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Dense Orderings in the Space of
Left-orderings of a Group

Adam Clay and Tessa Reimer

Abstract. Every le�-invariant ordering of a group is either discrete, meaning there is a least element
greater than the identity, or dense. Corresponding to this dichotomy, the spaces of le�, Conradian, and
bi-orderings of a group are naturally partitioned into two subsets. his note investigates the structure
of this partition, speciûcally the set of dense orderings of a group and its closure within the space of
orderings. We show that for bi-orderable groups, this closure will always contain the space of Conra-
dian orderings—and o�en much more. In particular, the closure of the set of dense orderings of the
free group is the entire space of le�-orderings.

1 Introduction

A group G is le�-orderable if there is a strict total ordering < of its elements such
that g < h implies f g < f h for all f , g , h ∈ G. Stronger than the notion of le�-
orderability is Conradian le�-orderability: a le�-ordering of a group G is said to be
Conradian if for every pair of elements g , h ∈ G with 1 < g , h there exists n > 0
such that 1 < g−1hgn . his turns out to be equivalent to requiring that 1 < g−1hg2

for all such pairs of elements [9]. Stronger still is the requirement that G admit a
le�-ordering such that g < h implies g f < h f for all f , g , h ∈ G, in which case <
is called a bi-ordering and G is called bi-orderable. It is straightforward to see that
every bi-ordering is a Conradian le�-ordering. Given a le�-ordering < of G (resp. a
Conradian ordering or bi-ordering), the pair (G , <)will be called a le�-ordered group

(resp. Conradian ordered or bi-ordered).
Every le�-ordering of G can be uniquely identiûed with its positive cone P =

{g ∈ G ∣ g > 1}, which is a subset of G satisfying
(1) P ⊔ P−1 ⊔ {1} = G,
(2) P ⋅ P ⊂ P.
Conversely, every subset of G satisfying the two properties above determines a le�-
ordering via the prescription g < h if and only if g−1h ∈ P. A positive cone P is the
positive cone of a Conradian le�-ordering if, in addition to the two properties above,
it satisûes
(3a) If g , h ∈ P, then g−1hg2 ∈ P.
A positive cone P of a le�-ordering is the positive cone of a bi-ordering if it satisûes
(3b) gPg−1 ⊂ P for all g ∈ G.
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For a ûxed group G, if we denote the collections of all positive cones of le�-
orderings, Conradian orderings and bi-orderings of G by LO(G), CO(G), and
BO(G), respectively, then we have BO(G) ⊂ CO(G) ⊂ LO(G). Each of these sets
can be topologized so as to become a totally disconnected compact Hausdorò space,
as follows.

Let P(G) denote the power set of G and observe that LO(G) ⊂ P(G). he power
set can be identiûedwith {0, 1}G , and thus can be equippedwith the product topology.
his makes P(G) into a totally disconnected Hausdorò space, which is compact by
Tychonoò ’s theorem. One checks that properties (1) and (2) above deûne a closed
subset of P(G) (similarly for (3a) and (3b)), so that LO(G) ⊂ P(G) is closed, and
hence compact, when equipped with the subspace topology. See the beginning of
Section 2 for a description of a subbasis for the topology on LO(G). Similarly, each
of CO(G) and BO(G) are closed and hence compact.

We call a le�-ordering < of a group G discrete if every element in (G , <) has an
immediate predecessor and successor, which is equivalent to its positive cone P =

{g ∈ G ∣ g > 1} having a smallest element. A le�-ordering of a group G that is not
discrete is dense, in the sense that whenever g , h ∈ G satisfy g < h there exists f ∈ G

with g < f < h. Equivalently, the positive cone of the ordering does not have a least
element. hroughout this note, the set of positive cones of dense le�-orderings of the
group G will be denoted D(G).

hus, each of the spaces LO(G), CO(G), and BO(G) admits a decomposition into
two subsets: the set of dense orderings and the set of discrete orderings. Our work
investigates how the nesting BO(G) ⊂ CO(G) ⊂ LO(G) behaves with regards to this
dichotomy. We show the following theorem.

heorem 1.1 If G is a bi-orderable group that is not isomorphic to the integers, then

CO(G) ⊂ D(G).

In fact, we show something much stronger, which proves that (in many situations)
this containment is proper; seeheorem 3.7 and the subsequent examples. WhenG is
nilpotent, it is known that LO(G) = CO(G), and so this yields the following corollary.

