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Abstract

Given a self-morphism φ on a projective variety defined over a number field k, we prove
two results which bound the largest iterate of φ whose evaluation at P is quasi-integral with
respect to a divisor D, uniformly across P defined over a field of bounded degree over k.
The first result applies when the pullback of D by some iterate of φ breaks up into enough
irreducible components which are numerical multiples of each other. The proof uses Le’s
algebraic-point version of a result of Ji–Yan–Yu, which is based on Schmidt subspace the-
orem. The second result applies more generally but relies on a deep conjecture by Vojta for
algebraic points. The second result is an extension of a recent result of Matsuzawa, based
on the theory of asymptotic multiplicity. Both results are generalisations of Hsia–Silverman,
which treated the case of morphisms on P1.

2020 Mathematics Subject Classification: 37P55 (Primary); 11J87, 11J97, 37P15,
14G40 (Secondary)

1. Introduction

A celebrated theorem of Silverman [24] states that there are only finitely many integral
points in an orbit under a rational function defined over a number field, as long as the sec-
ond iterate of the function is not a polynomial. Hsia–Silverman [9] then made this theorem
explicit and uniform: the upper bound for the number of integral points is given by an explicit
formula in terms of the height of the initial point, and the largest iterate which can be inte-
gral is given uniformly independent of the initial point. The results of Hsia–Silverman have
already been generalised in many directions. Just to name a few, Mello [21] has considered
integral points in orbits under several (not necessarily commuting) rational functions and
obtained similar upper bounds, and Hindes [7] has proved that the number of integral points
in an orbit is uniformly bounded in a suitable one-parameter family of initial points and
rational functions and that the average over such a family is in fact zero.

In this paper, we consider another generalisation of Hsia–Silverman, namely to mor-
phisms on higher-dimensional projective spaces. The author [29] has considered some cases
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2 YU YASUFUKU

of higher-dimensional analogs of Silverman’s result [24], so in some sense this paper is the
combination of the two generalisations of [24]: namely, Hsia–Silverman [9] and the author
[29]. Higher-dimensional Diophantine geometry is in general quite difficult; the Bombieri–
Lang conjecture, which states the sparsity of rational points on varieties of general type,
is already open in dimension 2. There has been plethora of recent research surrounding
uniformity of rational points on abelian varieties (e.g. [3, 5]), but still, working with higher-
dimensional varieties often forces us to either restrict to certain cases or assume various deep
conjectures.

We prove two results in this paper on uniformity of quasi-integral points in higher-
dimensional orbits. The results are uniform in two senses: independent of the initial point of
the orbit, and independent of a specific number field as long as the degree is bounded. The
first result applies when the pullback of a divisor by some iterate of φ breaks up into enough
irreducible components which are numerical multiples of each other. For this result, we use
Le’s algebraic-point version [13] of the recent result of Ji–Yan–Yu [10] which is a type
of Schmidt subspace theorem for divisors in subgeneral position. The second result applies
more generally, but it assumes the algebraic-point version of Vojta’s conjecture. This conjec-
ture, in the special form of the abc conjecture and the abcd conjecture, was used by Looper
[15, 16] to show uniform boundedness of preperiodic points for polynomials. The second
result is more dynamical in nature, as it uses arithmetic degrees introduced by Kawaguchi–
Silverman as well as the theory of asymptotic multiplicities of forward orbits, which were
used in a recent result of Matsuzawa [20].

We now state our main results precisely. For the first result, we follow [13] to define
C(m, M, δ) as

C(m, M, δ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(δm − δM + 1)(δM + 1) M ≤ m
2

( δm
2 + 1)2 M > m

2 and δm is even

(� δm
2 � + 1)(� δm

2 � + 2) M > m
2 and δm is odd

(1·1)

for natural numbers m, M, δ, where � � is the floor function. Throughout the paper, we use
the notation of φ◦t for the tth iterate of φ, and the degree of φ is the polarisation degree (not
the topological degree which counts the number of preimages). The first result is as follows.

THEOREM 1. Let m, M, δ be natural numbers, d be a natural number at least 2, and let ε

be a positive real number at most 1. Let k be a number field, and suppose that:

(i) φ : PM−→PM is a morphism of degree d defined over k;

(ii) D is a (possibly reducible) hypersurface in PM;

(iii) there exists a natural number t such that

(
φ◦t)∗ D = D1 + · · · + Dq + D′,

where D1, . . . , Dq are in m-subgeneral position, D′ is an effective divisor, and

εdt( deg D) − ( deg D′)
max

i
deg Di

> C(m, M, δ);
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Uniformity of quasi-integral points in orbits 3

(iv) S is a finite set of places of k including all archimedean ones, and Rε is a set of
(D, S, ε)-quasi-integral points.

