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Abstract

New oscillation criteria are given for second order nonlinear ordinary differential equations with
alternating coefficients. The results involve a condition obtained by Kamenev for linear differ-
ential equations. The obtained criterion for superlinear differential equations is a complement
of the work established by Kwong and Wong, and Wong and Philos, for sublinear differential
equations and by Yan for linear differential equations.

1980 Mathematics subject classification (Amer. Math. Soc.) (1985 Revision): primary 34 K 15;
secondary 34 C 10.

1. Introduction

This paper deals with the problem of oscillation of second order ordinary
differential equations of the form
(1)

' ' ' X O, X > 0 ,

where a, p, q: [tQ, oo) —• R = (-oo, oo) are continuous and a{t) > 0 for
t>(0>0.

Only such solutions, x, of equation (1) which exist on some interval
[tx, oo), tx > (0 > 0 , are considered. A solution of equation (1) is said
to be oscillatory if it has arbitrarily large zeros; otherwise, it is said to be
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nonoscillatory. Equation (1) is called oscillatory if all of its solutions are
oscillatory.

The oscillation problem for second order nonlinear ordinary differential
equations with alternating coefficients has been investigated by many authors.
Some of the more important and useful tests involve the average behavior of
the integral of the alternating coefficients. These tests have been motivated
by the averaging criterion of Kamenev [5] and its generalizations. For such
averaging techniques in second order nonlinear oscillation, we choose to refer
to the paper of Butler [1], Grace and Lalli [2]-[4], Kanemev [5], Kwong and
Wong [6], Philos [7], [8], Wong [9], [10], Yan [11] and Yen [12].

Several years ago, Kwong and Wong [6, Theorem 1] obtained an interesting
criterion for the oscillation of equation (1) with a(t) — 1, p(t) — 0 and
0 < A < 1. This criterion has been extended by Philos [8] to more general
equations of the form

where q: [tQ, oo) -• R and f:R—>R are continuous, JC/(JC) > 0 for
x ^ 0, / is nondecreasing and / ± 0 du/f(u) < oo.

Recently, Yan [11, Theorem 2] proved that Kwong and Wong's theorem in
[6] with averaging condition of Kamenev's type [5] remains valid for equation
(1) when X = 1. The results in [6], [8], and [11] are not applicable to equation
(1) with X> I.

Therefore, the main purpose of this paper is to establish new criteria for
the oscillation of equation (1) by using an averaging condition of the type
introduced by Kamenev [5]. The result obtained for the superlinear case,
that is, for X > 1, is a continuation of the work done by Kwong and Wong
[6], Philos [8] and Yan [11]. We also mention that the results of this paper
for the sublinear case, that is, for 0 < X < 1, are independent of those in [6],
[8] and [11], but that they are similar to that of Yan [11] when X = 1.

2. Main results

THEOREM 1. Suppose that there exist a differentiable function p: [t0, oo)
(0, oo) and a continuous function <£: [/0, oo) —• /? such that

(2) lim inf / p(s)q(s)ds > -oo ,

(3) a(t)p'(t) - p(t)p(t) = y{t) > 0 and y'(t) < 0 for t > t0,
/•OO

(4) J n(s) ds = oo, where n{t) =
J
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and for every constant 6 > 0 and a € ( 1 , oo)

\r'
(5) lim sup -5 (t- u)ap(u)q(u) du < oo,

i /•' Q - 2 r 2

(6) Hminf^y (r - M) I (/ - M) p(u)q(u)

d 1 l 2

^ ^ ! du><t>{s)

and

r> 2
(7) lim / v(s)<£ (.s)rf.s = oo,

'•*°°A>
where v(t) = i;(0/j£ n(s)ds, <j>+(t) = max{0(<), 0} .

Then equation (1) is oscillatory for all X> 1.

PROOF. Let x(t) be a nonosciUatory solution of equation (1). Without
loss of generality, we assume that x(t) ^ 0 for t > t0. Furthermore, we
suppose that x(t) > 0 for t > t0, since the substitution u = -x transforms
equation (1) into an equation of the same form subject to the assumptions
of the theorem. Now, we define

for t>t0.