Corollary 1.2 Suppose G is a torsion-free nilpotent group that is not isomorphic to

the integers. hen LO(G) = D(G).

Leveraging the full strength ofheorem 3.7 also allows for an analysis if the space
of orderings of a free group. We show that every le�-ordering of a nonabelian free
group is an accumulation point of orderings whose Conradian souls1 are nontrivial,
noncyclic subgroups. From this we conclude the following theorem.

heorem 1.3 Suppose that F is a free group having n ≥ 2 generators or countably

inûnitely many generators. hen LO(F) = D(F).

Our motivation behind these considerations is as follows. he spaces LO(G),
CO(G), and BO(G) are all totally disconnected, compact Hausdorò spaces—in fact,

1See the discussion preceding heorem 3.7 for an explanation of the Conradian soul of an ordering.
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they aremetrizable when G is countable. herefore, when G is countable, each space
is homeomorphic to the Cantor set if and only if it is perfect. As a result there has
been a considerable amount of eòort in the literature devoted to identifying isolated
points and accumulation points in LO(G) (e.g., [7, 12]).

his eòort can be viewed as an initial step towards amore general problem. Recall
that if X is a topological space, X′ denotes the set of all accumulation points of X.
Set X(0) = X, and for each ordinal number α deûne X(α+1) = (X(α))′ and X(λ) =

⋂α<λ X
(α) if λ is a limit ordinal. Deûne the Cantor–Bendixson rank of X to be the

smallest ordinal α such that X(α+1) = X(α); such an α always exists for cardinality
reasons. hese notions were used to great success, for example, in showing that every
group admits either ûnitely many or uncountably many le�-orderings [8].

Viewed through the lensof Cantor–Bendixson ranks andderived subsets, theques-
tion of whether or not LO(G) admits any isolated points becomes a question of
whether or not the Cantor–Bendixson rank of LO(G) is larger than zero. For ex-
ample, the spaces of orderings of the braid groups and of various free products with
amalgamation admit isolated points and so have Cantor–Bendixson rank larger than
zero [6, 7]; on the other hand, the spaces of orderings of free groups, free prod-
ucts with amalgamation, and torsion-free abelian groups admit no isolated points
and thus have Cantor–Bendixson rank zero [12, 13]. For countable groups, there is
a well-known upper bound on the Cantor–Bendixson rank: since LO(G) is Polish
its Cantor–Bendixson rank is at most a countable ordinal, by the Cantor–Bendixson
theorem.

hesematters are connected to the notions of discrete and dense orderings as fol-
lows. One of the main results of [2] is that under mild hypotheses2 on the group G,
we have D(G) ⊂ D(G)′. From this, we conclude D(G) ⊂ LO(G)(α) for all α, and
thus D(G) ⊂ LO(G)(α) for all α. Our study of D(G), therefore, is an attempt to un-
derstand the structure of the sets LO(G)(α) for large α and ultimately determine the
Cantor–Bendixson rank of LO(G) for G in some nontrivial class of groups. Speciû-
cally, the question motivating our work is the following.

Question 1.4 Let G be a bi-orderable group. Can G admit a non-isolated point
P ∈ LO(G) with P ∉ D(G)?

If the answer to this question is “no”, itwould follow thatwheneverG isbi-orderable,
the Cantor–Bendixson rank of LO(G) must be either 1 or 0.

1.1 Organization

We organize our arguments as follows. In Section 2, we prepare some preliminary
results concerning torsion-free abelian groups and the distribution of dense and dis-
crete orderings in their spaces of orderings. In Section 3, we apply these results in
the study of bi-orderable groups, and discuss several illustrative examples. Section 4
deals with the case of free groups.

2Namely that every rank one abelian subgroup of G be isomorphic to the integers.
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2 Discrete Orderings of Abelian Groups

When A is a torsion-free abelian group, it is known that LO(A) has no isolated points
unless A is rank one abelian. When A is not rank one abelian but is ûnitely generated,
the set of dense orderings D(A) ⊂ LO(A) is fairly well understood.

heorem 2.1 ([2, Proposition 4.3]) Suppose that A is an abelian group. henD(A) =

LO(A) if and only if A is not isomorphic to the integers.

Question 4.6 of [2] then asks the natural question: What can be said of the set of
discrete orderings in LO(A)? We give a partial answer below by mirroring the proof
of [2, Proposition 4.3]. We will need this result (speciûcally Corollary 2.3) for later.

