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Abstract
In the modeling of change over time, there is often a disconnect between developmental theories

advanced in substantive research and statistical models specified in longitudinal analysis. That is,
theory is understood and advanced in terms of meaningful developmental quantities (e.g., peaks,
inflections, timing, and tempo) while common polynomial models estimate the effect of powered
terms of time in a linear, additive form. This linear parameterization approach has many advantages,
especially its computation efficiency in obtaining stable results, but the quantities estimated in these
models are often difficult to directly connect to theoretical ideas of change over time. To bridge the
gap between estimation and theory development, I propose a series of approaches for linear estimation
with nonlinear inference (LENI), where the results of the stable, easily-estimated linear model are
converted through a set of principled transformation functions into nonlinear estimates which align
more closely with theoretical quantities of interest. I first lay out how to derive these interpretable
nonlinear parameters, then show how to transform the results of the linear model – including fixed
and random effects and the conditional effects of covariates – into the effects we would have obtained
by fitting a nonlinear version of the model. I conclude by summarizing a linearized structural equation
model approach which can be flexibly applied to model any known nonlinear target function into a
linearly-estimable model. I conclude with recommendations for applied researchers and directions for
fruitful future work in this area.
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1 Introduction1

The issue of interpretability is one of widespread concern in modeling outcomes of interest across2

many different disciplines. At the extremes, approaches like large language or deep learning models can3

be composed of hundreds of thousands of parameters, none of which can be meaningfully interpreted4

individually. These issues are not isolated to large machine learning approaches, however, and filter5

down to more common linear models within the social and behavioral sciences. Often, standard6

models are fit using equations that optimize numerical stability and have relatively simple fit functions7

– often a crucial feature that allowed these models to be feasibly estimated before modern computing8

power – rather than the interpretability of the parameters obtained. While simple linear effects solve9

for both ease of fit and interpretability, they are limited in their ability to test more complex and10

specific substantive hypotheses (e.g., timing, inflection points). Some fields have sought a balance11

between these extremes. For instance, the field of cognitive computational modeling has developed12

a wide array of mathematical expressions that seek to describe mental state representations guiding13

overt action (Farrell & Lewandowsky, 2018; Wilson & Collins, 2019). While these expressions are14

relatively complex, a strong emphasis of computational modeling is that the parameters of these models15

are linked with specific cognitive or behavioral processes. As such, individual (or group) differences16

in these parameters can ideally be linked directly back to cognitive or neural processes of interest17

(e.g., Mareschal & Thomas, 2007; Patzelt et al., 2018; Pleskac et al., 2019; Wilson & Collins, 2019).18

Outside of these computational models, however, there has only been slow progress in the adoption of19

interpretable parameter models.20

The bio-behavioral and clinical sciences are dominated by the use of linear models – specifically21

models which are linear with respect to the parameters, including popular polynomial models (e.g.,22

quadratic and cubic) which chart out a non-linear relationship. These linear parameter models have23

many attractive features for estimating relationships between variables – they are identified across an24

infinite range of parameter values associated with the predictors (i.e., 𝛽’s), they are purely additive25

in form, and they are widely implemented in available software. As such, results can be easily and26

efficiently obtained, often with closed-form solutions (e.g., ordinary least squares regression) or other27

well-behaved likelihood functions. Unfortunately, the parameters of these models also often do not28

test specific hypotheses that are of substantive interest (Cudeck & du Toit, 2002; Preacher & Hancock,29

2015; Ram & Grimm, 2007). To address these issues, prior work has derived alternative nonlinear30

expressions (Cudeck & du Toit, 2002; McNeish et al., 2021), or worked to reparameterize known31

nonlinear expressions into linear forms (Blozis, 2004; Feng et al., 2019; Grimm et al., 2013; Johnson32

& Hancock, 2019; Preacher & Hancock, 2012, 2015; Zhang et al., 2012). Unfortunately, these models33
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do not appear as standard options in major software packages, and many applied researchers remain34

unaware of their potential utility. Additionally, nonlinear expressions present additional estimation35

challenges – especially in growth modeling contexts with random effects – and for these reasons, largely36

remain the provenance of researchers with training in and access to more advanced statistical methods37

and software options.38

Here, I address several extant issues for formulating polynomial models with interpretable and39

meaningful parameters, with an eye for expanding the utility and accessibility of these approaches.40

First, I review a history of interpretable parameter models and walk through a general approach for41

deriving new parameters of interest, highlighting the quadratic form outlined by Cudeck & du Toit42

(2002). I then extend these principles and derive two alternative forms of a cubic polynomial with43

meaningful parameters and show how this new model is related to the standard linear parameter version.44

I also discuss a multiphase version of this model which can serve as an approximation of S-shaped45

nonlinear models (e.g., logistic functions). To address the common estimation issues with nonlinear46

versions of these alternative models, I lay out an approach of linear estimation with nonlinear inference47

(LENI), where the standard linear parameter model is estimated, and then results are transformed48

post hoc into the parameters of interest from the nonlinear alternative models. I derive transformation49

equations for the point estimates and standard errors of fixed, random, and conditional effects, allowing50

inferences to be made on the meaningful parameters as if we had directly estimated the nonlinear51

equation. Finally, extending prior work (Feng et al., 2019; Preacher & Hancock, 2015), I derive a52

linearized structural equation model for all of the models discussed, focusing on implementation in53

freely-available software. Throughout, I discuss these models largely in the context of growth models54

using mixed-effects multilevel or latent curve structural equation models (McCormick et al., 2023;55

McNeish & Matta, 2018; Meredith & Tisak, 1990), with artificial and real data examples, but the56

discussion of fixed effects derivations would apply equally to traditional regression analysis with no57

additional variance components. I then end with a discussion of implementation options for applied58

researchers and open avenues for future work in this area.59

2 Interpretable Parameter Models60

In efforts to address mismatches between theoretical and statistical models, prior work has focused61

on deriving new expressions which equivalently trace out the same nonlinear curves as standard poly-62

nomial models, but using parameters that more-closely match theoretical quantities of interest. A63

prime example of these efforts is work by Cudeck & du Toit (2002), who derived a new quadratic64

expression with meaningful parameters. The familiar linear parameter version of the quadratic for65
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repeated measures outcome 𝑦𝑡𝑖 is66

𝑦𝑡𝑖 = 𝛽0 + 𝛽1𝑥𝑡𝑖 + 𝛽2𝑥2
𝑡𝑖 (1)

for person 𝑖 at time 𝑡, where 𝛽1 and 𝛽2 are the linear and quadratic effect of the covariate 𝑥𝑡𝑖 respectively,67

while the alternative expression takes the following form (Cudeck & du Toit, 2002):68

𝑦𝑡𝑖 = 𝛼𝑦 − (𝛼𝑦 − 𝛼0) (𝑥𝑡𝑖
𝛼𝑥

− 1)
2

(2)

Here, 𝛼𝑥 and 𝛼𝑦 represent the (𝑥, 𝑦) location for the vertex (i.e., peak or trough) of the quadratic69

parabola, while 𝛼0 is equivalent to 𝛽0 in Equation 1 – that is, the predicted level of 𝑦 when 𝑥 = 0. This70

alternative quadratic model is nonlinear with respect to the parameters (e.g., 𝛼𝑥 is in the denominator)71

but otherwise describes the exact same parabolic shape as in Equation 1 (note that we can ignore the72

residual term, 𝜀𝑡𝑖, here when discussing alternative models because if we have done our job correctly, it73

will be identical across model versions). The advantage of Equation 2 is that the 𝛼𝑥 and 𝛼𝑦 parameters74

give a direct estimate of the location of the vertex, which in developmental contexts might relate to75

the timing of changes in sensitivity to the external environment (Braams et al., 2015; McCormick76

et al., 2021; Nunes et al., 2020; Orben et al., 2022; Shaw et al., 2008; Somerville et al., 2013), or77

reflect the optimal arousal levels or dosage needed to maximize the desired response (Chaiken, 1994;78

Cudeck & du Toit, 2002; Preacher & Hancock, 2015). Cudeck & du Toit (2002) also described a second79

alternative model80

𝑦𝑡𝑖 = 𝛼0 − 𝛾 [(𝑥𝑡𝑖
𝛼𝑥

− 1)
2

− 1] or 𝑦𝑡𝑖 = 𝛼𝑦 − 𝛾 (𝑥𝑡𝑖
𝛼𝑥

− 1)
2

(3)

where 𝛾 represents the difference in the level of the outcome 𝑦 between the intercept and the vertex81

(𝛾 = 𝛼𝑦 − 𝛼0) rather than estimating 𝛼𝑦 (Equation 3, left) or 𝛼0 (right) directly. To highlight the82

fact that we can retain any combination of meaningful parameters that we wish, we can also lay out83

another alternative quadratic form below where we estimate 𝛼𝑥 and 𝛼𝑦 but retain 𝛽2 as 𝛼𝑐 (i.e., half84

of the acceleration, which controls the degree of curvature for the parabola) rather than 𝛼0:85

𝑦𝑡𝑖 = 𝛼𝑦 + 𝛼𝑐 (𝑥𝑡𝑖 − 𝛼𝑥)2 (4)

Detailed derivations for all of these models are available in the Supplemental Material.86
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2.1. Deriving New Quantities87

While these parameters represent mathematically meaningful points on a quadratic parabola (e.g.,88

location of the vertex), we might also wish to understand something about the curve at a particular89

value of 𝑥. Examples of this kind of question include things like the number of words acquired by 2090

months-of-age (Huttenlocher et al., 1991), or level of drug and alcohol use upon entry to university91

(Derefinko et al., 2016). This is an interesting inversion of time-to-criterion models (Johnson & Han-92

cock, 2019), where the focus is on estimating how long it takes for some outcome to reach a pre-defined93

level, or nonlinear models for measuring potential (e.g., McNeish & Dumas, 2017) where the rate of94

approach towards an average or individual-level learning ”capacity” is of interest. Here, we might95

instead be interested in group- or individual-level status achieved on some outcome by a certain devel-96

opmental milestone. We can use this example to highlight how to go about translating new quantities97

of interest into statistical parameters that we can estimate from alternative model expressions. For a98

quadratic of the form derived by Cudeck & du Toit (2002), we can express the level of the outcome at99

any pre-defined value of 𝑥 = 𝑠 through the parameter 𝛼𝑠 with the equation100

𝑦𝑡𝑖 = 𝛼𝑠 − (𝛼𝑠 − 𝛼0) (𝑥𝑡𝑖 − 𝑠
𝛼𝑥

− 1)
2

(5)

To emphasize, 𝑠 is predefined when estimating the model based on a theoretically interesting value101

of 𝑥, and not estimated as a unique parameter. This could be accomplished alternatively as part of102

a data management step, where 𝑠 is subtracted from 𝑥 before entering the model. In that approach,103

the original expression in Equation 2 should be used, as the identity of 𝛼0 has been changed through104

centering (Aiken & West, 1991) rather than through the model equation.105

It might occur to the reader that this new parameter 𝛼𝑠 in particular is easily achieved by simply106

entering the theoretically interesting value of 𝑥 = 𝑠 into the linear parameter quadratic equation107