Then

{φ◦n(P) ∈Rε\|D| : n ∈N≥t, [K : k] ≤ δ, P ∈ PM(K)} (1·2)

and

{P ∈ PM(K) : [K : k] ≤ δ, φ◦n(P) ∈Rε\|D| for some n ∈N≥t} (1·3)

are both finite sets, and moreover, there exists N = N(φ, S, ε, δ, m) such that whenever
φ◦n(P) ∈Rε\|D| for P ∈ PM(K) with [K : k] ≤ δ and n ∈N, n is at most N.

The definitions of m-subgeneral positions and quasi-integral points will be given in
the next section. We only note here that the ε = 1 case of (D, S, ε)-quasi-integral points
corresponds to the usual notion of (D, S)-integral points.

By conjugating with a linear polynomial with a highly divisible leading coefficient, one
can force the first N iterates to be integral (cf. [25, proposition 3·46]). Therefore, N has to
depend on φ (and thus also on d). N also has to depend on S, since enlarging S makes more
iterates integral.

Theorem 1 for the case of P1 does not quite recover the result of Hsia–Silverman [9], as
there are non-polynomial maps not satisfying hypothesis (iii). On the other hand, we can
modify the proof in the case of P1 to obtain a stronger statement, from which the results
of Hsia–Silverman easily follow. With this modification, Theorem 1 for the case of P1 eas-
ily implies that the ‘average’ number of integral points in orbits is zero as first proved by
Gunther–Hindes [6], because finiteness of (1·3) implies that orbits of points with sufficiently
large height contain no integral points. See Remark 6 for more details. Also, we discuss in
Remark 7 the inter-relationship among the three conclusions of the theorem, and we discuss
some generalisations to projective varieties in Remark 8.

Example 2. Let RS be the subset of Q consisting of elements which are integral over the
the ring of S-integers of k. Let L1, . . . , Lq ∈ k[X0, . . . , XM] be linear forms in general posi-
tion, F1, . . . , FM ∈ k[X0, . . . , XM] be homogeneous of degree d, and let F0 ∈ k[X0, . . . , XM]
be homogeneous of degree d − q. Let φ = [L1 · · · Lq · F0 : F1 : · · · : FM], and for any P ∈
PM(Q), we write φ◦n(P) = [a0

◦n : · · · : aM
◦n]. Then Theorem 1 shows that as long as

q > C(M, M, δ),

{
φ◦n(P) : n ∈N, [K : k] ≤ δ, P ∈ PM(K),

a1
◦n

a0
◦n

, . . . ,
aM

◦n

a0
◦n

∈RS

}

and {
P ∈ PM(K) : [K : k] ≤ δ, there exists n ∈N such that

a1
◦n

a0
◦n

, . . . ,
aM

◦n

a0
◦n

∈RS

}

are both finite sets, and there exists a uniform bound for n (independently of P) for which
a1

◦n/a0
◦n, . . . , aM

◦n/a0
◦n ∈RS. In particular, for quadratic points (the case of δ = 2), we

get these conclusions if q > (M + 1)2.
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Next, we state our second result, this time with a less restrictive hypothesis but under
assuming a deep conjecture from Diophantine geometry.

THEOREM 3. Let φ : PM −→ PM be a surjective morphism of degree d ≥ 2 defined over a
number field k, and let S be a finite subset of Mk. Let D be a nontrivial effective divisor on
PM defined over k, ε be a positive real number at most 1, and let Rε be a set of (D, S, ε)-
quasi-integral points. Assume that Vojta’s General Conjecture (Conjecture 9) holds for a
certain blowup of projective spaces determined by φ and D. Then there exist a Zariski-closed
Z = Z(D, S, ε) �PM and a constant N such that if P satisfies:

(i) P ∈ PM(K) with [K : k] ≤ δ;

(ii) P is not a preperiodic point under φ;

(iii) for every φ-periodic irreducible subvariety Y with Y ∩ D = ∅, eφ,+(Y) < αφ(P);

(iv) φ◦n(P) ∈Rε ,

then either φ◦n(P) ∈ Z or n is bounded above by N.