Our main tool in the proof that follows, which we use repeatedly below and else-
where in this note, is the procedure of “changing an ordering on a convex subgroup”.
For an ordered group (G , <), a subgroup C ⊂ G is called convex relative to < if when-
ever f ∈ G and g , h ∈ C, the inequalities g < f < h imply f ∈ C. In this case, if P is the
positive cone of the ordering <, then one can check that P′ = P ∖ (P ∩ C) ∪ Q is the
positive cone of a le�-ordering of G for every Q ∈ LO(C). hat is, one can replace
the portion of P that lies in C with any other positive cone in C. Note also that an
ordering < of a group G is discrete with smallest positive element g if and only if ⟨g⟩
is a convex subgroup; a property which we also use o�en in this paper.

We also recall that if X is either LO(G), CO(G) or BO(G), a subbasis for the
topology on X is given by the family of sets Ug = {P ∈ X ∣ g ∈ P}, where g ranges
over all nonidentity elements of G.

Proposition 2.2 Suppose that k ≥ 2 and that E ⊂ LO(Zk) is the set of discrete le�-

orderings. hen E = LO(Zk).

Proof For contradiction, suppose k > 1 is the smallest k for which the claim fails,
and choose anonempty basic open set ⋂n

i=1 Ug i in LO(Zk), say it contains the positive
cone P (here g i ∈ Zk for i = 1, . . . , n). Note that wemay assume that none of the g i ’s
are scalar multiples of one another. Suppose this basic open set contains no discrete
orderings.
Extend the ordering < deûned by P to an ordering of Qk by declaring v1 < v2 for

v1 , v2 ∈ Qk if mv1 < mv2 whenever mv1 ,mv2 ∈ Zk . Let H ⊂ Rk be the subset of
elements x ∈ Rk where every Euclidean neighbourhood of x contains both positive
and negative elements. One can check that H is a hyperplane that dividesRk into two
components H− and H+, where H− contains only negative elements of Qk and H+

contains only positive elements of Qk . hus, the elements of {g1 , . . . , gn} must lie in
either H+ or H. here are three cases to consider.

Case 1. Two or more elements of {g1 , . . . , gn} lie on H. In this case, H ∩Zk = Zm for
some 1 < m < k. By assumption, the positive cone PH = P ∩ (H ∩ Zk) ⊂ Zm is an
accumulation point of discrete orderings. Enumerate the g i ’s so that g i ∈ PH for i ≤ r.
here exists a positive cone P′

H
∈ ⋂

r
i=1 Ug i corresponding to a discrete ordering. Note

that relative to the ordering deûned by P, the subgroup H ∩Zk is a convex subgroup
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of Zk . hus, P′ = (P ∖ PH) ∪ P′
H
deûnes a new positive cone on Zk , which is the

positive cone of a discrete ordering since P′
H
deûnes a discrete ordering on H ∩ Zk .

By construction, P′ ∈ ⋂n
i=1 Ug i , a contradiction.

Case 2. Exactly one of the g i ’s, say g1, lies in H. In this case, P itself deûnes a discrete
ordering of Zk , since P ∩ H = ⟨g1⟩ is a convex subgroup of the ordering of Zk . In
particular, ⋂n

i=1 Ug i contains a discrete ordering, a contradiction.

Case 3. None of the g i ’s are contained in H. Suppose H has normal vector v⃗ =

(v1 , . . . , vk). Let є > 0 and choose w⃗ = (w1 , . . . ,wk) ∈ Qk with ∥v⃗ − w⃗∥ < є. hen
choose (y1 , . . . , yk) ∈ Zk such that y iw i ∈ Z for each i = 1, . . . , k. Choose j ∈

{1, . . . , k − 1} and let

m1 =

j

∑
i=1

y iw i and m2 =
k

∑
i= j+1

y iw i .

hen
x⃗ = (m2 y1 , . . . ,m2 y j ,−m1 y j+1 , . . . ,−m1 yk) ∈ Zk

satisûes w⃗ ⋅ x⃗ = 0. hus, the hyperplane H′ with normal vector w⃗ satisûes H′ ∩ Zk =

Zm for some m > 0, and since we can choose є > 0 as small as we please, we may
suppose that the g i ’s all lie to one side ofH′. By equippingZm with a discrete ordering,
we can lexicographically deûne a discrete ordering P′ on Zk with each g i positive. ∎

Recall that if G is a group with subgroup H, then the isolator of H in G is

IG(H) = {g ∈ G ∣ ∃k ∈ Z such that gk
∈ H}.