(Equation 1) and generating a predicted value of 𝑦. However, this approach only returns a point108

estimate for 𝛼𝑠 and not a standard error or random effect variance, therefore should preclude us109

from making inferences on that predicted value (although applied research frequently does so). For110

instance, many developmental applications calculate and interpret the vertex of a quadratic trajectory111

(Eggleston et al., 2004; Giedd et al., 2015; Lenroot et al., 2007; LeWinn et al., 2017) or inflection112

of a cubic (LeWinn et al., 2017; Mills et al., 2016) as a quantity of interest without also obtaining a113

standard error. Without some measure of uncertainty, interpreting these point estimates can lead to114

erroneous conclusions about developmental timing, or differences among individuals or groups thereof115

(Giedd et al., 2015; Karriker-Jaffe et al., 2008; Pfefferbaum et al., 2018) . We will return to the issue116

of obtaining these measures of uncertainty (see Linear Estimation, Nonlinear Inference (LENI)).117
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When considering new interpretable quantities, it is important that we be able to generate specific118

mathematical definitions. Assuming that we can do this, we can generate an infinite combination of119

meaningful model expressions that directly estimate parameters of interest. In the following section, I120

will build on the principles outlined here to derive nonlinear alternatives to the standard cubic model,121

with interpretable parameters linked to meaningful developmental phenomena.122

3 Deriving Alternative Cubic Models123

As a natural extension of the quadratic, the cubic polynomial is another option for modeling124

nonlinear change over time. The common expression of the cubic model is as follows for 𝑦 for person125

𝑖 at time 𝑡:126

𝑦𝑡𝑖 = 𝛽0 + 𝛽1𝑥𝑡𝑖 + 𝛽2𝑥2
𝑡𝑖 + 𝛽3𝑥3

𝑡𝑖 (6)

which is linear with respect to the parameters. However, like the quadratic expression (Cudeck &127

du Toit, 2002), the parameters of this model are not readily identifiable with a specific developmental128

feature that might be of theoretical interest. The lower order terms 𝛽1 and 𝛽2 are conditional effects129

specific to where 𝑥 = 0, and 𝛽3 is not easily expressible in meaningful terms (i.e., the change in the130

acceleration of the curve) for most researchers. Here I will draw out two alternative expressions of131

the linear parameter cubic model with theoretically-interesting parameters. In its initial form, this132

model expression is best suited to cases where both extrema (i.e., local minimum and maximum) occur133

within the range of 𝑥, although that condition is not necessary for this alternative expression to obtain134

meaningful results. For modeling increases which subsequently plateau (e.g., Somerville et al., 2013),135

the multiphase form outlined in Multiphase Cubic Model for S-Shaped Trajectories would likely be136

preferable.137

3.1. Expressing Meaningful Model Parameters138

For defining the alternative form of the cubic formula, we can consider 4 parameters of interest,139

two location parameters – 𝑥𝑁 and 𝑦𝑁 – which locate the inflection point (𝑁) of the curve, and two140

stretch parameters – 𝛿 (delta) and ℎ (height) – which determine the horizontal and vertical distances141

respectively between the inflection point and the extrema of the cubic function. These parameters142

have well-defined geometric properties and can be used to solve polynomials in terms of their roots143

(Nickalls, 1993). To obtain 𝑥𝑁 , we take the second derivative of the linear parameter model144

d2𝑓
d𝑥2 = 2𝛽2 + 6𝛽3𝑥 (7)
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which can be set to zero and rearranged such that145

𝑥𝑁 = −𝛽2
3𝛽3

(8)

which nicely resembles the form of 𝛼𝑥 from the quadratic expression (Cudeck & du Toit, 2002). For146

full details on these parameter derivations, see the Supplemental Material.147

The value obtained at the inflection point (𝑦𝑁) is expressed by evaluating Equation 6 at Equation 8148

and simplifying149

𝑦𝑁 = 𝛽0 + 𝛽1𝑥𝑁 + 𝛽2𝑥2
𝑁 + 𝛽3𝑥3

𝑁

= 𝛽0 + 𝛽1 (−𝛽2
3𝛽3

) + 𝛽2 (−𝛽2
3𝛽3

)
2

+ 𝛽3 (−𝛽2
3𝛽3

)
3

= 𝛽0 − 𝛽1𝛽2
3𝛽3

+ 2𝛽3
2

27𝛽2
3

(9)

Now that we have identified the location parameters of the inflection point for the cubic function,150

we need to define the stretch parameters. The most convenient way to do so is to lay out expressions151

which identify the extrema – or local maximum and minimum – and defining our parameters as the152

distances between the inflection point and extrema. A cubic has two extrema locations (𝑥extrema), but153

since the function is symmetric, we only need to derive a single expression for 𝛿 or ℎ that will define154

the positive and negative distance. A convenient way to obtain 𝛿 is to set the first derivative of the155

cubic equal to 0156

d𝑓
d𝑥 = 𝛽1 + 2𝛽2𝑥 + 3𝛽3𝑥2 = 0 (10)

and solve using the quadratic formula where 𝑎 = 3𝛽3, 𝑏 = 2𝛽2, and 𝑐 = 𝛽1157

𝑥extrema = −(2𝛽2) ± √(2𝛽2)2 − 4(3𝛽3)(𝛽1)
2(3𝛽3) (11)

which, through substitution and simplification (see here), results in158

𝑥extrema = 𝑥𝑁 ± √𝛽2
2 − 3𝛽3𝛽1
3𝛽3

(12)

which means that159

𝑥extrema = 𝑥𝑁 ± 𝛿 (13)

and that160

𝛿 = √𝛽2
2 − 3𝛽3𝛽1
3𝛽3

(14)
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We can enforce positive distance values by defining 𝛿 =
√

𝛿2 where161

𝛿2 = 𝛽2
2 − 3𝛽3𝛽1

9𝛽2
3

(15)

Finally, by defining ℎ as the difference between 𝑦 obtained at the extrema (𝑦𝑥𝑁±𝛿) and the inflection162

point (𝑦𝑁)163

ℎ = 𝑦𝑥𝑁+𝛿 − 𝑦𝑁

= [𝛽0 + 𝛽1(𝑥𝑁 + 𝛿) + 𝛽2(𝑥𝑁 + 𝛿)2 + 𝛽3(𝑥𝑁 + 𝛿)3] −

[𝛽0 + 𝛽1𝑥𝑁 + 𝛽2𝑥2
𝑁 + 𝛽3𝑥3

𝑁 ]

(16)

Simplifying this expression (see Supplemental for full details) results in164

ℎ = −2𝛽3𝛿3 (17)

One final meaningful parameter we might define is the slope of the cubic function at the inflection165

point, 𝛽𝑁 . Here solve the first derivative of Equation 6 at the inflection point and substitute166

d𝑓
d𝑥 = 𝛽1 + 2𝛽2𝑥𝑁 + 3𝛽3𝑥2

𝑁

= (3𝛽3𝑥2
𝑁 − 3𝛽3𝛿2) + 2(−3𝛽3𝑥𝑁)𝑥𝑁 + 3𝛽3𝑥2

𝑁

𝛽𝑁 = −3𝛽3𝛿2

(18)

A schematic of these parameters is displayed in Figure 1. Note that the sign of ℎ (or alternatively 𝛽𝑁)167

determines whether the cubic has an overall increasing (ℎ < 0) or decreasing (ℎ > 0) function (the168

direction of change locally between the extrema is opposite of change globally).169

As we saw with the quadratic, we have a great deal of flexibility in terms of which nonlinear170

parameters we wish to use, so long as we can derive these transformation functions. Importantly,171

however, between any two given sets of parameters, the transformation functions are unique and172

deterministic because we must maintain the same functional form for the equations defined by the two173

parameter sets to be equivalent.174
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Figure 1. The interpretable parameters are superimposed on an idealized cubic function. Location parameters (𝑥𝑁 and 𝑦𝑁 )
are indicated with dashed lines, stretch parameters (𝛿 and ℎ) are indicated by single-headed arrows over the relevant distance,
and the slope of the tangent at the inflection point (𝛽𝑁 ) is indicated by a single-headed arrow tracing the tangent line at that
point.

3.2. Defining the Nonlinear Model175

New we can substitute the expressions for the meaningful parameters (𝑥𝑁 , 𝑦𝑁 , 𝛿, ℎ) into the linear176

parameter model (Equation 6) to derive the nonlinear expression for an interpretable cubic.177

𝑦 = 𝛽0 + 𝛽1𝑥 + 𝛽2𝑥2 + 𝛽3𝑥3

= [𝑦𝑁 + 3𝛽3𝑥𝑁𝛿2 − 𝛽3𝑥3
𝑁 ] + [3𝛽3𝑥2

𝑁 − 3𝛽3𝛿2] 𝑥 + [−3𝛽3𝑥𝑁 ] 𝑥2 + 𝛽3𝑥3

= 𝑦𝑁 + 𝛽3 [(𝑥 − 𝑥𝑁)3 − 3𝛿2 (𝑥 − 𝑥𝑁)]

= 𝑦𝑁 + ( −ℎ
2𝛿3 ) [(𝑥 − 𝑥𝑁)3 − 3𝛿2 (𝑥 − 𝑥𝑁)]

(19)

which results in178

𝑦 = 𝑦𝑁 − (ℎ
2 ) [(𝑥 − 𝑥𝑁

𝛿 )
3

− 3 (𝑥 − 𝑥𝑁
𝛿 )] (20)

Alternatively, substituting Equation 18 instead of Equation 17 results in179

𝑦 = 𝑦𝑁 − (𝛽𝑁𝛿
3 ) [(𝑥 − 𝑥𝑁

𝛿 )
3

− 3 (𝑥 − 𝑥𝑁
𝛿 )] (21)

For complete details on how we arrive at these expressions, see the Supplemental Material. Note180
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that these expressions are equivalent to the linear parameter model (Equation 6), and should fit the181

same functional form. We can use a real data example to see how this model fits in empirical settings.182

3.2.1. Data Example 1: Negative Affect and Aging183

To briefly highlight how Equation 20 produces meaningful inferences, we can turn to an empirical184

example. Here I extracted aggregated scatter plot data from Teachman (2006) (see Figure 2) and fit185

a cubic model using Equation 6 and Equation 20 to model age-related differences in negative affect in186

adults, ages 17-93.187

Figure 2. Cubic age-related changes in Negative Affect across the adult lifespan. The fitted cubic relationship is plotted over
the raw data points.

