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OSCILLATIONS OF DELAY DIFFERENTIAL EQUATIONS

K. GOPALSAMY'and G. LADAS2

(Received 30 July 1989; revised 28 February 1990)

Abstract

Sufficient conditions are established for all solutions of the linear system

to be oscillatory, where qtj 6 ( - o o , oo) , t^ 6 ( 0 , oo ) , i , j = 1,2,... , n.

1. Introduction

Consider the system of delay differential equations

* # + £v,('-'«>-0. 1-1.2
a t *-*! lJ J IJ

(l)

where the coefficients are real numbers and the delays are positive real num-
bers. We say that a solution

y(t) = (2)

of (1) oscillates if for some i € (1 , 2, . . . , n), yt(t) has arbitrarily large
zeros. A solution y(t) of (1) is said to be nonoscillatory if there exists a
t0 > 0 such that for each i = 1, 2 , . . . ,n, yt(t) ^ 0 for t > t0. The aim
of this brief paper is to derive a set of sufficient conditions for all solutions
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of (1) to oscillate. Our result is an extension of a result of Gopalsamy in [2],
where only bounded solutions of systems like (1) have been considered. For
references concerning the oscillation of systems, the reader is referred to the
references in [2].

2. Sufficient conditions for oscillation

The following lemma will be useful in the proof of our theorem below.

LEMMA 1. Assume that (1) has a nonoscillatory solution (2). Then there are
numbers

Ste{-\, 1} /or i = 1 , 2 , . . . , / !

such that the system

where
pij = -8qij M i , j = l , 2 , . . . , n (4)

has a nonoscillatory solution [z^t), z2(t), . . . , zn(t)]
T with eventually posi-

tive components zt{t), i = 1, 2 , . . . , « .

PROOF. The components y{t) of (2) are positive or negative eventually. That
is, there exists a T > 0 such that yt{t) ^ 0 for t > T and / = 1, 2 , . . . , « .
Set 8i = sign^^f)], i = 1, 2, . . . , n and t > T. It is now easy to see that

At) = [Sxy{{t),d2y2{t),..., 5nyn{t)]T (5)

satisfies (3) and <5,y,(0 > 0 for / = 1, 2, . . . , n and t > T.
The next result is concerned with the asymptotic behaviour of nonoscilla-

tory solutions of (1).

LEMMA 2. Consider the system (1) and suppose that the constant coefficients
of (I) satisfy

n

q = minn qu - ] T \qjt\ > 0. (6)

Then every nonoscillatory solution y{t) = {yx,y2, ... ,yn) satisfies

https://doi.org/10.1017/S0334270000008493 Published online by Cambridge University Press

https://doi.org/10.1017/S0334270000008493


[3] Delay Differential Equations 379

PROOF. Clearly (6) is also satisfied with the qtj replaced by the respective p1;-
of (4). From this and (5) it suffices to prove the lemma for nonoscillatory
solutions of (2) with eventually positive components. Let us assume that
there is a tQ > 0 such that yt{t) > 0 for t > t0, i = 1, 2, . . . , n . If we let

then

1=1 j=\

or

1=1 j=\

It follows from (8) that

dw(t) y ,

1=1

An integration of both sides of (9) leads to
rt

c i = l

where x = max1<; < n T . . . A consequence of (10) is that w is bounded and
yl; G Lx{tQ + x, oo) for / = 1, 2 , . . . , « . From the boundedness of w one
can conclude that of yt since w(t) = £"_, yt(t) and yt{t) > 0 eventually.
It will now follow from (1) that yt is bounded for t > x, and therefore
y( is uniformly continuous on [0, oo). The uniform continuity of yi on
[0, oo), the eventual positivity of yt and the integrability of y( on a half-
line together with a lemma of Barbalat [1], will imply that iiTnt_>0Oyj(t) =
0, i = 1, 2, ... , n and this completes the proof.

THEOREM. Let qu e (-oo, oo), x^ 6 (0, oo), i, j = 1, 2, . . . , n. If

qxM > - where q = min

e i<i<n
then every s o l u t i o n of (I) oscillates.
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PROOF. Assume for the sake of a contradiction that (1) has a nonoscillatory
solution (2). In view of Lemma 1 we can assume that the components of
yt(t) are eventually positive for i = 1, 2, . . . , n. We have directly from (1)
that

j=\ ;=1

which satisfies

^ \dyt{t)

1=1 ffl J
We have from (12) that w(t) = J2"=i ^,-(0 satisfies

dt
i=\

y,(t -T , , . )<O.

Integrating both sides of (13) over (t, oo) and using the fact

w(t) -»• 0 as t -> oo (since ^ , (0 - » 0 , / = 1, 2 , . . . , « )

we derive that

and this leads to

/

oo n

^Zyjis-r
1=1

It is found from (15) that

/•OO

tw(0 > # / 1^(5)^5

F{t)= f w(s)ds
Jt-x.

or

Now we let

(12)

(13)

(14)

(15)

(16)

(17)

(18)
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and derive from (17) and (18) that

<-qF{t-x.)\ «>2T.. (19)

It follows from (19) that F is an eventually positive solution of

T . ) < O ; , > 2 V (20)

But it is well known (from Ladas and Stavroulakis [3]) that when (11) holds,
(20) cannot have an eventually positive solution and this contradiction com-
pletes the proof.
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