A subgroup H of G is called isolated in G if IG(H) = H. In general, IG(H) is a subset
of G properly containing H that is not a subgroup unless additional hypotheses are
imposed on the group G. For instance, if G is abelian (or even nilpotent, see [11]),
then IG(H) is a subgroup; see also Lemma 3.2.

Corollary 2.3 Suppose thatA is a torsion-free abelian group, and for each P ∈ LO(A),

let CP denote the smallest nontrivial convex subgroup of the ordering corresponding to

P. hen the set

{P ∈ LO(A) ∣ CP is rank one abelian}
is dense in LO(A).

Proof Let P ∈ LO(A) be given, and suppose⋂n
i=1 Ua i is a basic open neighbourhood

of P. Let H = ⟨a1 , . . . , an⟩, and let Q′ = P ∩ H. By heorem 2.1, there exists a posi-
tive cone Q ⊂ H with {a1 , . . . , an} ⊂ Q with Q ≠ Q′ that corresponds to a discrete
ordering of H, say with smallest positive element h ∈ Q.

Observe that the positive cone Q extends uniquely to a positive cone Q of the
subgroup IA(H), by declaring that a ∈ Q if and only if there exists k > 0 such that
ak ∈ Q. One can check that if C ⊂ H is a convex subgroup of the ordering induced
by Q, then IA(C) ⊂ IA(H) is a convex subgroup of the ordering induced by Q. hus,
IA(⟨h⟩) becomes the smallest nontrivial convex subgroup of IA(H) relative to the
ordering induced by Q.
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Now using the short exact sequence

1Ð→ IA(H)
i
Ð→ A

q

Ð→ A/IA(H)Ð→ 1

one can equip A/IA(H)with an arbitrary positive cone R and set P′ = i(Q)∪q−1(R).
By construction, P′ ∈ ⋂n

i=1 Ua i ⊂ LO(A) and the smallest nontrivial convex subgroup
of the corresponding ordering is IA(⟨h⟩), which is rank one abelian. ∎

3 Dense Orderings of Bi-orderable Groups

In this section, we use the property of bi-orderability of G to give suõcient �exibility
in the construction of le�-orderings of G that we can approximate any Conradian
ordering by dense orderings. Inwhat follows,wewill use K to denote theKlein bottle
group ⟨x , y ∣ xyx−1 = y−1⟩.

Lemma 3.1 Suppose that G is a group that does not contain a copy of the Klein bottle

group, and that P is the positive cone of a discrete Conradian ordering ofG. Suppose that

h is the least element of P, that h generates the proper normal cyclic subgroup H ≅ Z,
and that G/H is abelian. hen P ∈ LO(G) is an accumulation point of dense orderings.

Proof First, observe that for every g ∈ G, we have [g , h] = 1. To see this, note
that since H = ⟨h⟩ is normal in G, every element g ∈ G satisûes ghg−1 = h±1. In
particular, if ghg−1 = h−1, one can check that G would contain K, which we assume
is not possible. From this, it follows that if G/H were rank one abelian, then G itself
would be abelian, as H is cyclic. hus, G is a torsion-free rank two abelian group, and
so the result follows from heorem 2.1.

On the other hand, suppose G/H is torsion free abelian of rank larger than two.
Let g1 , . . . , gn be ûnitely many elements of P. We will produce a positive cone Q

corresponding to a dense ordering that contains g1 , . . . , gn .
Since there is a short exact sequence with H convex, we have

1Ð→ H
i
Ð→ G

q

Ð→ G/H Ð→ 1,

and P is constructed, as P = {hk}k>0 ∪ q−1(P′) for some positive cone P′ ⊂ G/H.
Suppose that g1 , . . . , gn are enumerated so that g1 , . . . , gr are powers of h and
gr+1 , . . . , gn lie in q−1(P′),meaning q(g i) ∈ P′ for r < i ≤ n.
By Proposition 2.3, we can choose a positive cone Q′ of G/H containing q(g i) for

r < i ≤ n that produces an orderingwith rank one abelian convex subgroup C ⊂ G/H.
he subgroup q−1(C) is abelian of rank two and convex in the orderingwhose positive
cone is R = {hk}k>0 ∪ q−1(Q′). he positive cone R ∩ q−1(C) contains the elements
g1 , . . . , gs for some s ≥ r. By heorem 2.1, there is a cone R′ ⊂ q−1(C) containing
g1 , . . . , gs that is diòerent from R, andwhich deûnes a dense ordering of q−1(C). Now
set S = R′ ∪ q−1(Q′ ∖ (C ∩ Q′)), which is the positive cone of a dense ordering of G
that contains g1 , . . . , gn by construction. ∎