Results of the two models are presented in Table 1. While both models have the same fit to the188

data (see log-likelihood and BIC values; the standard 𝑅2 is only available in the linear parameter189

model), it is immediately apparent that the parameter values in the Nonlinear Parameter Model have190

intuitive meaning – the inflection point in negative affect is around 57 years-of-age and decreases by191

approximately 0.4 units across the 21 years between either extrema (𝑥𝑁 ± 𝛿) and the inflection point.192

By contrast, the values of the Linear Parameter Model are virtually meaningless from a substantive193

standpoint without plotting. To emphasize, neither model is wrong – indeed they are identical in194

the model-implied curve – however, the nonlinear parameter model is more useful if our goal is to195

interpret meaningful points in the age-related change with precision (rather than the frequent practice196

of “eyeballing” a plot) and crucially, the appropriate level of uncertainty (via the standard errors).197
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Table 1

Fitting Linear and Nonlinear Parameter Cubic Models
Linear Parameter Model Nonlinear Parameter Model

𝛽0 −2.288** (0.802) 𝑥𝑁 57.428*** (2.162)
𝛽1 0.174** (0.052) 𝑦𝑁 −0.050 (0.051)
𝛽2 −0.004*** (0.001) 𝛿 21.508*** (1.711)
𝛽3 2.04 × 10−5** (6.10 × 10−6) ℎ −0.406*** (0.068)

Num.Obs. 69 69
𝑅2 0.355
ℓ −33.286 −33.286
Num.Params. 5 5
BIC 87.7 87.7
Note: * p < 0.05, ** p < 0.01, *** p < 0.001; ℓ is the log-likelihood, 𝑘 is the number of
model parameters.

3.3. Multiphase Cubic Model for S-Shaped Trajectories198

While the cubic model in its full form offers an ability to derive meaningful conclusions about199

developmental patterns, cubic polynomials can also be used to capture plateaus (e.g., Somerville et200

al., 2013) because of the saddle-point of the cubic. However, there is often less made inferentially201

about subsequent acceleration after that plateau, although any full cubic will continue off into infinity202

in principle. If we want better approximate developmental plateauing, or other S-shaped functional203

forms (e.g., logistic, Gompertz), then a multiphase (or piecewise) version of the cubic may offer an204

attractive alternative. McNeish et al. (2021) showed that two reparameterized quadratics (Cudeck &205

du Toit, 2002) can be linked together at the inflection point of a hypothetical S-shaped functional206

form in a multiphase polynomial model (Cudeck & Klebe, 2002; Flora, 2008). Additional pieces are207

specified such that once these linked quadratics reach their model-implied vertices (𝛼𝑥), they stay fixed208

at the 𝑦 value obtained at the vertex (𝛼𝑦, see McNeish et al., 2021, for full details).209

We can use a similar approach here, taking advantage of the interpretable parameters I derived210

in Equation 20. If we take the case of a 4-parameter logistic function as an exemplar of an S-shaped211

curve, this function is defined for outcome 𝑦 for person 𝑖 at time 𝑡 by212

𝑦𝑡𝑖 = 𝐴𝑙𝑜𝑤𝑒𝑟 + 𝐴𝑢𝑝𝑝𝑒𝑟 − 𝐴𝑙𝑜𝑤𝑒𝑟

1 + ( 𝑥𝑡𝑖
𝑥𝑁

)−𝐻𝑖𝑙𝑙 (22)

Where 𝐴𝑢𝑝𝑝𝑒𝑟 and 𝐴𝑙𝑜𝑤𝑒𝑟 are the upper and lower asymptote, 𝑥𝑁 is the 𝑥-location of the inflection point,213

and 𝐻𝑖𝑙𝑙 is related to the steepness of change at the inflection point. These parameters conceptually214
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map on to several of the interpretable cubic parameters (Equation 20 or Equation 21) nicely, with 𝑥𝑁215

capturing the inflection point, 𝛽𝑁 capturing the rate of change at that point, and the upper and lower216

asymptotes approximated by 𝑦𝑁 ± ℎ. I use “approximate” advisedly because the multiphase cubic217

actually obtains the value of 𝑦𝑁 ± ℎ, while Equation 22 only ever infinitely approaches 𝐴𝑢𝑝𝑝𝑒𝑟 and218

𝐴𝑙𝑜𝑤𝑒𝑟. We can define the multiphase cubic function for the same 𝑦𝑡𝑖 as219

𝑦𝑡𝑖 =

⎧{{{
⎨{{{⎩

𝑦𝑁 − ℎ, if 𝑥𝑡𝑖 ≤ 𝑥𝑁 − 𝛿

𝑦𝑁 − ( ℎ
2 ) [( 𝑥𝑡𝑖−𝑥𝑁

𝛿 )3 − 3 ( 𝑥𝑡𝑖−𝑥𝑁
𝛿 )] , if (𝑥𝑁 − 𝛿) < 𝑥𝑡𝑖 < (𝑥𝑁 + 𝛿)

𝑦𝑁 + ℎ, if 𝑥𝑡𝑖 ≥ 𝑥𝑁 + 𝛿

(23)

or alternatively220

𝑦𝑡𝑖 =

⎧{{{
⎨{{{⎩

𝑦𝑁 − 2
3 𝛽𝑁𝛿, if 𝑥𝑡𝑖 ≤ 𝑥𝑁 − 𝛿

𝑦𝑁 − ( 𝛽𝑁𝛿
3 ) [( 𝑥𝑡𝑖−𝑥𝑁

𝛿 )3 − 3 ( 𝑥𝑡𝑖−𝑥𝑁
𝛿 )] , if (𝑥𝑁 − 𝛿) < 𝑥𝑖 < (𝑥𝑁 + 𝛿)

𝑦𝑁 + 2
3 𝛽𝑁𝛿, if 𝑥𝑡𝑖 ≥ 𝑥𝑁 + 𝛿

(24)

A schematic of the multiphase model with the relevant features highlighted can be seen in Figure 3.221

3.3.1. Data Example 2: Pubertal Development222

Figure 3. Multiphase Cubic Model. A) Using a multiphase cubic function (Equation 23 or Equation 24), we can approximate
an S-shaped function with three components. The component between onset and offset is defined by the cubic function, while
outside this range is defined by 𝑦𝑁 ±ℎ. B) Alternative models were fit to pubertal developmental data, including a 4-parameter
logistic (red), the multiphase cubic (green) and standard linear parameter cubic model (blue). The logistic and multiphase
models do not enforce continued acceleration at the edges of the curve – an advantage over the standard cubic. While the
logistic model continues increasing asymptotically, the multiphase cubic models stability outside of the cubic extrema.

To illustrate this model, I drew pubertal data from an accelerated longitudinal study of adolescent223
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development (BrainTime; Braams et al., 2015; McCormick et al., 2021). Adolescents were assessed up224

to three times at two-year intervals and self-reported on their level pubertal development (Petersen225

et al., 1988). Prior work (Braams et al., 2015) determined that a standard cubic model was the226

best fit to these data compared with linear and quadratic polynomial alternatives. Here, I fit three227

random-intercept growth models to these data: 1) a 4-parameter logistic curve (4-PL; Equation 22),228

2) the multiphase cubic model (Equation 23), and 3) a standard linear parameter version of the cubic229

(Equation 6). I modeled 𝐴𝑙𝑜𝑤𝑒𝑟, 𝑦𝑁 , and 𝛽0 respectively as random terms to equate the complexity of230

the random effects structure for all three models (code and full results for all three models are available231

in the Supplemental Material).232

The primary fixed effects of interest in each model are presented in Table 2. As reflected in233

Figure 3, the three models achieve reasonably similar results in terms of fitting a curve to the data.234

However, note that the BIC indicates that the 4-PL and multiphase-cubic models both fit better than235

the standard cubic function, due in large part to their different edge behavior (they asymptote or236

offset rather than continuing to accelerate). However, from a model interpretation stand-point, the237

4-PL and multiphase cubic have clearly interpretable parameters that match substantively interesting238

features of the developmental trajectory. The estimates between these two models largely draw the239

same conclusions about both the levels of 𝑦 at the asymptotes and where the inflection point is located.240

I additionally fit Equation 24 to compute 𝛽𝑁 (0.491, SE = 0.034, p < 0.001), which is expressed241

directly as the slope of the tangent at the inflection point unlike the 𝐻𝑖𝑙𝑙 parameter, which controls242

the overall shape of the curve in the 4-PL model but is not in easily-interpretable units.243

Table 2

Alternative S-Shaped Trajectories
4-Parameter Logistic Multiphase Cubic Standard Cubic

𝐴𝑙𝑜𝑤𝑒𝑟 1.460*** (0.107) 𝑥𝑁 12.780*** (0.142) 𝛽0 18.865*** (3.305)
𝐴𝑢𝑝𝑝𝑒𝑟 3.524*** (0.069) 𝑦𝑁 2.348*** (0.054) 𝛽1 −4.757*** (0.767)
𝑥𝑁 13.210*** (0.150) 𝛿 3.198*** (0.298) 𝛽2 0.406*** (0.058)
𝐻𝑖𝑙𝑙 14.196*** (2.172) ℎ 1.047*** (0.054) 𝛽3 −0.011*** (0.001)

Marg. ℓ −180.43 −167.51 −186.86
𝑘 6 6 6
BIC 394.54 368.70 407.40
Note: * p < 0.05, ** p < 0.01, *** p < 0.001; ℓ is the marginal (Marg.) log-likelihood, 𝑘 is the
number of model parameters.

There are some additional theoretical advantages to the multiphase cubic compared with the 4-PL244

model. Unlike the asymptotic nature of the logistic, the multiphase cubic here and quadratic outlined245
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by McNeish et al. (2021) obtain the minimum and maximum model-implied values. For outcomes246

measured on some natural scale – as opposed to the probability scale where asymptotic behavior is247

desirable – these multiphase models likely represent more realistic developmental conditions, especially248

when the scale has a natural or measurement boundary (i.e., floor or ceiling ; Feng et al., 2019). For249

instance, pubertal development is not an infinitely-occurring process – that is pre- and post-puberty are250

meaningful terms. Other processes such as cortical thinning (Fuhrmann et al., 2022; Mills et al., 2016;251

Tamnes et al., 2017) also reach some (at least local) minimum before other processes take over into the252

adult phase of development. Here the multiphase cubic could even be extended, with additional growth253

components modeled in the offset period, or to model processes of punctuated equilibrium, where254

change occurs in bursts followed by periods of stability, by linking several multiphase cubic functions.255

This approach is familiar in generalized additive (mixed) models where cubic splines have featured256

prominently (e.g., Wood, 2000). However, unlike GAMs, which focus on description and prediction,257

the multiphase cubic model maintains a primary focus on an explanatory model with interpretable258

parameters. Nevertheless, GAMs can be potentially valuable tools for conducting sensitivity analyses259

on interpretable parameter models to ensure that data-driven curves descriptively resemble the a priori260

functional forms fit to the data. Substantial departure from these imposed forms can reveal whether261

theory-driven models are indeed suitable to model the data at hand. For the various empirical examples,262

this GAM-based sensitivity approach was used to confirm the suitability of the functional forms used263

in the analysis (see the Supplemental Code for these results).264

4 Linear Estimation, Nonlinear Inference (LENI)265

Thus far, I have outlined a history of efforts to improve the interpretability of models by deriving266

alternative forms with theoretically meaningful parameters, including applications of the reparameter-267

ized quadratic (Cudeck & du Toit, 2002; Grimm et al., 2013; McNeish et al., 2021; Preacher & Hancock,268