Then it follows from equation (1) that

(8) W\t) = -p(t)g(t) + 7(t)^M - Xa{t)p{t)^- , t>tQ,
X (I) X yt)

and consequently

(9) a(t)p(t)^ = cl - [p(s)q(s)ds+
x (t) J

= cl [p(s)q(s)ds+ [ Y ( s ) £
(t) Jt0 Jt0 x\s)

ds,

where 0 = {X+l)/2 and c, = a(to)p(to)x'{to)/x
x(to). By the Bonnet theo-

rem, for any t > t0 there exists ^ e [/0, t] such that

/

"' x'(s) f( x*(s)

y(s)^>ds^y(t0) *W
0 x*(s) J,o x\s)

u~Xdu
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Thus, for t > t0, we get

M+X f'a(s)p(s) l^jp-) ds + f p(s)q(s)ds < L
\t) Jt0 \xp(s)J Jt0

( 1 0 ) { ) p ( )
x\t)

or

(11) W{t) + kf -r±—-x2{p-l\s)w\s)ds+ f p(s)q(s)ds<L,

where L = cx + Mx.
Next, we consider the following three cases for the behavior of x' .

Case 1. xm is oscillatory. Then there exists a sequence {tm}m=l 2 i n

[t0, oo) with limm_>oo tm = oo and such that x'(tm) = 0 (m = 1, 2 , . . . ) .
Thus (8) gives

fx'(s)\2

Xa(s)p(s) ^ H

and hence, by taking into account (2), we conclude that

ds<oo.

^ H d s < L - p(s)q(s)ds ( m = 1 , 2 , . . . ) ,

' < „ \x"(s)J
So, for some positive constant N, we have

/ a(s)P(s) (^77^
Jtn \X \S)

ds<N for / > t0.

By the Schwarz inequality

. / . \ 2

rt

' i \ i x = N I i(s) ds,,o a(s)p(s) Jln

or
1/2

-x1-'^! <\l-fi\ (N£ r,(s)ds

There exists f, > tQ and a constant Af > 0 so that

\ 1 / 2a t
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Using (13) in (8) we get

t), t>t{,(14) W(t) < -p(t)q{t) + ()
a\l)P\l) M

and consequently, for all t > s >tl

/

' f '

(t - u)aW*{u) du<- (t- u)ap(u)q(u) du
Js

- f\t-u)a\^-Iv(u)W2(u)-y(u)t1(u)W(u)\ du.
Since

(t-u)aW'( a / {t-uf W{u)du,
Js

we obtain that

(15) f{t-u)ap{u)q{u)du
Js

<(t-s)aW(s)- f {(t-uf-^jviuW2^)
Js I M

-{t- u)a~l[y(u)t](u)(t - u) - a]W(u)] du

and hence

(16) (t - u)ap(u)q(u) - ^
1 - 2

(y(u)fi(u)(t -u)-a) du

<(t- s)aW(s) - j f [±{t - u)al2VJMu)W{u)

M{t-u)all-\y{u)n{u){t-u)-a)
du

<(t-s)aW(s), s>tv

Now we proceed in a way similar to that in the proof of [11, Theorem 2].
Dividing (16) by f and taking the lower limit as t —> oo, we obtain (/>(s) <
W(s), s > t{, which implies that

(17)

We define functions

<t>\{s) < W2(s).

y(t) = ra f'[y(u)r,(u)(t - u) - a](t - uf ' W(u) du
Jt,
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and

z(t) = ra f - ^ 1 ( t - u ) a v { u ) W 2 ( u ) d u , t>tv
Jt, M

From (15), we get

(18) y(t) = z(t) < t~a(t - ttfWitJ - f (t- ufp(u)q(u)du,

and we see that (6) implies that

(19) l i m i n f /"" / {t - u f p{u)q{u) d u > </>(s), s > t i t

and

(20) lim sup t~a f (t- ufp{u)q{u) du

- Urn inf ̂ - r a J\y(u)r,(u){t -u)- a]2^(t - uf~2 du > <j>

Together with (5), (20) shows that there exists a sequence

(21) { ^ L u , . . . - Tn>tx, « = 1 , 2 , . . . , l̂im Tn = oo,

such that

(22) lim ^jfa f "[y(u)r,(u)(t - u) - af-^-At - u)a~2 du < oo.