We need two lemmas concerning isolators of abelian subgroups beforemoving on
to our main theorem.
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Lemma 3.2 Suppose that G is a bi-orderable group and A is an abelian subgroup.

hen IG(A) is an abelian subgroup.

Proof First, observe that all elements of IG(A) commute, because if [gn , hm] = 1
for some g , h ∈ G, then [g , h] = 1 by bi-orderability. It then follows that IG(A) is a
subgroup, since gk = a ∈ A and hℓ = b ∈ A implies (gh)kℓ = aℓbk ∈ A, and closure
under taking inverses is obvious. ∎

Lemma 3.3 ([3, Lemma 3.2]) Suppose that A is an isolated abelian subgroup of a

bi-orderable group G. hen A is relatively convex in G.

Proposition 3.4 Every bi-orderable group that is not isomorphic to the integers admits

a dense le�-ordering.

Proof Let (G , <) be a bi-ordered group. If < is dense, we are done. Otherwise, let
g ∈ G be the least positive element of <, and observe that g is central. Since 1 < g,
we know that 1 < hgh−1 for all h ∈ G. If h does not commute with g, this forces
g < hgh−1, since g is the least positive element. But then conjugation yields h−1gh < g,
a contradiction.

hus, g is central, and since G is not inûnite cyclic, there exists h ∈ G that is not a
power of g. hen ⟨g , h⟩ is a rank two abelian subgroup ofG, by Lemma 3.2, IG(⟨g , h⟩)
is an isolated abelian subgroup; one can check it also has rank two. By Lemma 3.3,
IG(⟨g , h⟩) is relatively convex. Every rank two abelian group admits a dense ordering,
so we are done. ∎

Note that bi-orderability is essential in the previous proposition. he ûnitely gen-
erated Tararin groups

Tn = ⟨x1 , . . . , xn ∣ x ix i−1x
−1
i = x

−1
i−1 for i = 2, . . . n⟩

satisfy ∣LO(Tn)∣ = 2n , and all the orderings are discrete. It is also possible to construct
groups having uncountablymany orderings, all of them discrete, such as the so-called
inûnite Tararin group ⟨x i , i ∈ N ∣ x ix i−1x

−1
i = x−1

i−1 for i ∈ N>1⟩. None of these groups
are bi-orderable, as each contains an element that is conjugate to its own inverse.

Proposition 3.5 Suppose that G is a bi-orderable group that is not isomorphic to the

integers and that P is the positive cone of a Conradian ordering of G. hen P ∈ D(G).

Proof Suppose that P is the positive cone of a discrete Conradian ordering, and that
P ∈ ⋂

n
i=1 Ug i . Let h > 1 denote the least element of P.

First, suppose that there exists a convex subgroup C such that (⟨h⟩,C) is a convex
jump. Assume that g1 , . . . , gn are enumerated so that g1 , . . . , gr ∈ C and gr+1 , . . . , gn ∉

C. By Lemma 3.1, there exists a positive cone Q ∈ LO(C) such that Q ≠ P ∩ C and
g1 , . . . , gr ∈ Q. hen P′ = (P ∖ (P ∩ C)) ∪ Q contains g1 , . . . , gn , is diòerent from P

and is the positive cone of a dense ordering.
On the other hand, suppose that there is no convex subgroup C such that (⟨h⟩,C)

is a convex jump. Suppose further that g1 , . . . , gn are enumerated so that g1 , . . . , gr

are powers of h and gr+1 , . . . , gn are not; suppose also that gr+1 is the smallest element
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that is not in ⟨h⟩. hen gr+1 determines a convex jump (C ,D); note that g j ∉ C for
all j > r and that the containment ⟨h⟩ ⊂ C is proper. To complete the proof, it suõces
to observe that C can be equipped with a dense ordering by Proposition 3.4. hus,
we can choose a positive cone Q ⊂ C with h ∈ Q and set P′ = (P ∖ (P ∩ C)) ∪ Q as
before. ∎

Corollary 3.6 If G is a torsion-free nilpotent group that is not isomorphic to the

integers, then LO(G) = D(G).