2015) and how to build on these principles to derive new quantities of interest. I then extended these269

ideas to the cubic model, deriving a set of new expressions with 5 interpretable parameters (Equa-270

tion 20 and Equation 21), and a multiphase version of the cubic to model S-shaped curves. However,271

despite clear theoretical advantages and substantive interest in things like developmental “peaks” in272

the literature, these alternative models have remained largely restricted to advanced applications. In273

the remainder of this manuscript, I will lay out current challenges for the adoption of meaningful274

parameter models, and then offer a set of analytic approaches to address key limitations. The tech-275

niques discussed – which involve linear estimation with nonlinear parameter interpretation (LENI) –276

apply to both standard regression analysis, as well as major classes of longitudinal modeling, including277
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mixed-effect (multilevel) and structural equation growth models (McCormick et al., 2023; McNeish &278

Matta, 2018).279

4.1. Limitations of Nonlinear Models280

While there are strong theoretical arguments for the use of interpretable parameter models, a281

number of technical challenges have historically been barriers to their widespread adoption. Many of282

these challenges stem from the relative difficulty of estimation in nonlinear parameter models compared283

to their linear parameter alternatives. First, linear parameter models are defined across all possible284

values of the parameters, whereas many nonlinear equations are undefined at specific values. For285

instance, the alternative quadratic (Cudeck & du Toit, 2002), (Equation 2) is undefined at 𝛼𝑥 = 0,286

and the alternative cubic (Equation 20) is undefined at 𝛿 = 0. As parameter estimates approach these287

values, the model-implied values of the outcome become more unstable. By contrast, in the linear288

parameter models (Equation 1; Equation 6), any parameter 𝛽𝑝 = 0 merely indicates an absence of289

that component of the polynomial function. This issue is not universal for alternative expressions, as290

the additional alternative quadratic derived in Equation 4 is defined at all parameter values, but it is291

a common problem with nonlinear equations.292

An additional disadvantage of nonlinear alternative models is a lack of clearly hierarchical structure293

to the parameters of the model, both for the fixed effects and for the ordering of random effects294

(McNeish et al., 2021). For instance, as mentioned above, when a linear parameter 𝛽𝑝 = 0, this is295

informative about the complexity of a curve. If 𝛽3 = 0, then the cubic function devolves back to a296

quadratic one, and so forth. By contrast, the nonlinear alternative (Equation 20) cannot be reduced297

to a quadratic by setting any single parameter to 0, nor can we do nested model comparisons (i.e.,298

likelihood ratio tests) to determine the optimal polynomial complexity of the curve. The lack of299

hierarchical structure additionally complicates model specification when the random effects structure300

needs to be constrained to achieve convergence (McNeish & Bauer, 2022). In the linear parameter301

model, we would typically constrain random effects from the highest-order (𝜏𝛽3
) to the lowest (𝜏𝛽1

).302

However, in the interpretable parameter model, the ordering of which random effects to constrain is303

less clear. The parameter transformation equations might give us some sense of a reasonable ordering304

– for instance, 𝑦𝑁 is the only interpretable parameter that is a function of the intercept (𝛽0), and 𝑥𝑁305

is the only parameter that is not a function of 𝛽1. This might suggest that 𝑥𝑁 be constrained first,306

and 𝑦𝑁 always be modeled in a random effects model, but this ordering is much less clear than in the307

linear parameter case.308

Finally, two related challenges stem from the relative difficulty of estimating nonlinear parameter309

models compared to linear parameter alternatives. Even in the relatively simple regression case, nonlin-310
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ear models lack a closed-form solution and require iterative fitting procedures (Fox & Weisberg, 2011).311

These estimation challenges only increase when fitting mixed-effects or structural equation growth mod-312

els, where likelihoods in nonlinear models can be more poorly-behaved (Blozis, 2007) and more likely313

to result in local solutions, in addition to the challenges of improper solutions (e.g., 𝛿 → 0). Due in part314

to these challenges, nonlinear parameter models are often not easily accessible for applied researchers315

within widely-available software packages, requiring custom syntax and difficulty implementing these316

non-standard model equations. Paired with less wide-spread knowledge of alternative interpretable317

models, this creates a negative feedback loop, where software providers are not incentivized to develop318

resources for models that users are unlikely to fit.319

The linear estimation with nonlinear inference (LENI) approach laid out in the following sections320

addresses each of these challenges, drawing on the strengths of estimation and simplicity in the linear321

parameter model but without sacrificing the interpretability of the nonlinear alternative models.322

4.2. LENI for Fixed Effects323

The idea of deriving some meaningful quantity from an estimated linear parameter model is not324

without precedence. Substantive applications have occasionally used the formulations for 𝛼𝑥 and 𝛿325

to identify the peaks (e.g., Braams et al., 2015; LeWinn et al., 2017) , especially when comparing326

trajectories across groups (often between males and females; e.g., Giedd et al., 2015) . However,327

these formulations only return a point estimate without an associated standard error. Nor does it328

allow for conditional effects of covariates of interest predicting the interpretable parameters. In the329

following sections, I lay out a general approach for deriving the meaningful parameters of the nonlinear330

alternative models discussed throughout, entirely from the results of a linear parameter model for the331

same functional form (quadratic or cubic). Note that for the fixed effects, these transformations apply332

equally to standard regression, mixed-effects (or multilevel) models, and structural equation models.333

For SEM growth models specifically, we can return to other, more direct, LENI approaches at the end334

of this treatment.335

For considering fixed effects, we will estimate the following linear parameter models. Here we will336

consider a standard regression model with no random effects, but these approaches generalize to models337

with random effects structures without alteration (as shown in later sections). Thus for person 𝑖,338

𝑦𝑖 = 𝛽0 + 𝛽1𝑥𝑖 + 𝛽2𝑥2
𝑖 + 𝜀𝑖

𝑦𝑖 = 𝛽0 + 𝛽1𝑥𝑖 + 𝛽2𝑥2
𝑖 + 𝛽3𝑥3

𝑖 + 𝜀𝑖 where, 𝜀𝑖 ∼ 𝑁(0, 𝜎2)
(25)
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4.2.1. Point Estimates339

To obtain point estimates for the interpretable parameters, we need only to apply the relationships340

derived previously by Cudeck & du Toit (2002) and here in Deriving Alternative Cubic Models. Namely,341

for the alternative quadratic model, the expressions for the interpretable parameters are as follows342

𝛼0 = 𝛽0 𝛼𝑥 = −𝛽1
2𝛽2

𝛼𝑦 = 𝛽0 − 𝛽2
1

4𝛽2
𝛾 = − 𝛽2

1
4𝛽2

𝛼𝑐 = 𝛽2 (26)

and for the alternative cubic model, the expressions are343

𝑥𝑁 = −𝛽2
3𝛽3

𝑦𝑁 = 𝛽0 − 𝛽1𝛽2
3𝛽3

+ 2𝛽3
2

27𝛽2
3

𝛿 = √𝛽2
2 − 3𝛽3𝛽1
3𝛽3

ℎ = −2𝛽3𝛿3 𝛽𝑁 = −3𝛽3𝛿2

(27)

Nothing more need be done to obtain these point estimates beyond some algebra. One note of344

caution, however, is that we can in theory compute more interpretable parameter point estimates345

than we estimate in the linear parameter model. On one hand, the interpretable parameters are not346

independent (there is an especially tight relationship between 𝛾 and 𝛼𝑦, and between ℎ and 𝛽𝑁 for347

instance), so we would just be repackaging the same information and thus only support the same348

conclusions. However, on the other hand, I would recommend that best practice would be to focus349

interpretation only on a set of parameters that would be estimated in a single nonlinear model (e.g., ℎ350

or 𝛽𝑁 , not both) to avoid over-extracting the results. Selecting which set of interpretable parameters351

to extract should be guided by the conclusions that researchers wish to draw, much like model selection352

proceeds generally.353

4.2.2. Standard Errors354

For these point estimates to be useful inferentially, we need a LENI approach to deriving the355

standard errors for the interpretable parameters. For an unknown quantity equal to a function of356

two quantities (𝜃1 and 𝜃2) with known values and uncertainty (i.e., fixed effects and standard errors),357

the unknown uncertainty, Var(𝑓(𝜃1, 𝜃2)), can be approximated by the quadratic expression of partial358
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derivatives:1359

Var(𝑓(𝜃1, 𝜃2)) ≈ (𝜕𝑓(𝜃1, 𝜃2)
𝜕𝜃1

)
2
Var(𝜃1) + 2 (𝜕𝑓(𝜃1, 𝜃2)

𝜕𝜃1
) (𝜕𝑓(𝜃1, 𝜃2)

𝜕𝜃2
)Cov(𝜃1, 𝜃2)+

(𝜕𝑓(𝜃1, 𝜃2)
𝜕𝜃2

)
2
Var(𝜃2)

(28)

Thus for 𝑥𝑁 , we can take Equation 8 and express the expected variance of the parameter as360

Var(𝑥𝑁) ≈ ( −1
3𝛽3

)
2
Var(𝛽2) + 2 ( −1

3𝛽3
) ( 𝛽2

3𝛽2
3

)Cov(𝛽2, 𝛽3) + ( 𝛽2
3𝛽2

3
)

2
Var(𝛽3) (29)

Taking the square root of Var(𝑥𝑁) yields the standard error, which can be used to compute a 𝑝-value361

or confidence interval as desired.362

However, many of the nonlinear parameters are significantly more complex functions of the linear363

parameters. As such, this scalar equation approach quickly becomes tedious and error-prone. Alterna-364

tively, we can take a matrix approach and pre- and post-multiply the asymptotic covariance matrix of365

the linear parameter model – ACOV(β) – by the Jacobian of partial derivatives with respect to each366

linear parameter for a given nonlinear parameter transformation expression (e.g., J𝑥𝑁
).2367

Var(𝑥𝑁) ≈ J′
𝑥𝑁

ACOV(β) J𝑥𝑁
(30)

If we expand the Jacobian with additional columns of partial derivatives corresponding to each368

nonlinear transformation, we can obtain the entire asymptotic covariance matrix of Equation 20 rather369

than only the variance of each parameter individually.370

ACOV(𝑓(𝑥𝑁 , 𝑦𝑁 , 𝛿, ℎ)) ≈ J′
𝑓(𝑥𝑁,𝑦𝑁,𝛿,ℎ) ACOV(β) J𝑓(𝑥𝑁,𝑦𝑁,𝛿,ℎ) (31)

The square root of the diagonal of the resulting matrix is the vector of standard errors for the inter-371

pretable nonlinear parameters.372

While this analytic approach works very well at approximating the ACOV matrix that would have373

resulted from directly fitting the nonlinear model (the error of approximation is very small; see Sup-374

plemental Code for complete details), we could alternatively use a bootstrapping approach to build375

an empirical standard error and confidence interval. This empirical alternative uses straightforward376

applications of the bootstrap and thus I will arrogate the details of such a procedure to the Supple-377

mental Code for interested readers. We will see that the bootstrapping approach is more useful for378

1Note that here I will use VAR(𝜃) and COV(𝜃) notation to denote the asymptotic variance-covariance terms. In contrast, I
will use 𝜏𝜃 or 𝜓𝜃 notation for the random effect variance-covariance terms in future sections.