Here, αφ(P) is the arithmetic degree and eφ,+(Y) is the asymptotic multiplicity of the
forward orbit of the scheme point Y: the precise definitions will be given in Section 3. For
the case of P1, there exist no nontrivial blowups, and Vojta’s General conjecture is known to
be equivalent to the abc conjecture ([27]). Moreover, since Z is a finite set in this case, the
proof in Section 3 will show the existence of a uniform bound N without the exceptional set
Z. This way, we obtain the algebraic-point version of Hsia–Silverman [9, theorem 11]. Also,
in Remark 11, we show an example which demonstrates that the hypothesis eφ,+(Y) < αφ(P)
is necessary, and in Remark 12, we discuss a generalisation of this theorem to polarised
morphisms on projective varieties. In the final remark, we consider whether the exceptional
set Z is really necessary in Theorem 3.

2. Notations, and the Proof of Theorem 1

Let k be a number field, and let Mk be the set of places of k. For each v ∈ Mk, we define
the normalised absolute value | · |v as follows: for k =Q, | · |∞ is the usual absolute value
on R, and for each prime p, we define the normalised p-adic absolute value | · |p by setting
|p|p = 1/p. For a general number field k, we define | · |v to be the [kv : Qv]/[k : Q]-th power
of the v-adic absolute value which restricts to one of the normalised absolute values on Q.
With this normalisation, the product formula∏

v∈Mk

|x|v = 1

holds for all x ∈ k∗.
The height of a point P = [a0: · · · : aM] ∈ PM(k) is defined by

h(P) =
∑
v∈Mk

log max
i

|ai|v.

For an effective divisor D on PM defined by a homogeneous polynomial F ∈ k[x0, . . . , xM],
the Weil height is defined simply by

h(D, P) = ( deg F)h(P),
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and the local height is defined by

λv(D, P) = log
|F|v · ( max

i
|ai|v)deg F

|F(a0, . . . , aM)|v
for v ∈ Mk and P ∈ (PM\D)(k), where |F|v is the maximum of the v-adic absolute values of
the coefficients of F. The notions of Weil heights and local heights can be generalised to any
projective variety X, and

h(D, −) −
∑
v∈Mk

λv(D, −)

is a bounded function on (X\D)(Q). For more details, see for example [2, 8].
We can now define the notion of quasi-integral points.

Definition 4. Let X be a projective variety defined over a number field k, and D be an effec-
tive divisor defined over k. Let S be a finite set of places of k, and let ε be a positive real
number at most 1. A set of (D, S, ε)-quasi-integral points is a set of the form

{Q ∈ X(Q) :
∑
v∈S

∑
w∈Mk(Q)

w|v

λw(D, Q) ≥ εh(D, Q)},

where k(Q) is the field of definition of Q.

A set of (D, S,1)-quasi-integral points corresponds to the notion of (D, S)-integral points.
In particular, when D = (X0 = 0) is the hyperplane in PM ,

{[1 : a1 : · · · : aM] : ai ∈RS}
is a set of (D, S)-integral points, where RS is the subset of Q consisting of elements which
are integral over the the ring of S-integers of k.

To prove Theorem 1, we use the following theorem of [13], which is an algebraic-point
version of [10]. We recall that effective divisors D1, . . . , Dq are in m-subgeneral position if
for any subset I ⊆ {1, . . . , q} with |I| ≤ m + 1, we have

dim
⋂
i∈I

|Di| ≤ m − |I|.

THEOREM 5 ([13, theorem 2]). Let m, M, δ be natural numbers, and let C(m, M, δ) as in
(1·1). Let D1, . . . , Dq be effective nontrivial Cartier divisors on PM which are defined over
a number field k and are in m-subgeneral position. Then given ε′ > 0 and a finite set S of
places of k including all archimedean ones,

∑
v∈S

∑
w∈Mk(P)

w|v

q∑
i=1

λw(Di, P)

deg Di
< (C(m, M, δ) + ε′)h(P)

holds for all but finitely many points P ∈ PM(k) \⋃q
i=1 |Di| satisfying [k(P) : k] ≤ δ.

https://doi.org/10.1017/S0305004124000392 Published online by Cambridge University Press

https://doi.org/10.1017/S0305004124000392


6 YU YASUFUKU

Proof of Theorem 1. By a standard Weil height property, there exists a constant C1 such
that

h(φ(Q)) ≥ dh(Q) − C1

for all Q ∈ PM(Q). As d > 1, we can rearrange terms to obtain

h(φ◦t(Q)) − C1

d − 1
≥ dt

(
h(Q) − C1

d − 1

)
, (2·1)

so by letting C2 = (dt − 1)C1

d − 1
, we have

h(φ◦t(Q)) ≥ dth(Q) − C2 (2·2)

for all Q ∈ PM(Q). By a standard property of local heights and by the fact that the Néron–
Severi rank of PM is one, it also follows that there exist constants C3 and C3