Proof Every torsion-free nilpotent group is bi-orderable, and all le�-orderings of
every torsion-free nilpotent group are Conradian [1]. ∎

We can extend the previous proposition so that it applies to certain orderings of
non-bi-orderable groups. Indeed, asExample 3.8 shows, the groupG neednot even be
locally indicable for our generalized result to apply. For the statement of our theorem
below, recall that theConradian soul of an ordering < of a groupG is the largest convex
subgroup C ⊂ G such that the restriction of < to C is Conradian.

heorem 3.7 Suppose that P is the positive cone of a le�-ordering of a bi-orderable

group G. If the Conradian soul of the ordering corresponding to P is bi-orderable, non-

trivial, and not isomorphic to Z, then P ∈ D(G).

Proof With P and G as in the statement of the theorem, suppose that P ∈ ⋂
n
i=1 Ug i

where g1 , . . . , gn ∈ G. Let C denote the Conradian soul of the ordering corresponding
to P, and suppose that the g i ’s are enumerated so that g1 , . . . , gr ∈ C and g i ∉ C for
i = r+ 1, . . . , n. By Proposition 3.5, there is a positive cone Q ⊂ C containing g1 , . . . gr

whose corresponding ordering of C is dense. hen P′ = P∖(P∩C)∪Q is the positive
cone of a dense ordering of G, and P′ ∈ ⋂

n
i=1 Ug i by construction. ∎

With this generalization, it is straightforward to construct orderings of non-
biorderable groups that are accumulation points of dense orderings.

Example 3.8 Recall that

Bn = ⟨σ1 , . . . , σn−1 ∣ σiσ jσi = σ jσiσ j if ∣i − j∣ = 1 and
σiσ j = σ jσi otherwise⟩.

he positive cone PD of the Dehornoy ordering <D of Bn is deûned as follows. Given a
wordw in the generators σi ,we say thatw is i-positive if it contains no occurrences of
σ j for j < i, and all occurrences of σi (of which theremust be at least one) occur with
positive exponent. A braid β ∈ Bn lies in PD if and only if it admits a representative
word w that is i-positive for some i.
Fix n > 4 and consider Bn . he convex subgroups of <D are precisely the sub-

groups ⟨σr , . . . , σn−1⟩ with r ≥ 1 [5]. In particular, ⟨σn−2 , σn−1⟩ ≅ B3 is a proper con-
vex subgroup. Equip this copy of B3 with any le�-ordering whose Conradian soul
is contained in [B3 , B3] ≅ F2 and is not inûnite cyclic. Extend this ordering to Bn

using the Dehornoy ordering outside of ⟨σn−2 , σn−1⟩. By heorem 3.7, the resulting
ordering is an accumulation point of dense orderings of Bn . However, Bn itself is
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not bi-orderable—in fact, not evenConradian le�-orderable, since [Bn , Bn] is ûnitely
generated and perfect for n ≥ 5. ∎

Remark 3.9 A family of le�-orderings of Bn of particular interest are the Nielsen-

hurston orderings. hese are the orderings that arise from considering the action of
Bn , thought of as a mapping class group, on the boundary of the universal cover of
the n-punctured disk equipped with a hyperbolic metric (see [5, Chapter XIII] for
more details). Such orderings are either of ûnite or inûnite type, depending on how
a certain geodesic which describes the ordering cuts up the n-punctured disk. he
authors of [10] show that the Nielsen–hurston orderings of inûnite type are dense,
while those of ûnite type have Conradian soul isomorphic to Zk for k ≥ 1. When
k > 1 such orderings are obviously an accumulation point of dense orderings, but
when k = 1 the picture is not so clear (though it is known that these orderings are not
isolated points). It may be of some interest to determine whether or not theNielsen–
hurston orderings with Conradian soul isomorphic to Z lie inD(Bn), as this would
imply that all Nielsen–hurston orderings lie in D(Bn).