2Note that the partial derivatives with respect to parameters that do not appear in the transformation expression (e.g., 𝛽0
and 𝛽1 for 𝑥𝑁 ) are simply 0.
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other components of the LENI approach in future sections.379

4.2.3. Simulation Example 1: Fixed Effects380

Before moving on to the random effects derivations, I first demonstrate the performance of these381

derivations in a simulated example of both the quadratic and cubic models. Here data were simulated382

from the nonlinear equations Equation 2 and Equation 20. The parameters of the quadratic are 𝛼0 = 1,383

𝛼𝑥 = 2, and 𝛼𝑦 = 8, resulting in a concave quadratic function with a vertex at 𝑥, 𝑦 = (2, 8). The384

parameters of the cubic are 𝑥𝑁 = 0, 𝑦𝑁 = 10, 𝛿 = 3, and ℎ = −2, resulting in a cubic function where the385

local maximum occurs before the inflection point, the local minimum occurs after, and the vertex is at386

(𝑥, 𝑦) = (0, 10). For both models, I simulated data for 250 individuals 1000 times. I then fit the linear387

parameter model (Linear Estimates), generated LENI Estimates through the transformations outlined388

in the prior sections, and then fit the nonlinear parameter model directly (Nonlinear Estimates) with389

the true parameter values as starting values to avoid estimation issues. The mean parameter values390

across all iterations for each approach can be compared in Table 3. Notably, the LENI and Nonlinear391

point estimates and standard errors are nearly identical, with correspondence out to the 8th or 9th392

decimal place (see Supplemental for full precision details).393

4.3. LENI for Random Effects394

While the fixed effects are often the focus for empirical studies, we can also develop a set of395

transformations for the random effects. Random effects allow for individual variability in parameters396

of interest, and form the basis for more complex models, including conditional models (Biesanz et al.,397

2004; Curran et al., 2004; Raudenbush & Bryk, 2002) and models with distal outcomes (McCormick et398

al., 2024). Here the target is to transform the covariance matrix for the random effects obtained in the399

linear parameter version of the model into the covariance matrix we would have obtained from fitting400

the nonlinear parameter model directly. I will also show how to obtain standard errors associated with401

these (co)variance estimates.402

To assess the generality of the LENI approach, I consider a maximal random effects model for both403

the quadratic and cubic model - that is all random effect variances (e.g., 𝜏𝑎𝑥
, 𝜏𝛿) and covariances (e.g.,404

𝜏𝛼0,𝛼𝑦
, 𝜏𝑦𝑁,ℎ). Substantive applications might restrict the full covariance matrix (T in MLM, or � in405

SEM growth models), usually for reasons of under-identification, either theoretically due to too few406

individual repeated measures or empirically due to a non-positive definite full matrix. Here the LENI407

approach takes advantage of the clear hierarchical structure of the linear parameter model, and we can408

restrict the random effects variances in sequence from highest-order (𝜏𝛽3
) to lowest (𝜏𝛽1

) as indicated.409
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Table 3

LENI Approach to Fixed Effects Estimation
Pop. 𝜃 Linear Estimates LENI Estimates Nonlinear Estimates

Quadratic Model
𝛼0 1 𝛽0 1.020 (0.468) 𝛼0 1.020 (0.468) 𝛼0 1.020 (0.468)
𝛼𝑥 2 𝛽1 6.987 (0.476) 𝛼𝑥 1.997 (0.049) 𝛼𝑥 1.997 (0.049)
𝛼𝑦 8 𝛽2 −1.749 (0.111) 𝛼𝑦 8.002 (0.446) 𝛼𝑦 8.002 (0.446)

𝑅2 0.5 0.503
Marg. ℓ −738.80 −738.80
𝑘 4 4
BIC 1499.68 1499.68
Cubic Model
𝑥𝑁 0 𝛽0 10.00 (0.139) 𝑥𝑁 −0.003 (0.115) 𝑥𝑁 −0.003 (0.115)
𝑦𝑁 10 𝛽1 −1.004 (0.080) 𝑦𝑁 10.00 (0.094) 𝑦𝑁 10.00 (0.094)
𝛿 3 𝛽2 2.64 × 10−4 (0.013) 𝛿 3.008 (0.105) 𝛿 3.008 (0.105)
ℎ −2 𝛽3 0.037 (0.005) ℎ −2.013 (0.130) ℎ −2.013 (0.130)

𝑅2 0.5 0.506
Marg. ℓ −447.04 −447.04
𝑘 5 5
BIC 921.69 921.69

Note: Parameter estimates and standard errors (in parentheses) are the mean values across 1000 it-
erations of data generation and model fitting. Pop 𝜃 indicates the generating value for each parameter.
Linear Estimates indicate the fitted values from the linear parameter model. LENI Estimates indicate
the transformed estimates of the nonlinear parameter model based on the Linear Estimates. Nonlin-
ear Estimates indicate the fitted values from directly estimating the nonlinear parameter model. 𝑅2

is the proportion of variance explained (only available in the linear parameter model), Marg. ℓ is the
marginal log-likelihood, 𝑘 is the number of model parameters, and BIC is the Bayesian Information
Criterion.

4.3.1. Variance Estimates410

In a beautiful bit of symmetry, we can apply the same approach for obtaining the standard errors411

that outlined above to obtain the variance-covariance matrix of the random effects for the nonlinear412

parameter model (T𝑓(𝑥𝑁,𝑦𝑁,𝛿,ℎ)). That is, we can use the Jacobian of partial derivatives of each413

transformation function with respect to the linear parameters. However, instead of the ACOV(β)414

matrix as in Equation 31, here we will use Tβ – the variance-covariance matrix for the linear parameter415

model – instead.416

T𝑓(𝑥𝑁,𝑦𝑁,𝛿,ℎ) ≈ J′
𝑓(𝑥𝑁,𝑦𝑁,𝛿,ℎ) Tβ J𝑓(𝑥𝑁,𝑦𝑁,𝛿,ℎ) (32)

Unlike the standard error approach, the resulting T𝑓(𝑥𝑁,𝑦𝑁,𝛿,ℎ) matrix can be used directly, and417
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the off-diagonal covariances (e.g., 𝜏𝑥𝑁,𝑦𝑁
) or standardized correlations are often of direct theoretical418

interest.419

4.3.2. Variance Standard Errors420

While conceptually similar to deriving the standard errors of the fixed effects, deriving analytic421

expressions for the standard errors of the variance components in T𝑓(𝑥𝑁,𝑦𝑁,𝛿,ℎ) require us to consider422

additional transformations. Namely that the point estimates expressions of the variance components423

that we must compute the Jacobian partial derivatives on are now the quadratic expressions given by424

Equation 32.425

While the full set of transformations is outlined in the Supplemental Material, prior work has shown426

that analytic expressions are unlikely to provide optimal estimates for these standard errors in practice427

because of the asymmetric nature of variance estimates, a point proven by the simulation results. As428

is the case with variance-covariance parameters in standard linear parameter models (Bolker, 2016), it429

is preferable to generate bootstrap confidence interval estimates instead and apply the point estimate430

transformations from Equation 32 to obtain confidence intervals on the nonlinear parameter model431

estimates.432

4.3.3. Simulation Example 2: Random Effects433

To test the LENI approach to random effects, I simulated data for 1000 replicated samples from434

the nonlinear equations with saturated random effects structures (quadratic: 𝑁 = 500, 𝑡 = 4; cubic:435

𝑁 = 750, 𝑡 = 6). Like before, I present results from the linear parameter model (Linear Estimates),436

transformed results (LENI Estimates), and from a nonlinear parameter model directly (Nonlinear437

Estimates). In contrast to the tight correspondence between LENI and Nonlinear point estimates438

(Table 3), the estimates for the variance (𝜏) and correlation (𝜌) parameters differ to a greater extent439

from one another, and from the population-generating parameters. While the results for the quadratic440

model appear reasonable, the estimates for the cubic model are much less accurate for either LENI or441

Nonlinear approaches, with wide standard errors, reflecting the general difficulty of fitting such high-442

dimensional random effects models (Table 4). Follow-up investigation of the results suggests that this443

is due to poor recovery of the Linear Parameter covariance matrix elements, where the standardized444

bias in the quadratic (𝑀abs.val. = 0.535, rangeabs.val. = 0.166 − 1.164) and cubic (𝑀abs.val. = 0.681,445

rangeabs.val. = 0.049 − 1.839) models were high. The substantially better fit of the Nonlinear model, as446

indicated by the lower average BIC, is likely driven by two factors: 1) the population generating model447

is from the nonlinear equation while the LENI estimates are approximations, and 2) population values448

were input into the Nonlinear model as starting values because of convergence issues, meaning that449
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these are best-case estimates of the Nonlinear model. Despite these discrepancies in the random effects450

results, the LENI estimates for the fixed effects in these models still perform well (see Supplemental451

for full details). This suggests that if the fixed effects are of key theoretic interest, the LENI results452

can still perform well, while if the covariances/correlations are key to testing the substantive theory,453

alternative methods should be utilized. One would be to directly fit the Nonlinear model (although454

recovery is likely to still be poor in the cubic model), or alternatively to utilize the structural equation455

model approach outlined in a later section.456

4.4. LENI for Including Predictors of Interest457

4.4.1. Conditional Effects458

The point estimates, variance-covariance terms, and associated standard errors of the interpretable459

parameters offer important information about the developmental process under consideration, how-460

ever, by themselves, they are largely descriptive of the pattern of change over time. Many important461

developmental questions involve testing predictors of growth parameters (Bauer & Curran, 2005; Cur-462

ran et al., 2004), and we can derive a LENI approach to this as we did with the fixed effects of the463

unconditional growth model.464
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Table 4

LENI Approach to Random Effects Estimation
Pop. 𝜃 Linear Estimates LENI Estimates Nonlinear Estimates