′ such that∑
v∈S

∑
w∈Mk(Q)

w|v

λw(D′, Q) ≤ h(D′, Q) + C3
′ ≤ ( deg D′)h(Q) + C3 (2·3)

for all Q ∈ (PM\D′)(Q). There also exists a constant C4 such that∑
v∈S

∑
w∈Mk(P)

w|v

λw(D, φ◦t(Q)) ≤
∑
v∈S

∑
w∈Mk(P)

w|v

λw((φ◦t)∗D, Q) + C4 (2·4)

for all Q ∈ PM(Q) \ |(φ◦t)−1D|.
Now, suppose that [K : k] ≤ δ, P ∈ PM(K), and φ◦n(P) ∈Rε\φ◦t(|D′| ∪⋃q

i=1 |Di|) with
n ≥ t. By definition and by equations (2·3) and (2·4),

ε( deg D)·h(φ◦n(P)) =εh(D,φ◦n(P)) ≤
∑
v∈S

∑
w∈Mk(P)

w|v

λw(D, φ◦n(P))

≤
∑
v∈S

∑
w∈Mk(P)

w|v

λw((φ◦t)∗D, φ◦n−t(P)) + C4

=
∑
v∈S

∑
w∈Mk(P)

w|v

λw(D1 + · · · + Dq + D′, φ◦n−t(P)) + C4.

≤
∑
v∈S

∑
w∈Mk(P)

w|v

λw(D1 + · · · + Dq, φ◦n−t(P)) + ( deg D′)h(φ◦n−t(P)) + C3 + C4.

Therefore, combining with (2·2), we have

ε( deg D)
(
dth(φ◦n−t(P)) − C2

)≤
∑
v∈S

∑
w∈Mk(P)

w|v

λw(D1 + · · · + Dq, φ◦n−t(P))

+ ( deg D′)h(φ◦n−t(P)) + C3 + C4, (2·5)

https://doi.org/10.1017/S0305004124000392 Published online by Cambridge University Press

https://doi.org/10.1017/S0305004124000392


Uniformity of quasi-integral points in orbits 7

hence by letting C5 = ε( deg D)C2 + C3 + C4, we have

(ε( deg D)dt − ( deg D′))h(φ◦n−t(P)) ≤
∑
v∈S

∑
w∈Mk(P)

w|v

λw(D1 + · · · + Dq, φ◦n−t(P)) + C5.

(2·6)
By assumption,

ε′′ := 1

2

⎛
⎝ε( deg D)dt − ( deg D′)

max
i=1,...q

deg Di
− C(m, M, δ)

⎞
⎠

is positive, and we have

∑
v∈S

∑
w∈Mk(P)

w|v

q∑
i=1

λw(Di, φ◦n−t(P))

deg Di

≥
∑
v∈S

∑
w∈Mk(P)

w|v

λw(D1 + · · · + Dq, φ◦n−t(P))

max
i=1,...q

deg Di

≥ ε( deg D)dt − ( deg D′)
max

i=1,...q
deg Di

h(φ◦n−t(P)) − C5

max
i=1,...q

deg Di
( ∵ (2.6))

>
(
C(m, M, δ) + ε′′) h(φ◦n−t(P)) − C5

max
i=1,...q

deg Di
.

Therefore, applying Theorem 5 with ε′ = ε′′/2, φ◦n−t(P) lies either in the finite set of
exceptions coming from Le’s theorem or in the finite set of height bounded above by

2C5/
(
ε′′ max

i=1,...q
deg Di

)
. By taking the image under φ◦t, it follows that φ◦n(P) lies in a finite

set F =F (φ, S, ε, δ, m). In particular, for a non-preperiodic P, the number of n’s for which
φ◦n(P) ∈Rε\φ◦t(|D′| ∪⋃q

i=1 |Di|) is uniformly bounded above by t+#F .
By the Northcott property, there exists α such that any Q ∈ PM(K) with [K : k] ≤ δ and

h(Q) > C1/(d − 1) satisfies h(Q) ≥ α. Therefore, by letting β be the maximum height of the
finite set F , it follows from (2·1) that any time φ◦n(P) is in Rε\φ◦t(|D′| ∪⋃q

i=1 |Di|) with
h(P) > C1/(d − 1),

β ≥ h(φ◦n(P)) ≥ dn(h(P) − C1

d − 1
) + C1

d − 1
≥ dn(α − C1

d − 1
) + C1

d − 1
(2·7)

is satisfied, so we obtain

n ≤ logd

(
β − C1

d−1

α − C1
d−1

)
.