4 Free Groups

Let Fn denote the free group on generators {x1 , . . . , xn}. In this section, we show that
LO(Fn) = D(Fn), which will follow as a corollary of the following theorem.

heorem 4.1 Let n ≥ 2 and suppose that P ∈ ⋂
m
i=1 Ug i ⊂ LO(Fn) for some collection

of nonidentity elements g1 , . . . , gm ∈ Fn . hen there exists Q ∈ ⋂
m
i=1 Ug i and a subgroup

C ⊂ Fn with g i ∉ C for all i, satisfying the following:

(i) C is convex relative to the ordering of Fn determined by Q;

(ii) C is nontrivial and not isomorphic to Z.

Some of the details of the proof are a special case of computations done in [12], and
so are omitted here for clarity of exposition.

Proof Corresponding to the positive cone P, there is a le�-ordering < of Fn with
1 < g i for i = 1, . . . ,m. Let ρ ∶ Fn → Homeo+(R) denote a dynamic realization of <,
which is a representation satisfying 1 < g if and only if ρ(g)(0) > 0 for all g ∈ Fn .
For the rest of this proof, let Bk denote the k-ball in Fn relative to the generating set
{x1 , . . . , xn}.

We will show how to construct, for each k ≥ 1, a representation ρk ∶ Fn →

Homeo+(R) satisfying the following:
(1) ρk(w)(0) = ρ(w)(0) for all w ∈ Bk ;
(2) there exist nonidentity elements h1 , h2 ∈ Fn such that ⟨h1 , h2⟩ is not cyclic and

ρk(h i)(0) = 0 for i = 1, 2.
Having constructed such representations, the theorem follows. First choose an enu-
meration of the rationals {r0 , r1 , r2 , . . .} with r0 = 0 and deûne a le�-ordering ≺ of
Homeo+(R) according to the rule f1 ≺ f2 if and only if f1(r i) < f2(r i), where r i is
the ûrst rational in the enumeration {r0 , r1 , r2 , . . .} with f1(r i) ≠ f2(r i). he stabi-
lizer of 0, Stab(0), is a convex subgroup in this le�-ordering. Now choose k ≥ 1 such
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that g1 , . . . , gm ∈ Bk . hen with the representation ρk constructed as above, consider
the short exact sequence 1 → ker(ρk) → Fn → ρk(Fn) → 1, and lexicographically
order Fn using the restriction of ≺ to ρk(Fn) and whatever ordering one pleases on
ker(ρk). hen C = ⟨h1 , h2⟩ is not cyclic and is contained in ρ−1

k
(Stab(0)), which is

a convex subgroup relative to the resulting ordering of Fn . Moreover, if we use Q to
denote the positive cone of this ordering of Fn , then by our choice of ρk , we have
ρk(g i)(0) = ρ(g i)(0) > 0 for all i = 1, . . . ,m, and hence Q ∈ ⋂

m
i=1 Ug i .

hus, we ûx k ≥ 1 and focus on constructing ρk as above. Let g+ = maxBk and
g− = minBk , where the maximum and minimum are taken relative to the ordering
< of Fn restricted to Bk . Since the dynamic realization ρ satisûes ρ(h)(0) > 0 if and
only if h > 1, the assignment h ↦ ρ(h)(0) is order-preserving. We conclude that
ρ(w)(0) ∈ [ρ(g−)(0), ρ(g+)(0)] for all w ∈ Bk . From this, it follows by induction
on the length ofw, that if ρk satisûes ρk(x i)(y) = ρ(x i)(y) for i = 1, . . . , n and for all
y ∈ [ρ(g−)(0), ρ(g+)(0)], then ρk(w)(0) = ρ(w)(0) for all w ∈ Bk (this is a special
case of [12, Lemma 1.9]).

Now for each j = 1, . . . , n, choose є j = ±1 such that xє j
j
g+ > g+, and choose j0 such

that xє j0
j0

g+ = min{xє11 g+ , . . . , xєnn g+}. To simplify notation, set a = x
є j0
j0

. Since n ≥ 2,
wemay choose ℓ ≠ j0, and set b = x

єℓ
ℓ
.

For ease of notation in the arguments below, in place of ρ(h)(x) we simply write
h(x) whenever h ∈ F2 and x ∈ R. Deûne order-preserving homeomorphisms f1 , f2 ∶
R→ R as follows:

f1(x) =

⎧⎪⎪
⎨
⎪⎪⎩

a(x) if x ≤ g+(0),
(
bg
+
(0)−ag+(0)

ag+(0)−g+(0) )(x − ag
+(0)) + bg+(0) otherwise.

hen noting that f1(bg+(0)) > bg+(0), set

f2(x) =

⎧⎪⎪
⎨
⎪⎪⎩

b(x) if x ≤ g+(0),
(
f1(bg

+
(0))−bg+(0)

bg+(0)−g+(0) )(x − bg+(0)) + f1(bg+(0)) otherwise.