Quadratic Model
𝜏𝛼0 1 𝜏𝛽0 1.044 (0.307) 𝜏𝛼0 1.044 (0.307) 𝜏𝛼0 0.934 (0.331)
𝜏𝛼𝑥 0.1 𝜏𝛽1 1.557 (0.577) 𝜏𝛼𝑥 0.157 (0.057) 𝜏𝛼𝑥 0.092 (0.023)
𝜏𝛼𝑦 0.25 𝜏𝛽2 0.232 (0.077) 𝜏𝛼𝑦 0.378 (0.175) 𝜏𝛼𝑦 0.246 (0.121)
𝜌𝛼0,𝛼𝑥 0 𝜌𝛽0,𝛽1 −0.730 (0.124) 𝜌𝛼0,𝛼𝑥 0.003 (0.198) 𝜌𝛼0,𝛼𝑥 −0.092 (0.264)
𝜌𝛼0,𝛼𝑦 0.3 𝜌𝛽0,𝛽2 0.497 (0.163) 𝜌𝛼0,𝛼𝑦 0.252 (0.252) 𝜌𝛼0,𝛼𝑦 0.320 (0.241)
𝜌𝛼𝑥,𝛼𝑦 −0.2 𝜌𝛽1,𝛽2 −0.914 (0.044) 𝜌𝛼𝑥,𝛼𝑦 −0.356 (0.248) 𝜌𝛼𝑥,𝛼𝑦 −0.355 (0.313)

𝑅2 0.5 0.506
Marg. ℓ −4469.58 −4440.13
𝑘 10 10
BIC 9015.03 8942.41
Cubic Model
𝜏𝑥𝑁 0.2 𝜏𝛽0 3.696 (1.342) 𝜏𝑥𝑁 0.253 (0.057) 𝜏𝑥𝑁 0.195 (0.053)
𝜏𝑦𝑁 0.25 𝜏𝛽1 0.455 (0.166) 𝜏𝑦𝑁 1.047 (0.553) 𝜏𝑦𝑁 0.702 (0.310)
𝜏𝛿 0.2 𝜏𝛽2 0.016 (0.003) 𝜏𝛿 0.269 (0.045) 𝜏𝛿 0.202 (0.027)
𝜏ℎ 0.5 𝜏𝛽3 0.001 (2.41 × 10−4) 𝜏ℎ 2.265 (0.884) 𝜏ℎ 1.259 (0.569)
𝜌𝑥𝑁 ,𝑦𝑁 0.4 𝜌𝛽0,𝛽1 0.076 (0.244) 𝜌𝑥𝑁 ,𝑦𝑁 0.231 (0.273) 𝜌𝑥𝑁 ,𝑦𝑁 0.099 (0.327)
𝜌𝑥𝑁 ,𝛿 0 𝜌𝛽0,𝛽2 −0.855 (0.079) 𝜌𝑥𝑁 ,𝛿 −0.004 (0.126) 𝜌𝑥𝑁 ,𝛿 −0.006 (0.118)
𝜌𝑥𝑁 ,ℎ −0.2 𝜌𝛽0,𝛽3 −0.049 (0.180) 𝜌𝑥𝑁 ,ℎ −0.049 (0.218) 𝜌𝑥𝑁 ,ℎ −0.119 (0.331)
𝜌𝑦𝑁 ,𝛿 −0.1 𝜌𝛽1,𝛽2 −0.041 (0.200) 𝜌𝑦𝑁 ,𝛿 −0.042 (0.207) 𝜌𝑦𝑁 ,𝛿 0.046 (0.273)
𝜌𝑦𝑁 ,ℎ 0.35 𝜌𝛽1,𝛽3 −0.819 (0.064) 𝜌𝑦𝑁 ,ℎ 0.044 (0.318) 𝜌𝑦𝑁 ,ℎ 0.223 (0.278)
𝜌𝛿,ℎ 0.15 𝜌𝛽2,𝛽3 0.020 (0.144) 𝜌𝛿,ℎ 0.243 (0.190) 𝜌𝛿,ℎ 0.128 (0.254)

𝑅2 0.5 0.514
Marg. ℓ −16 199.67 −16 131.59
𝑘 15 15
BIC 32 498.64 32 362.48

Note: Parameter estimates and standard errors (in parentheses) are the mean values across 1000 iter-
ations of data generation and model fitting. Pop 𝜃 indicates the generating value for each parameter.
Linear Estimates indicate the fitted values from the linear parameter model. LENI Estimates indicate
the transformed estimates of the nonlinear parameter model based on the Linear Estimates. Nonlinear
Estimates indicate the fitted values from directly estimating the nonlinear parameter model. 𝜏 parameters
represent variances, 𝜌 parameters represent correlations, 𝑅2 is the proportion of variance explained (only
available in the linear parameter model), Marg. ℓ is the marginal log-likelihood, 𝑘 is the number of model
parameters, and BIC is the Bayesian Information Criterion.

Here we need to distinguish between time-varying and time-invariant covariates (Curran & Bauer,465

2011; McNeish & Matta, 2019). The relevant difference here is that time-varying covariates predict466

the repeated measures outcome directly, while time-invariant covariates predict the repeated measures467

indirectly through the growth parameters. The central insight here is that this indirect prediction468
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results in interaction terms in the growth equation. As such, we can use basic principles of interactions469

in regression analysis (Aiken &West, 1991) to derive point estimates and standard errors for conditional470

effects. Consider a binary time-invariant covariate 𝑤𝑖 which is included in the cubic equation, predicting471

all growth parameters. For person 𝑖 at time 𝑡, the resulting growth model would have the form472

𝑦𝑡𝑖 = 𝛽0 + 𝛽1𝑥𝑡𝑖 + 𝛽2𝑥2
𝑡𝑖 + 𝛽3𝑥3

𝑡𝑖+

𝛽4𝑤𝑖 + 𝛽5𝑤𝑖𝑥𝑡𝑖 + 𝛽6𝑤𝑖𝑥2
𝑡𝑖 + 𝛽7𝑤𝑖𝑥3

𝑡𝑖

(33)

We can therefore use what we know about the expected value of this equation at different levels of473

𝑤𝑖 to define the conditional effect on the nonlinear parameter. For instance, for 𝑤𝑖 = 0, the expected474

value of 𝑥𝑁 is475

𝑥𝑁|(𝑤=0) = −𝛽2
3𝛽3

(34)

while for 𝑤𝑖 = 1 then the expected value is476

𝑥𝑁|(𝑤=1) = −(𝛽2 + 𝛽6)
3(𝛽3 + 𝛽7) (35)

because 𝛽6 is the expected change in 𝛽2 when 𝑤𝑖 is shifted one unit, and 𝛽7 is the expected change in477

𝛽3 across the same change in 𝑤𝑖.478

Taking the difference of Equation 35 and Equation 34 gives the change in 𝑥𝑁 per unit change in479

𝑤𝑖 (denoted here as 𝜋𝑥𝑁,𝑤).480

𝜋𝑥𝑁,𝑤 = Δ𝑥𝑁
Δ𝑤 = 1 = −(𝛽2 + 𝛽6)

3(𝛽3 + 𝛽7) − −𝛽2
3𝛽3

(36)

The conditional effects of each of the interpretable nonlinear parameters can be derived in this481

fashion, and the standard errors can be obtained using the same Jacobian or bootstrapping approaches482

outlined in Standard Errors.483

4.4.2. Simulation Example 3: Conditional Effects484

I simulated a conditional version of each nonlinear equation, where 𝑤𝑖 was used to predict each485

growth term. The covariate was simulated 𝑤𝑖 as both a binary (𝑤𝑖 ∼ Bernoulli(0.4)) and a continuous486

(𝑤𝑖 ∼ N(0, 0.252)) covariate in separate simulations for generality, but the LENI computations of the487

relevant conditional effects apply across predictor types. Below, the results of the binary simulations488

are reported, but the continuous results can be seen in the Supplemental. Like in the unconditional489

model, the LENI approach does an excellent job of approximating the Nonlinear results in the fixed490

effects for both the quadratic and cubic models (Table 5).491
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Table 5

LENI Approach to Conditional Effects Estimation
Pop. 𝜃 Linear Estimates LENI Estimates Nonlinear Estimates

Quadratic Model
𝛼0 5 𝛽0 5.008 (0.133) 𝛼0 5.008 (0.133) 𝛼0 4.988 (0.146)
𝛼𝑥 2 𝛽1 −4.014 (0.189) 𝛼𝑥 2.002 (0.043) 𝛼𝑥 2.000 (0.042)
𝛼𝑦 1 𝛽2 1.004 (0.059) 𝛼𝑦 0.991 (0.105) 𝛼𝑦 0.993 (0.100)
𝜋𝛼0,𝑤 −0.5 𝛽3 −0.506 (0.211) 𝜋𝛼0,𝑤 −0.506 (0.211) 𝜋𝛼0,𝑤 −0.505 (0.232)
𝜋𝛼𝑥,𝑤 0.25 𝛽4 0.907 (0.299) 𝜋𝛼𝑥,𝑤 0.258 (0.109) 𝜋𝛼𝑥,𝑤 0.260 (0.107)
𝜋𝛼𝑦,𝑤 0 𝛽5 −0.313 (0.094) 𝜋𝛼𝑦,𝑤 0.005 (0.164) 𝜋𝛼𝑦,𝑤 0.006 (0.154)

𝑅2 0.5 0.467
Marg. ℓ −2007.62 −1990.89
𝑘 8 8
BIC 4070.51 4025.94
Cubic Model
𝑥𝑁 0 𝛽0 10.01 (0.279) 𝑥𝑁 −0.001 (0.047) 𝑥𝑁 −0.006 (0.047)
𝑦𝑁 10 𝛽1 3.751 (0.104) 𝑦𝑁 10.00 (0.192) 𝑦𝑁 10.13 (0.189)
𝛿 4 𝛽2 −1.96 × 10−4 (0.011) 𝛿 4.000 (0.031) 𝛿 3.998 (0.031)
ℎ 10 𝛽3 −0.078 (0.003) ℎ 10.01 (0.262) ℎ 10.00 (0.262)
𝜋𝑥𝑁 ,𝑤 0 𝛽4 0.237 (0.441) 𝜋𝑥𝑁 ,𝑤 0.001 (0.073) 𝜋𝑥𝑁 ,𝑤 0.001 (0.073)
𝜋𝑦𝑁 ,𝑤 0.25 𝛽5 −0.019 (0.164) 𝜋𝑦𝑁 ,𝑤 0.245 (0.305) 𝜋𝑦𝑁 ,𝑤 0.243 (0.301)
𝜋𝛿,𝑤 −0.1 𝛽6 4.05 × 10−4 (0.017) 𝜋𝛿,𝑤 −0.098 (0.047) 𝜋𝛿,𝑤 −0.098 (0.047)
𝜋ℎ,𝑤 −0.3 𝛽7 −0.004 (0.004) 𝜋ℎ,𝑤 −0.294 (0.413) 𝜋ℎ,𝑤 −0.298 (0.414)

𝑅2 0.5 0.504
Marg. ℓ −8089.88 −8059.37
𝑘 10 10
BIC 16 239.68 16 178.66

Note: Parameter estimates and standard errors (in parentheses) are the mean values across 1000 it-
erations of data generation and model fitting. Pop 𝜃 indicates the generating value for each parameter.
Linear Estimates indicate the fitted values from the linear parameter model. LENI estimates indicate
the transformed estimates of the nonlinear parameter model based on the Linear Estimates. Nonlinear
Estimates indicate the fitted values from directly estimating the nonlinear parameter model. 𝜋 param-
eters represent conditional effects of 𝑤𝑖 on the nonlinar parameters, 𝑅2 is the proportion of variance
explained (only available in the linear parameter model), Marg. ℓ is the marginal log-likelihood, 𝑘 is
the number of model parameters, and BIC is the Bayesian Information Criterion.