On the other hand, if P is not preperiodic, then after at most

#{Q ∈ PM(K) : [K : k] ≤ δ, h(Q) ≤ C1

d − 1
}
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iterations, the point will have height at least C1/(d − 1). So it follows that after at most

t+ logd

(
β − C1

d−1

α − C1
d−1

)
+ #{Q ∈ PM(K) : [K : k] ≤ δ, h(Q) ≤ C1

d − 1
}

iterations, no orbit point will be in Rε . It is also immediate that whenever φ◦n(P) is in
Rε\φ◦t(|D′| ∪⋃q

i=1 |Di|) for some n, (2·7) implies that the height of P is bounded above by
max (β, C1/(d − 1)), so such a P comes from a finite set when P ∈ PM(K) with [K : k] ≤ δ.
This finishes all parts of the proof.

Remark 6. As noted in the introduction, Theorem 1 for the case of P1 does not recover Hsia–
Silverman [9]. Indeed, for example for φ(x) = x/(x − 1)d, φ−1(∞) = {1}, φ−1(0) = {∞, 0},
and the ramification points are 1, ∞, 1/(1 − d). Since (x − 1)d − x does not have a root in
Q, the preimages of 1 are not in Q, so from here on the points in the preimage tree are not
in Q. So in particular, they are not ramified. Therefore, the number of preimage points of ∞
by φ◦t is dt−1, so deg D′ is dt − dt−1 = ((d − 1)/d) · dt. Hence, when ε ≤ (d − 1)/d, one can
never satisfy hypothesis (iii).

On the other hand, by modifying the proof argument slightly, we recover the result of
Hsia–Silverman. By [25, lemma 3·52], for any small ε′′ > 0, there exists t such that the
maximal multiplicity of points in (φ◦t)∗(∞) is at most ε′′dt. Then instead of using divisor
D′ and obtaining (2·5), letting D1 + · · · + Dq be the reduced induced closed subscheme of
(φ◦t)∗(∞) (i.e. just making the multiplicity of each preimage point to 1), we have

ε
(
dth(φ◦n−t(P)) − C2

)≤ ε′′dt
∑
v∈S

∑
w∈Mk(P)

w|v

λw(D1 + · · · + Dq, φ◦n−t(P)) + C3 + C4.

Therefore,∑
v∈S

∑
w∈Mk(P)

w|v

λw(D1 + · · · + Dq, φ◦n−t(P)) ≥ ε

ε′′ h(φ◦n−t(P)) − εC2 + C3 + C4

ε′′dt

and thus by choosing ε′′ so that ε/ε′′ > C(1, 1, δ), the rest of the argument goes through and
we obtain the result of Hsia–Silverman [9, theorem 11].

Remark 7. We observe that the three conclusions of the theorem are related, but none implies
another directly. Indeed, the set of initial points (1·3) can be finite while larger and larger
iterate could be in Rε to make (1·2) infinite and force nonexistence of a uniform bound N.
Similarly, even if the set (1·2) of integral points in orbits is finite, this may occur with larger
and larger iterate with (infinitely many) different initial points. Of course, as is evident from
the proof, finiteness of either (1·2) or (1·3) will imply the finiteness of the other as well as
the existence of the uniform bound N, by the Northcott property and by the fact that every
morphism on projective space is polarised.

Remark 8. Since Le’s theorem holds for projective varieties as long as there exists an ample
divisor A such that each Di is numerically equivalent to a multiple of A, Theorem 1 also
holds under this setting as long as the divisor D′ is also numerically equivalent to a multiple
of A (we define the ‘degree’ by the multiple of A to which each Di is numerically equivalent).
In particular, the theorem holds for projective varieties with Néron–Severi rank one.
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3. Proof of Theorem 3

In this section, we apply results of Matsuzawa [20] to obtain a similar result as Theorem
1, but with different hypotheses. Since Matsuzawa’s result assumes Vojta’s conjecture, the
result of this section will also be conditional on this conjecture. Matsuzawa used the so-
called “Main Conjecture” of Vojta [27, conjecture 3·4·3], which works over a fixed number
field. In contrast, since we would like to obtain an algebraic-point version, here we assume
the so-called “General Conjecture” of Vojta [27, conjecture 5·2·6], which applies for alge-
braic points but with a discriminant term on the right-hand side. In the following, we define
the absolute logarithmic discriminant by

disc(P) = 1

[k(P) : Q]
log |Dk(P)/Q|,

where DL/Q is the (usual) discriminant of the number field L.