See Figures 1 and 2 for graphical explanations of these functions; note that g+(0) <

ag+(0) < bg+(0) and g+(0) < bg+(0) < f1(bg+(0)) follow from our choices of j0,
є j0 , and єℓ .
Deûne ρk ∶ Fn → Homeo+(R) as follows. For i ∉ { j0 , ℓ}, set ρk(x i) = x i , and

set ρk(a) = f1 and ρk(b) = f2. Next set h1 = (bg+)−1a2g+ and h2 = (abg+)−1b2g+.
Observe that bg+ and ag+ are reduced words, since the exponents є j0 and єℓ are cho-
sen so that bg+(0), ag+(0) ∉ [g−(0), g+(0)]. Since j0 ≠ ℓ, it follows that h1 and h2
are reduced words in the generators {x1 , . . . , xn}, and we conclude that h1 , h2 do not
represent the identity. Moreover, there are no integers s, t such that hs

1 = ht
2, because

the commutator [h1 , h2] is not the identity, so ⟨h1 , h2⟩ is not cyclic.
Lastly, by using the facts that (1) ρk(g

+)±1(0) = (g+)±1(0) and (2) ρk(a)(x) =

f1(x) and ρk(b)(x) = f2(x) for all x ∈ R, one computes that ρk(h1)(0) = 0 and
ρk(h2)(0) = 0. his completes the proof. ∎

Corollary 4.2 If n ≥ 2, then LO(Fn) = D(Fn).
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Figure 1: he function f1(x).

Figure 2: he function f2(x).

Proof Suppose that P is the positive cone of a le�-ordering of Fn , and that P ∈

⋂
m
i=1 Ug i for some g1 , . . . , gm ∈ Fn . Choose Q ∈ ⋂

m
i=1 Ug i with corresponding sub-

groupC ⊂ Fn as in the conclusion ofheorem4.1. Choose a bi-ordering ofC withpos-
itive cone R, and set Q′ = Q ∖ (Q ∩C)∪R. hen Q′ ∈ ⋂

m
i=1 Ug i , and Q′ corresponds

to a le�-ordering of Fn whose Conradian soul contains C. In particular,heorem 3.7
implies that Q′ ∈ D(Fn).

It follows that the positive cone P is an accumulation point of elements of D(Fn),
so P ∈ D(Fn). ∎

While the previous proof can bemodiûed to handle the case of F∞ (the free group
with countably inûnitely many generators), the space LO(F∞) can also be analyzed
directly as below.

Example 4.3 Let F∞ denote the free group on countablymany generators {x i}i∈N.
hen LO(F∞) is homeomorphic to the Cantor set. If P ∈ ⋂

n
i=1 Ug i ⊂ LO(F∞), choose

k large enough that x i for i ≥ k does not occur in any reduced word representing
g1 , . . . , gn . hen the automorphism ϕ ∶ F∞ → F∞ deûned by ϕ(x i) = x i for i ≠ k and
ϕ(xk) = x−1

k
yields a positive cone ϕ(P) ≠ P that contains g1 , . . . , gn .
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We can in fact approximate such a positive cone P by dense orderings of LO(F∞).
With k as above, consider themap h ∶ F∞ → ⟨x1 , . . . , xk−1⟩ ≅ Fk−1 given by h(x i) = x i

for i < k and h(x i) = 1 for i > k. Equip Fk−1 with the positive cone P ∩ Fk−1, and
the normal closure ⟨⟨xk , xk+1 , . . .⟩⟩with any positive coneQ corresponding to a dense
ordering of ⟨⟨xk , xk+1 , . . .⟩⟩. Note that since free groups are bi-orderable [4, Section
3.2], such an ordering exists by Proposition 3.4. Now using the short exact sequence

1Ð→ ⟨⟨xk , xk+1 , . . .⟩⟩
i
Ð→ F∞

h
Ð→ Fk−1 Ð→ 1,

we lexicographically order F∞ using the positive cone P′ = i(Q)∪h−1(P∩Fk−1). he
result is a positive cone P′ ∈ ⋂

n
i=1 Ug i whose corresponding ordering is dense. We

conclude that D(F∞) = LO(F∞). ∎
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