Next, taking the upper limit as t —• oo in (18) and using (19), we have

(23) lim sup[y(0 + z(t)] < W(t.) - lim inft~a f (t - uf p{u)q{u) du
t—KX> t—•(» Jf

Hence for all sufficiently large n

(24) y(Tn) + z(Tn)<K.

Since
z ^ = 7̂ 2 / ' f1 " jYv(uW2(u)du > 0

M Jti l '

is increasing in t > *,, we see that l i m ^ ^ z(t) = b, where b = oo or is a
positive constant. Suppose that b = oo. Then l i m ^ ^ Z(JTW) = oo and by
(24) we have

(25) tony(Tn) = -oo.
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Now (24) and (25) lead to

y(T )

" + 1 < a, where 0 < a < 1 is a constant,

that is,

(26) y-^fr < a - 1 < 0 for all large Tn.

On the other hand, by the Schwarz inequality we have

0 < r ; 2 a (plyiuMu)^ -u)~ a](Tn - u)a~l W{u) du\

< (r;a j\y{uMu)(Tn -u)- af{Tn - u

*n - u)av{u)W\u) du\ , for all large Tn.

Thus,

(T ) M<^fy<— Tn J [y(u)ri(u)(Tn - u) - a] (Tu)Tn [y(u)ri(u)(Tn - u) - a] —(Tn-u) du.

By (22), we get

0 < lim y—f-.
n-*oo z(Tn)

- u) - a] —7—r(r -uf du < oo,

which contradicts (25) and (26). Hence l i m ^ ^ z(t) - b < oo. Using (17),
we obtain

l i m r a [ {t-ufv{u)<l>2Au)du< lim t~a [ (t - ufv(u)W2{u)du

M2b
= — <0O,

which contradicts condition (7).
Case 2. x* > 0 on [T, oo) for some T > t0 . From (2) and (10) it follows

that (12) holds, and hence we can complete the proof by the procedure of
Case 1.

Case 3. x* < 0 on [T, oo) for some T > t0 . If (12) holds, then we can
arrive at a contradiction by the procedure of Case 1. So, we suppose that the
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integral in (12) diverges. Using (2) in (10) we have

(27) - f'a(s)p(s) ( ^ ^ ) ds,^ \ >C
x\t)

where C is a constant. By the assumptions, we can choose Tx > T so that

k / a{s)p(s)v ^x" ds=l + C

and then for any t > Tx we get

, A

Integrating the above inequality from T, to t we obtain

which together with (27) yields

from which it follows that

or

( 0 < ( r ) ( ( r ) ) Y ' ^ ^ - - o o as
contradicting the fact that x(t) > 0 for t > t0. This completes the proof.

The follow result is concerned with the oscillatory behavior of equation
(1) for all X>0.

COROLLARY 1. Let the differentiable function p assumed in Theorem 1
be defined by

(28) p(t) = cxpU^ds) fort>t0,

and let conditions (2), (4)-(7) hold. Then equation (1) is oscillatory for all
X>0.

PROOF. Let x(t) be a nonoscillatory solution of equation (1), say x{t) > 0
for t > t0. From (28), we see that y{t) = 0 for all t > t0. Now, if W is
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denned as in the proof of Theorem 1, then we obtain (10) or (11). The rest
of the proof is similar to that of Theorem 1 and hence is omitted.

In the following corollary we study the oscillatory behavior of the un-
damped equation

(29) (a(t)x'(t))* + q ( t ) \ x ( t ) f s g n x ( t ) = O, X > 0 ,

where the functions a and q are denned as in equation (1).