CONJECTURE 9 (Vojta’s General Conjecture). Let X be a smooth projective variety defined
over a number field k, with KX as a canonical divisor. Let D be a normal-crossings divisor
on X and A be an ample divisor both defined over k, and let S be a finite subset of Mk. Let
δ be a natural number. Then given ε > 0, there exist a Zariski-closed Z = Z(ε) � X and a
constant cX,k such that∑

v∈S

∑
w∈Mk(P)

w|v

λw(D, P) + h(KX , P) < εh(A, P) + cX,kdisc(P)

for P ∈ X(K) \ Z with [K : k] ≤ δ.

In [27, conjecture 5·2·6], Vojta originally set cX,k to be dim X. Later in [28, conjecture 2·1],
Vojta set cX,k to be simply 1. On the other hand, Masser [18] has shown a counterexample
for cX,k = 1, and Levin [14] has constructed a surface for which cX,k needs to be at least
3/2. In [14], Levin also discusses why the same statement for all algebraic points at once
does not hold, i.e. why cannot let δ = ∞. Perhaps, cX,k = dim X is suitable, but the exact
constant seems not quite settled, and it will be sufficient for our purposes as long as cX,k

does not depend on P (it could even depend on ε, S and D), thus we state this conjecture
in this fashion with cX,k in this paper. We note that this conjecture is extremely deep: for
example the conjecture for Fermat curves easily implies the abc conjecture.

The arithmetic degree αφ(P), introduced by Kawaguchi–Silverman [12], is

αφ(P) = lim
n→∞ max (h(φ◦n(P)), 1)1/n,

when the limit exists.
Finally, we also need the notion of ‘asymptotic’ multiplicity of the forward orbit of a

scheme point.

Definition 10. Let φ : X−→X be a finite flat self-morphism of a separated scheme of finite
type over a number field. For a scheme point x, we define the multiplicity of φ at x as

eφ(x) = lOX,x(OX,x/φ
∗mφ(x)OX,x),
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where mφ(x) is the maximal ideal of OX,φ(x) and lOX,x stands for the length as an OX,x-
module. We then define the asymptotic multiplicity as

eφ,+(x) = lim
n→∞ eφ◦n(x)1/n.

Favre [4, theorem 2·5·8] has shown that this limit exists. When Y is an irreducible subvariety
with the generic point η, we also write eφ,+(Y) for eφ,+(η).

By Matsuzawa [20, theorem 4·8], the function

x �→ max{eφ,+(η) : η is a φ-periodic scheme point with x ∈ {η}}
is well-defined and upper-semicontinuous. In particular,

max
x∈D

max{eφ,+(η) : η is a φ-periodic scheme point with x ∈ {η}} (3·1)

exists, and hypothesis (iii) of Theorem 3 is satisfied if and only if αφ(P) is bigger than (3·1).
We are now ready to prove Theorem 3.

Proof of Theorem 3. The proof is based on the proofs of Lemma 7.17 and Theorem 1.16
of Matsuzawa [20], but one needs to take care to make N independent of P and its field
of definition. First, letting H be an ample divisor on PM (e.g. a hyperplane), there exists a
constant C6 such that

h(H, −) − h(KPM , −) ≤ C6h(H, −). (3·2)

This is an immediate consequence of the ampleness of H, but in this setting of PM , we can
let C6 be M + 2.

Next, let e be the quantity defined by (3·1). For morphisms on normal projective varieties,
the set of all arithmetic degrees is finite by Kawaguchi–Silverman [11] (in fact, for polarised
morphisms as in this case, it is clear from their proof that the arithmetic degree can only be
1 or deg φ). In particular,

{αφ(Q) : Q ∈ PM(K), [K : k] ≤ δ, αφ(Q) > e}
is a finite set, and we let the minimum of this set be r (if this set is empty, then the statement
of Theorem 3 will also be vacuous). Letting ε1 = (r − e)/2 > 0, we have

e + ε1 < r,

so for sufficiently large t, (
e + ε1

r

)t

<
ε·( deg D)

2C6
. (3·3)

Moreover, from [20, corollary 7·13], for all sufficiently large t, the log canonical threshold
of (φ◦t)−1(D) is at least (1/(e + ε1))t. So from here on, we fix a large enough t satisfying
this as well as (3·3). Applying Conjecture 9 (instead of the conjecture for δ = 1 without the
discriminant term) to the log resolution X of (PM , (φ◦t)−1(D)), the proof of [20, proposition
7·15] shows that there exist a Zariski-closed Z0 �PM and a constant C7 (depending on t, but
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recall that we have already fixed a large enough t) such that∑
v∈S

