos, A. (1998) A transformation-based optimiser for Haskell.

Science of Comput. Programming, 32(1–3): 3–47, September.

Peyton Jones, S. L. and Partain, W. D. (1993) Measuring the effectiveness of a simple strictness

analyser. In: K. Hammond and J. T. O’Donnell, editors, Functional Programming, Glasgow

1993, Workshops in Computing, pp. 201–220. Springer-Verlag.

Peyton Jones, S. L., Partain, W. D. and Santos, A. (1996) Let-floating: moving bindings to

give faster programs. Int. Conf. on Functional Programming, Philadelphia.

Santos, A. (1995) Compilation by transformation in non-strict functional languages. PhD thesis,

Department of Computing Science, Glasgow University, September.

Serrano, M. (1995) A fresh look to inlining decision. 4th International Computer Symposium

(ICS’95), Mexico City, Mexico, November.

Serrano, M. (1997) Inline expansion: when and how? Int. Symposium on Programming Lan-

guages Implementations, Logics, and Programs (PLILP’97), September.

Shao, Z., League, C. and Monnier, S. (1998) Implementing typed intermediate languages. Int.

Conf. on Functional Programming, pp. 313–323. Philadelphia.

Waddell, O. and Dybvig, R. K. (1997) Fast and effective procedure inlining. 4th Static Analysis

Symposium: Lecture Notes in Computer Science 1302, pp. 35–52. Springer-Verlag.

Wansbrough, K. and Peyton Jones, S. L. (1999) Once upon a polymorphic type. 26th ACM

Symposium on Principles of Programming Languages (POPL’99), pp. 15–28. San Antonio,

TX.

https://doi.org/10.1017/S0956796802004331 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004331