COROLLARY 2. Suppose that there exists a continuous function <p: [t0, oo)
—> R and a e (1 , oo) such that

(30) l iminf / q(s)ds > -oo ,

(31)

(32) lim sup i f'(t - ufq{u) du < oo,

and for every 8 > 0

(33) du

and

(34) J°°v(s)4>2
+(s)ds = oo,

where <j>+{t) = max{<f>(t), 0} and v(t) = ^(ft ^hjds)
Then equation (29) is oscillatory for all X > 0.

PROOF. This follows from Corollary 1 if we let p(t) — 0 and p(t) = 1 for

For illustration we consider the following example.
EXAMPLE 1. Consider the differential equation

(35) ({**(')) +^x'(t) + ^\x(t)

A > 0, t > t0 > 0.
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Taking p{t) = t and a = 2, we have

y(t) = 0, v{t) = -t for/>*0>0,

lim inf / cos sds > —oo,

1 [' 2
lim sup-^ / ( f - w ) COSUdu =-sintn < OO,

lim inf-^ / (r - w) C O S M - — du > - s i n s - k,

where A: is a positive constant. Set <f>{s) = — sins — k .
Next, we consider an integer N such that (2N + l)n + n/4 > t0 . Then

for all integer n > N and (2« + l)n + n/4 < s < (2n + l)n - n/4,

<f>(s) = - sins - k > ds,

where d is a small constant. Thus,
ft

l im / w(s)(/> (s)rfs

Hence equation (35) is oscillatory for all X > 0 by Corollary 1, whereas none
of the known criteria can cover this result.

REMARK 1. It is easy to check that the conditions (2), (3) and (4) of
Corollary 1 are superfluous if 0 < X < 1.

REMARK 2. Corollary 1, when 0 < X < 1, is new and is independent of
the results of Kwong and Wong [6] and Philos [8], while Corollary 1 for the
linear case (A = 1) is of the type obtained by Tan [11].

The following result is concerned with the oscillatory solution of equation
(1) when condition (5) fails.

THEOREM 2. Suppose that there exist a differentiable function p: [t0, oo) —>
(0, oo) and a constant a G (1 , oo) such that conditions (2)-(4) hold and for
every 6 > 0

(36) Urn sup i j\t - uf~2 [(* - u)2p{u)q{u)

where n and v are defined as in Theorem 1.
Then equation (1) is oscillatory for all X > 1.

PROOF. Let x{t) be a nonoscillatory solution of equation (1), say x(t) > 0
for t > t0. As in the proof of Theorem 1 (Case 1), we obtain (16). Divide
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(16) by f and take the upper limit as ( -» oo. Using (36) we obtain a
contradiction. The proofs in the cases when x* is either positive or negative
on [T, oo), T > t0, are similar to the proofs in Cases 2 and 3 of Theorem
1, and hence will be omitted.

COROLLARY 3. Let condition (36) in Theorem 1 be replaced by

1 /"'
(37) limsup-j/ (t-u)ap(u)q(u)du-oo

and

(38) lim / ( ? ~ " \ [y(u)n(u){t - u) - a]2 du < oo.
'^°°J,0 v{u)

Then the conclusions of Theorem 2 holds.

The following corollaries extend Wong's criterion in [10] to more general
equations of the form of (1) and (29). The proofs are immediate conse-
quences of Theorem 2 and will be omitted.

COROLLARY 4. Let the function p in Theorem 2 be defined by (28) and
suppose that conditions (2), (4) and (36) hold. Then equation (1) is oscil-
latory for all X > 0.

COROLLARY 5. Let conditions (30) and (31) hold for every 8 > 0 and
a € (1 , oo) and suppose

(39) ^Kmsupl^-nr2^-*!)2^)-^] du-co,

where

a(t)yjtoa(s)-J •
Then equation (29) is oscillatory for all X > 0.
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