∑
w∈Mk(Q)

w|v

λw(D, φ◦t(Q)) ≤
∑
v∈S

∑
w∈Mk(Q)

w|v

λw((φ◦t)−1D, Q) + C7

≤ (e + ε1)t(h(H, Q) − h(KPM , Q) + cX,kdisc(Q)) + C7

≤ (e + ε1)tC6h(H, Q) + (e + ε1)tcX,kdisc(Q) + C7 ( ∵ (3.2))
(3·4)

for all Q of degree bounded by δ lying outside of Z0.
From Mahler [17], there exists a constant C8 so that

(2δ − 2)h(Q) ≥ disc(Q) − C8. (3·5)

More explicitly Silverman [23, theorem 2] has shown that we can take C8 = log δ. Since φ

is a morphism of degree d, we also have

h(φ(Q)) ≥ dh(Q) − C9 (3·6)

for some constant C9 ≥ 0. By setting C10 = C9/(d − 1), we have

h(φ(Q)) − C10 ≥ d(h(Q) − C10),

so

h(φ◦m(Q)) > dm · (h(Q) − C10) + C10 ≥ dm · (h(Q) − C10) (3·7)

for any m.
Now, let P and n satisfy the hypotheses of the theorem. By hypothesis (iii) and the fact

that e is equal to (3·1), we have e < αφ(P). By our definition of r and (3·3),(
e + ε1

αφ(P)

)t

<
ε·( deg D)

2C6
(3·8)

holds. Moreover,

αφ(P) ≤ d.

This is proved by Silverman [26, proposition 12] for rational maps on projective spaces, and
proved for general projective varieties by Matsuzawa [19, theorem 1·4]. In all, we have

e + ε1 < r ≤ αφ(P) ≤ d. (3·9)

Therefore, we have

(e + ε1)th(H, φ◦n−t(P)) ≤ ε·( deg D)

2C6
αφ(P)th(H, φ◦n−t(P)) ( ∵ (3.8))

≤ ε·( deg D)

2C6
dth(H, φ◦n−t(P))

≤ ε·( deg D)

2C6

(
h(H, φ◦n(P)) + dtC10

)
( ∵ (3.7)) (3·10)
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We now combine all of these together. We divide the argument into two cases, depending
on whether disc(P) is bigger than the following quantity or not:

max

(
1

[k : Q]
log |Dk/Q|, δC8 + δ(2δ − 2)C10, 1

)
. (3·11)

Case I: disc(P) > (3·11)

In this case, k(P) = k, so in particular, δ > 1. The assumption implies

1

2δ − 2
disc(P) − C8

2δ − 2
>

1

2δ
disc(P) + C10,

thus by Mahler’s inequality (3·5),

h(P) >
1

2δ
disc(P) + C10.

Hence, by (3·7), we have

h(φ◦m(P)) > dm 1

2δ
disc(P). (3·12)

We now compute from (3·4):

ε ≤

∑
v∈S

∑
w∈Mk(P)

w|v

λw(D, φ◦n(P))

h(D, φ◦n(P))

=

∑
v∈S

∑
w∈Mk(P)

w|v

λw(D, φ◦n(P))

( deg D)h(H, φ◦n(P))
(3·13)

≤ (e + ε1)tC6h(H, φ◦n−t(P)) + (e + ε1)tcX,kdisc(φ◦n−t(P)) + C7

( deg D)h(H, φ◦n(P))

≤ ε

2

h(H, φ◦n(P)) + dtC10

h(H, φ◦n(P))
+ (e + ε1)tcX,kdisc(φ◦n−t(P)) + C7

( deg D)h(H, φ◦n(P))
( ∵ (3.10))

≤ ε

2
+ (e + ε1)tcX,kdisc(φ◦n−t(P)) + C11

( deg D)·dn 1
2δ

disc(P)
(C11 := dt( deg D)C10 + C7, (3.12))

≤ ε

2
+ 2δ·cX,k

( deg D)·dn−t
+ 2δC11

( deg D)·dn
( ∵ (3.9))

as long as φ◦n−t(P) /∈ Z0, i.e. as long as φ◦n(P) /∈ φ◦t(Z0). Note that here we use the fact that
the discriminant remains the same in an orbit, as φ itself is defined over k. For sufficiently
large n, which can be evidently chosen independently of P, the sum of the last two terms is
less than ε/2. This contradicts the fact that φ◦n(P) was (D, S, ε)-quasi-integral. Therefore,
quasi-integral points must appear in earlier iterations.
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Case II: disc(P) ≤ (3·11)
We compute in a similar fashion as above:

ε ≤

∑
v∈S

∑
w∈Mk(P)

w|v

λw(D, φ◦n(P))

h(D, φ◦n(P))