4.5. LENI Real Data Example492

As an empirical demonstration of the LENI approach, I drew network modularity data from the493

BrainTime sample (McCormick et al., 2021) and used self-reported sex (female = 0; male = 1) as a494
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predictor of the curve components. I then fit the following conditional random-intercept model495

modularity𝑡𝑖 =𝛾00 + 𝛾10 age𝑡𝑖 + 𝛾20 age2
𝑡𝑖 + 𝛾01 male𝑖+

𝛾11 male𝑖 𝑎𝑔𝑒𝑡𝑖 + 𝛾21 male𝑖 age2
𝑡𝑖 + 𝑢0𝑖 + 𝑟𝑡𝑖

(37)

with both main effects and interactions with the predictor. I also considered models hierarchically –496

a benefit of the linear estimation component of LENI – with linear and quadratic random effects, but497

these models were singular. Using the defined transformations, I then examined the implied nonlinear498

results and interpreted sex-specific trajectories of brain network organization.499

Figure 4. Sex-Specific Trajectories of Brain Network Organization. While the implied trajectory for male adolescents (blue)
appears to have a delayed peak compared with female adolescents (red, 𝛼𝑥), the inference test on the nonlinear parameter
(𝜋𝛼𝑥,𝑚𝑎𝑙𝑒) derived from the LENI approach shows that they are statistically indistinguishable.

Plotting the data, we can see that the trajectory for network modularity in female adolescents (red)500

peaks at 19.04 years-of-age (SE = 0.670) with male adolescents (blue) appearing to reach this vertex501

somewhat later (implied at 19.95 years) and at lower peak levels (Figure 4). While common practice502

has been to simply assert this difference as meaningful (i.e., “boys show delayed development compared503

with girls”), the LENI approach allows us to build a direct statistic test for sex-specific differences in504

meaningful parameters of these trajectories. The LENI results suggest that while female adolescents505

do show a higher peak value in modularity at the vertex (𝛼𝑦) than male adolescents (𝜋𝛼𝑦,𝑚𝑎𝑙𝑒 = -0.392,506

SE = 0.114, 𝑡 = -3.429; 𝑝 < 0.001), there is no significant sex difference in the age at which the vertex507

is reached (𝜋𝛼𝑥,𝑚𝑎𝑙𝑒 = 0.908, SE = 0.935, 𝑡 = 0.971, 𝑝 = 0.332). This demonstrates the importance of508

parameterizing statistical models to test meaningful hypotheses with appropriate uncertainty (here the509
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standard errors) rather than relying solely on point estimates to draw inferences about developmental510

theories (e.g., sex-specific delays in maturation).511

4.6. Linearized Structural Equation Models512

In the prior sections, I laid out a series of transformations that allow us to transform the results513

from a linearly-estimated model to approximate the results of directly estimating the nonlinear model514

– with attendant advantages related to estimation, measures of 𝑅2, and hierarchical specification of515

the random effects structure. I have highlighted these transformations thus far primarily using mixed-516

effects (multilevel) models on time-unstructured data for maximum generality, although these methods517

could easily be applied in more time-structured cohort data without issue. Indeed, the set of LENI518

transformations could be equally useful in structural equation growth models like the latent curve519

(Meredith & Tisak, 1990) and latent change score models (McArdle et al., 2009).520

However, adopting the SEM framework allows us to extend the LENI conceptual framework in521

a more interesting way by estimating a linearized version of the nonlinear model directly within the522

latent variable software (Blozis, 2004; Browne, 1993; Preacher & Hancock, 2012, 2015).3 That is,523

rather than estimating the familiar linear parameter model and applying post-hoc transformations524

to obtain the nonlinear inferences, we can specify a linearized SEM to allow for direct estimation of525

the nonlinear parameters within a linear estimator. Prior work has used this approach to model a526

wide array of potential nonlinear functions within a linear SEM framework, including logistic curves527

(Choi et al., 2009), multiphase (piecewise) models with random knots (Feng et al., 2019; Preacher &528

Hancock, 2015), half-life with negative exponentials (Blozis, 2004; Preacher & Hancock, 2015), and529

time-to-criterion models (Johnson & Hancock, 2019), among others.530

The general procedure for fitting linearized SEM has been detailed in full by prior work (Blozis,531

2004, 2007; Feng et al., 2019; Preacher & Hancock, 2012, 2015), so I briefly review the relevant532

modeling steps here and then move into the specific use-cases of the models discussed thus far. First533

(1), we need to define the nonlinear equation – either a reparameterization such as the alternative534

quadratic or cubic, or a natively nonlinear function (e.g., logistic, negative exponential) – with a set535

of parameters that correspond to theoretically meaningful quantities. Then (2), to make the nonlinear536

function compatible with the linearly-estimated SEM, we linearize the function through a first-order537

Taylor series approximation by taking the partial derivative of the nonlinear function with respect to538

each parameter at the mean value of all other parameters. Once we have these partial derivatives (3),539

we use a structured latent curve model (SLCM; Blozis, 2004; Browne & Du Toit, 1991; Browne, 1993)540

approach where we set the factor loadings of each latent variable – which now represent the meaningful541

3It should be noted that this form of linearization is also possible within a Bayesian mixed-effects framework due to the full
flexibility of that set of modeling approaches.
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nonlinear parameters – as the partial derivative with respect to that same parameter, and specify each542

observed repeated measure intercept as the mean of the target nonlinear function at that value of time.543

Finally (4), with this model specification, we can estimate the linearized model with standard SEM544

software and obtain direct estimates and standard errors for the meaningful nonlinear parameters.545

The resulting SLCM (Browne, 1993) models both average and individual-level change, although546

with some notable differences in interpretation compared with both the standard latent curve model547

(Meredith & Tisak, 1990) as well as fully nonlinear mixed-effects growth models. In the standard latent548

curve model, individual trajectories must follow the same functional form as the average trajectory,549

whereas the SLCM relaxes this constraint to allow for increased flexibility to fit unique patterns of550

change that do not follow the average (Blozis & Harring, 2017). However, like the standard latent551

curve model, SCLMs show dynamic consistency – that is the model for the population mean response552

is equal to the average of the individual-level effects – in contrast with fully non-linear models where553

this equivalence is not imposed (for an in-depth treatment of these issues and how they impact model554

interpretation, see Blozis & Harring, 2016; Harring & Blozis, 2016).555

While differing in this way from fully nonlinear mixed-effects models, adopting the SLCM framework556

allows us to take advantage of the full flexibility of the SEM to model additional complexities to the557

core linearized function, including covariates (Curran et al., 2004; Preacher & Hancock, 2015), distal558

outcomes (McCormick et al., 2023, 2024), and approaches for parameter moderation (Bauer, 2017).559

We can next turn to the alternative polynomials as examples of this process.560

4.6.1. Alternative Polynomial Models561

Here I will focus on the alternative cubic, as a linearized version of the alternative quadratic model562

(Cudeck & du Toit, 2002) has been demonstrated previously (Preacher & Hancock, 2015), however,563

the code for both models can be found in the Supplemental Material. We can use either Equation 20564

or Equation 21 as the target nonlinear equation from, so I will define the partial derivatives for all565

5 nonlinear parameters (note only 4 are modeled at any given time). The partial derivatives for566

Equation 20 are567

𝜕𝑓(𝑥𝑁 , 𝑦𝑁 , 𝛿, ℎ, 𝑥𝑡𝑖)
𝜕𝑥𝑁

= −
3ℎ (𝛿2 − (𝑥𝑡𝑖 − 𝑥𝑁)2)

2𝛿3

𝜕𝑓(𝑥𝑁 , 𝑦𝑁 , 𝛿, ℎ, 𝑥𝑡𝑖)
𝜕𝑦𝑁

= 1

𝜕𝑓(𝑥𝑁 , 𝑦𝑁 , 𝛿, ℎ, 𝑥𝑡𝑖)
𝜕𝛿 = −

3ℎ (𝑥𝑁 − 𝑥𝑡𝑖) ((𝑥𝑡𝑖 − 𝑥𝑁)2 − 𝛿2)
2𝛿4

𝜕𝑓(𝑥𝑁 , 𝑦𝑁 , 𝛿, ℎ, 𝑥𝑡𝑖)
𝜕ℎ =

(𝑥𝑁 − 𝑥𝑡𝑖) ((𝑥𝑡𝑖 − 𝑥𝑁)2 − 3𝛿2)
2𝛿3

(38)
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and for Equation 21 are568

𝜕𝑓(𝑥𝑁 , 𝑦𝑁 , 𝛿, 𝛽𝑁 , 𝑥𝑡𝑖)
𝜕𝑥𝑁

= −
𝛽𝑁 (𝛿2 − (𝑥𝑡𝑖 − 𝑥𝑁)2)

𝛿3

𝜕𝑓(𝑥𝑁 , 𝑦𝑁 , 𝛿, 𝛽𝑁 , 𝑥𝑡𝑖)
𝜕𝑦𝑁

= 1

𝜕𝑓(𝑥𝑁 , 𝑦𝑁 , 𝛿, 𝛽𝑁 , 𝑥𝑡𝑖)
𝜕𝛿 = −2𝛽𝑁 (𝑥𝑁 − 𝑥𝑡𝑖)

3

3𝛿3

𝜕𝑓(𝑥𝑁 , 𝑦𝑁 , 𝛿, 𝛽𝑁 , 𝑥𝑡𝑖)
𝜕𝛽𝑁

=
(𝑥𝑁 − 𝑥𝑡𝑖) ((𝑥𝑡𝑖 − 𝑥𝑁)2 − 3𝛿2)

3𝛿2

(39)

Once we have these partial derivatives, we can set each factor loading to the relevant expression at569

each value of 𝑥𝑡𝑖
4 and then define the intercepts of the repeated measures as the mean of the target570

nonlinear function at that value of 𝑥𝑡𝑖. The corresponding path diagram for both the alternative571

quadratic (A) and cubic (B) are presented in Figure 5. Note that this specification allows us to directly572

model the means, variances, and covariances of the interpretable parameters. Unlikely standard latent573

curve model specifications, the estimated parameters of the latent variables are used to define the574

numerical value of the factor loadings (remember that the partial derivatives are evaluated at the575

means of the other parameters).576

Figure 5. Linearized SEM. We can directly model the nonlinear parameters (e.g., 𝛼𝑥 and 𝛿) as random
latent variables through a process of linearization where we set the factor loadings to partial derivatives
of the target nonlinear function with respect to each modeled parameter and set the intercepts of the
repeated measures to the mean of the target function.