≤ (e + ε1)tC6h(H, φ◦n−t(P)) + (e + ε1)tcX,kdisc(φ◦n−t(P)) + C7

( deg D)h(H, φ◦n(P))

≤ ε

2
+ (e + ε1)tcX,kdisc(φ◦n−t(P)) + C11

( deg D)h(H, φ◦n(P))

≤ ε

2
+ (e + ε1)tcX,k max ( 1

[k : Q] log |Dk/Q|, δC8 + δ(2δ − 2)C10, 1) + C11

( deg D)h(H, φ◦n(P))

= ε

2
+ C12

h(H, φ◦n(P))
,

as long as φ◦n(P) /∈ φ◦t(Z0), where C12 is defined to be 1/deg D times the numerator of the
previous equation (which is a constant since t is fixed). In particular,

h(φ◦n(P)) ≤ 2C12

ε
. (3·14)

By the Northcott property, there exists C13 > C10 such that any point Q ∈ PM(K) with
[K : k] ≤ δ and h(Q) > C10 satisfies h(Q) ≥ C13. Therefore, if h(P) > C10, (3·7) implies
h(φ◦n(P)) > dn(h(P) − C10) ≥ dn(C13 − C10). This together with (3·14) implies

n ≤ logd
2C12/ε

C13 − C10
.

On the other hand, if P is not preperiodic and h(P) ≤ C10, after at most

#{Q ∈ PM(K) : [K : k] ≤ δ, h(Q) ≤ C10}
iterations, all the remaining iterations have height above C10, so we now obtain a uniform
bound for n.

We end this paper with several remarks.

Remark 11. The condition that eφ,+(Y) < αφ(P) is necessary. For example, if φ =
[Zd

0 : F1 : · · · : FM] is a morphism with Fi having coefficients in the ring of integers, then
the entire orbit of P = [1 : a1 : · · · : aM] lies in the set of integral points (i.e. in R1) with
respect to the hyperplane D = (Z0 = 0) if each ai is integral. In this case, D is φ-fixed and
eφ,+(D) = d = αφ(P). For general choices of Fi and P, the orbit is conjectured to be also
Zariski-dense; for example, [1, corollary 2·7] shows the existence of such a P whenever
there is a fixed point of φ such that the eigenvalues of the tangent map at that point are
multiplicatively independent.

Remark 12. We can generalise φ to any polarised morphism on a projective variety, as long
as D is numerically equivalent to a multiple of H (for example, if the Néron–Severi rank is
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one). Indeed, (3·6) holds for polarised endomorphisms, the results of Matsuzawa hold for
morphisms on projective varieties, and Mahler’s inequality (3·5) holds by embedding the
variety as a closed subvariety of a projective space. Moreover, if D is numerically equivalent
to a positive multiple of H, there exists d′ > 0 such that h(D, Q) ≥ d′h(H, Q) for all Q with
sufficiently large height, so by replacing deg D by d′ in (3·3) and (3·13) and in equations
thereafter, the argument goes through.

Remark 13. From Sano [22, theorem 1·1], we know

C14nlαφ(P)n < h(φ◦n(P)) < C15nlαφ(P)n

for some l, but as C14 and C15 depend on the canonical height of P with respect to a basis
of Néron–Severi group, it seems difficult to use these bounds for our purposes of showing
uniformity. Here, we use a more elementary height inequality involving h(φ◦t(P)) instead.

Remark 14. It is natural to ask whether the exceptional set Z can be removed from the
statement of the theorem. That is, does there exist a subvariety Z �PM such that Z ∩Rε

contains φ◦n(P) for arbitrarily large n with P ∈ PM(K), [K : k] ≤ δ, P non-φ-preperiodic, and
every φ-periodic subvariety Y with Y ∩ D = ∅ satisfying eφ,+(Y) < αφ(P)?

If we ask Z to satisfy the stronger condition that it contains infinitely many points of the
orbit of a single point, then the dynamical Mordell–Lang conjecture would imply that there
is a periodic subvariety containing infinitely many integral points. Replacing by an iterate,
we may assume that we have a fixed subvariety. If φ is a map on P2, then such a fixed curve
must be rational as it contains infinitely many integral points, and by Silverman’s theorem,
the second iterate of the map restricted to this rational curve must be a polynomial. Then the
intersection point of this curve with |D| must be a fixed point whose multiplicity is equal to
(so not strictly less than) the degree. Since the arithmetic degree is equal to the degree, this
is a contradiction to the assumption. This heuristic argument seems to indicate that if such
a Z exists for a morphism on P2, it must contain integral points which are arbitrarily high
iterates coming from different initial points.
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