To avoid unnecessary repetition with prior sections, I will leave the full parameter comparison to the577

Supplemental Material, but note that all the linearized models successfully capture the interpretable578

4While I do not consider this extension here, the presence of the 𝑖 subscript here allows for the possibility of modeling
definition variables (Mehta & West, 2000) for time-unstructured data.
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model parameters and have near-identical fit to the standard linear versions of the polynomial LCMs579

(Δ𝜒2
𝑞𝑢𝑎𝑑𝑟𝑎𝑡𝑖𝑐 = −7.713 × 10−5; Δ𝜒2

𝑐𝑢𝑏𝑖𝑐, ℎ = 8.414 × 10−7; Δ𝜒2
𝑐𝑢𝑏𝑖𝑐, 𝛽𝑁

= −1.126 × 10−6).580

4.6.2. Multiphase Polynomial Models581

Finally, I applied the linearization approach to the multiphase (or piecewise) cubic model outlined582

previously. Feng et al. (2019) outlined a related approach to deal with floor and ceiling effects in mod-583

eled variables using a 3-phase linear model. Their approach reparameterized the standard multiphase584

linear model into a single equation by taking the median of the three linear functions – see Figure585

1 and Equations 1-3 in Feng et al. (2019) for complete details. Unfortunately, while this approach586

successfully models the multiphase trajectory for monotonic functions, like the 3-phase linear model,587

for nonmonotonic functions like the quadratic and cubic, it does not appropriately define the onset588

and offset of the phases (see the Supplemental Material for examples of the challenges).589

To accomplish the same idea, I parameterized a multiphase function where rather than taking the590

median of the functions of each phase, I instead took the median of three quantities – (𝑥𝑁 − 𝛿), 𝑥𝑡𝑖,591

and (𝑥𝑁 + 𝛿) – which does change monotonically as a function of 𝑥𝑡𝑖 (Figure 6 B). Thus when 𝑥𝑡𝑖 is592

< (𝑥𝑁 − 𝛿) or > (𝑥𝑁 + 𝛿), its value is effectively fixed at those boundary points. This allows cubic593

change to only occur within the onset-offset boundaries (Figure 6 C). As highlighted in Feng et al.594

(2019), the median of three monotonic functions can be computed as595

𝑦 = 𝑚𝑒𝑑𝑖𝑎𝑛(𝑔1, 𝑔2, 𝑔3) = 𝑠𝑢𝑚(𝑔1, 𝑔2, 𝑔3) − 𝑚𝑖𝑛(𝑔1, 𝑔2) − 𝑚𝑎𝑥(𝑔2, 𝑔3) (40)

where the minimum and maximum of two quantities are596

𝑚𝑖𝑛(𝑎, 𝑏) = 1
2 (𝑎 + 𝑏 − √(𝑎 − 𝑏)2)

𝑚𝑎𝑥(𝑎, 𝑏) = 1
2 (𝑎 + 𝑏 + √(𝑎 − 𝑏)2)

(41)

By substituting Equation 23 or Equation 24 into these expressions, I derived the following forms for597

the multiphase cubic (see Supplemental Material for full derivation details)598
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𝑦𝑡𝑖 = 𝑦𝑁 − ( ℎ
2 ) [( 𝑚𝑒𝑑 (𝑥𝑁 − 𝛿, 𝑥𝑡𝑖, 𝑥𝑁 + 𝛿) − 𝑥𝑁

𝛿 )
3

− 3 ( 𝑚𝑒𝑑 (𝑥𝑁 − 𝛿, 𝑥𝑡𝑖, 𝑥𝑁 + 𝛿) − 𝑥𝑁
𝛿 )]

= 𝑦𝑁 − ( ℎ
2 )

⎡
⎢
⎢
⎣

⎛⎜⎜⎜
⎝

1
2 ( √(𝑥𝑁 − 𝛿 − 𝑥𝑡𝑖)2 − √(𝑥𝑡𝑖 − 𝑥𝑁 − 𝛿)2)

𝛿
⎞⎟⎟⎟
⎠

3

− 3
⎛⎜⎜⎜
⎝

1
2 ( √(𝑥𝑁 − 𝛿 − 𝑥𝑡𝑖)2 − √(𝑥𝑡𝑖 − 𝑥𝑁 − 𝛿)2)

𝛿
⎞⎟⎟⎟
⎠

⎤
⎥
⎥
⎦

= 𝑦𝑁 − ( 𝛽𝑁𝛿
3 ) [( 𝑚𝑒𝑑 (𝑥𝑁 − 𝛿, 𝑥𝑡𝑖, 𝑥𝑁 + 𝛿) − 𝑥𝑁

𝛿 )
3

− 3 ( 𝑚𝑒𝑑 (𝑥𝑁 − 𝛿, 𝑥𝑡𝑖, 𝑥𝑁 + 𝛿) − 𝑥𝑁
𝛿 )]

= 𝑦𝑁 − ( 𝛽𝑁𝛿
3 )

⎡
⎢
⎢
⎣

⎛⎜⎜⎜
⎝

1
2 ( √(𝑥𝑁 − 𝛿 − 𝑥𝑡𝑖)2 − √(𝑥𝑡𝑖 − 𝑥𝑁 − 𝛿)2)

𝛿
⎞⎟⎟⎟
⎠

3

− 3
⎛⎜⎜⎜
⎝

1
2 ( √(𝑥𝑁 − 𝛿 − 𝑥𝑡𝑖)2 − √(𝑥𝑡𝑖 − 𝑥𝑁 − 𝛿)2)

𝛿
⎞⎟⎟⎟
⎠

⎤
⎥
⎥
⎦

(42)

I took these equations and linearized them using the same procedure as above (see Figure 6 A for a599

representative path diagram). I then generated cortical thickness trajectory data based on Fuhrmann600

et al. (2022), with 100 cases observed across 12 waves. The linearized SEM (𝜒2
𝑚𝑜𝑑𝑒𝑙 = 84.299, df = 75,601

𝑝 = 0.217) captured the parameters of the growth trajectory, with an average onset of change at 12602

(𝑥𝑁 − 𝛿 = 12.028, SE = 0.201), an inflection point at 15 (𝑥𝑁 = 15.049, SE = 0.105) with a negative603

instantaneous slope (𝛽𝑁 = -0.337, SE = 0.022), and an offset of change at 18 years-of-age (𝑥𝑁 + 𝛿604

= 18.069, SE = 0.164; see Figure 6 D for model-implied individual and group trajectories; see the605

Supplemental Material for full code and output). This example highlights the extreme flexibility of606

the linearization approach for linear estimation with nonlinear inference (LENI) – any target nonlinear607

function can be transformed using the approach outlined above and accommodated within standard608

linear estimation software.609
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Figure 6. Multiphase Linearized SEM. A) A canonical path diagram of the linearized SEM model for the multiphase cubic.
B) Because the cubic function is non-monotonic, we need to instead take the median of (𝑥𝑁 − 𝛿), 𝑥𝑡𝑖, and (𝑥𝑁 + 𝛿), which
is monotonic as a function of 𝑥𝑡𝑖. C) The boundaries formed for the predictor 𝑥𝑡𝑖 in (B) allow for the proper specification
of the multiphase cubic function for 𝑦𝑡𝑖. D) The multiphase cubic model was fit to generated trajectories of cortical thinning
(Fuhrmann et al., 2022) which successfully recovered individual (grey) and group (black) trajectories.

5 Recommendations for Applied Researchers610

For applied research, the LENI suite of approaches offers exciting new opportunities for testing novel611

theoretical hypotheses with an ultimate eye toward the development of generative models for change612

over time. Hypotheses must be generated and tested on meaningful and interpretable developmental613

quantities (Preacher & Hancock, 2015), and not narrowly restricted to linear parameter models that614

are the default in major software implementations. The potential of LENI is for researchers to be able615

to fit the model they want to test theoretically, while avoiding some of the issues inherent in nonlinear616
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model estimation. Here I demonstrated both mixed-effects and structural equation model options for617

random-effects growth modeling, allowing researchers maximal flexibility in specifying the nonlinear618

model within broader modeling traditions that exist in different fields. For instance, both the mixed-619

effect and SEM LENI approaches allow for the additional inclusion of time-varying covariates through620

direct prediction of the within-person repeated measure outcome, as well as additional time-invariant621

predictors and distal outcomes at the between-person (factor or random effect) level.5622

Selecting between the various LENI approaches outlined may seem daunting, but ultimately the623

choice is likely far simpler than it appears. While there are many differences between mixed-effect624

and structural equation modeling approaches to longitudinal data analysis (McCormick et al., 2023;625

McNeish & Matta, 2018) – some important in the way that they model the repeated measures and626

others simply due to conventions or idiosyncratic discipline preferences – there are no additional issues627

related to the LENI set of approaches which would preference either class of modeling. For instance,628

time-unstructured data is more easily accommodated in mixed-effect approaches while multivariate629

models are more naturally fit within structural equation models, but this applies equally to linear and630

nonlinear/linearized versions of the two frameworks. As such, researchers should select the particular631

approach that is already suitable for testing their theoretical question and for accommodating the632

structure of the data that they have. LENI is here to help in that endeavor - not to impose additional633

restrictions.634

To aid in the application of LENI approaches in substantive research, I have developed an R package635

(leni; [Blinded]) which allows users to convert the output of linear regression and mixed-effects models636

into nonlinear estimates using the transformations highlighted here, as well as to generate lavaan637

(Rosseel, 2012) syntax for linearized SEMs.638

6 Conclusions639

The linear estimation with nonlinear inference (LENI) approach is a broad framework that allows640

for the modeling of nonlinear parameters which represent theoretically interesting quantities while641

taking advantages of the well-behaved properties of linear parameter models for estimation. My goal642

was to offer a comprehensive introduction to 1) the motivation and approach for defining nonlinear643

models with interpretable parameters, 2) defining a set of transformation functions to convert linear644

mixed-effects models into nonlinear output, and 3) direct estimation of nonlinear parameters through645

a linearized SEM approach. This foundation of the LENI approach for modeling growth offers fertile646

ground for additional research and methodological development, with additional avenues for work647

5Although distal outcomes present some additional complexity with mixed-effects models because they require a two-step
procedure in a frequentist modeling framework.
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on small-sample behavior, methods for increasing the reliability of random effect/factor (co)variances,648

optimal Bayesian approaches (e.g. transformation robustness when applied at the individual draw level),649

and the role of time coding for estimation and interpretation of the nonlinear parameters. Combining650

the theoretical perspective of the LENI approach – focusing on meaningful features of change over651

time – with its computational efficiencies in approximating complex nonlinear equations shows great652

promise for advancing developmental science and the analysis of longitudinal data broadly.653
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