Ergodic theory and dynamical systems

EDITORS Michel Herman Anatole Katok Klaus Schmidt Peter Walters

EDITORIAL BOARD

- A. Connes (IHES)
- R. L. Dobrushin (USSR Acad. of Sciences)
- D. B. A. Epstein (University of Warwick)
- J. Feldman (University of California)
- J. Franks (Northwestern University)
- H. Furstenberg (Hebrew University)
- K. Jacobs (University of Erlangen)
- H. Kesten (Cornell University)
- U. Krengel (University of Gottingen)
- W. Krieger (University of Heidelberg)
- G. A. Margulis (USSR Acad. of Sciences)
- J. N. Mather (Princeton University)

- M. Misiurewicz (Warsaw University)
- S. E. Newhouse (University of Nth Carolina)
- D. S. Ornstein (Stanford University)
- J. Palis (IMPA)
- W. Parry (University of Warwick)
- D. Ruelle (IHES)
- Ya. G. Sinai (L. D. Landau Inst. for Theoretical Physics, Moscow)
- S. Smale (University of California)
- J. P. Thouvenot (University of Paris 6)
- W. A. Veech (Rice University)
- B. Weiss (Hebrew University)
- R. Zimmer (University of Chicago)

VOLUME 5 1985

CAMBRIDGE UNIVERSITY PRESS

CAMBRIDGE

LONDON NEW YORK NEW ROCHELLE MELBOURNE SYDNEY

PUBLISHED BY

THE PRESS SYNDICATE OF THE UNIVERSITY OF CAMBRIDGE

The Pitt Building, Trumpington Street, Cambridge CB2 1RP 32 East 57th Street, New York, NY 10022, USA 10 Stamford Road, Oakleigh, Melbourne 3166, Australia

© Cambridge University Press 1985

Printed in Great Britain by J. W. Arrowsmith Ltd, Bristol

Contents

PART 1 MARCH 1985

1
27
17
59
1
39
)7
23
15

PART 2 JUNE 1985

Some entire functions with multiply-connected wandering domains I. N. Baker	163
The characterization of differential operators by locality: abstract deriva- tions C. J. K. Batty and D. W. Robinson	171
A local limit theorem for a sequence of interval transformations P. Calderoni, M. Campanino and D. Capocaccia	185
Approximately transitive flows and ITPFI factors A. Connes and E. J. Woods	203
Periodic points for piecewise monotonic transformations F. Hofbauer	237
Simplicial systems for interval exchange maps and measured foliations S. P. Kerckhoff	257
The entropy of C^2 surface diffeomorphisms in terms of Hausdorff dimension and a Lyapunov exponent L. Mendoza	273
Expanding endomorphisms of the circle revisited M. Shub and D. Sullivan	285
On non-additive processes U. Wacker	291

Actions of lattices in semisimple groups preserving a G-structure of finite type R. J. Zimmer	301
Problems survey Manifolds with non-positive curvature K. Burns and A. Katok	307
Errata Errata to 'Hausdorff dimension for horseshoes' A. Manning	319
PART 3 SEPTEMBER 1985	
The chain recurrent set, attractors, and explosions L. Block and J. E. Franke	321
On the measurable dynamics of $z \mapsto e^z$ E. Ghys, L. R. Goldberg and D. P. Sullivan	329
Hyperbolic sets for twist maps D. L. Goroff	<u>3</u> 37
Super persistent chaotic transients C. Grebogi, E. Ott and J. A. Yorke	341
Global shadowing of pseudo-Anosov homeomorphisms M. Handel	373
A counterexample to a positive entropy skew product generalization of the Pinsker conjecture J. King	379
On upcrossing inequalities for subadditive superstationary processes M. Krawczak	409
Relative equilibria of the four-body problem R. Moeckel	417
Invariant measures for the flow of a first order partial differential equation R. Rudnicki	437
k-fold mixing lifts to weakly mixing isometric extensions D. J. Rudolph	445
A quantitative version of the Kupka-Smale theorem Y. Yomdin	449
Problems survey Problems on rigidity of group actions and cocycles S. Hurder	473
PART 4 DECEMBER 1985	
Almost topological classification of finite-to-one factor maps between shifts of finite type R. Adler, B. Kitchens and B. Marcus	485
Twist periodic orbits and topological entropy for continuous maps of the circle of degree one which have a fixed point L. Alsedà, J. Llibre, M. Misiurewicz and C. Simó	501
Smale diffeomorphisms and surface topology S. Batterson and J. Smillie	519
Birkhoff periodic orbits for twist maps with the graph intersection property <i>D. Bernstein</i>	531
Growth rate of surface homeomorphisms and flow equivalence D. Fried	539

On infinite tensor products of factors of type I ₂ T. Giordano and G. Skandalis	565
An Anosov action on the bundle of Weyl chambers HC. Im Hof	587
Dimension of invariant measures for maps with exponent zero F. Ledrappier and M. Misiurewicz	595
Symmetric S-unimodal mappings and positive Liapunov exponents T. Nowicki	611
Mixing and spectral multiplicity E. A. Robinson	617
Almost sure invariance principle for some maps of an interval K. Ziemian	625
Index to Volume 5	641

THE PREPARATION OF TYPESCRIPTS

The attention of authors is particularly directed to the following requests:

1 Typescript

Papers should be typed, double-spaced, on one side of white paper (of which A4, 210 by 297 mm, is a suitable size). The pages must be numbered. Generous margins should be left at the side, top and bottom of each page. The copy sent must be clear.

A cover page should give the title, the author's name and institution, with the address to which mail is to be sent.

The title, while brief, must be informative (e.g. A new proof of the ergodic theorem, whereas Some applications of a theorem of Birkhoff would be useless).

The first paragraph or two should form a summary of the main theme of the paper, providing an abstract intelligible to mathematicians.

For a typescript to be accepted for publication, it must accord with the standard requirements of publishers, and be presented in a form in which the author's intentions regarding symbols etc. are clear to a printer (who is not a mathematician).

The following notes are intended to help the author in preparing the typescript. New authors may well enlist the help of senior colleagues, both as to the substance of their work and the details of setting it out correctly and attractively.

2 Notation

Notation should be chosen carefully so that mathematical operations are expressed with all possible neatness, to lighten the task of the compositor and reduce the chance of error.

For instance n_k (n sub k) is common usage, but avoid if possible using c sub n sub k. Fractions are generally best expressed by a solidus. Complicated exponentials like

$$\exp\left\{z^2\sin\theta/(1+y^2)\right\}$$

should be shown in this and no other way.

In the typescript, italics, small capitals and capitals are specified by single, double and triple underlining. Bold-faced type is shown by wavy underlining; wavy will be printed **wavy**.

It helps if displayed equations or statements which will be quoted later are numbered in order on the right of their line. They can then be referred to by, for example, 'from (7)'.

The author must enable the printer (if necessary by pencilled notes in the margin) to distinguish between similar symbols such as o, O, o, O, 0; x, X, \times ; ϕ , Φ , \emptyset ; l, 1; ε , \in ; κ , k.

Greek letters can be denoted by Gk in the margin.

If an author wishes to mark the end of the proof of a theorem, the sign \Box may be used. Footnotes should be avoided.

3 Diagrams

It is extremely helpful if diagrams are drawn in Indian ink on white card, faintly blue or greenlined graph paper, or tracing cloth or paper. Symbols, legends and captions should be given on a transparent overlay. Each text figure must be numbered as Figure 1, Figure 2,... and its intended position clearly indicated in the typescript:

The author's name in pencil must be on all separate sheets of diagrams.

A figure is expensive to reproduce and should be included only when the subject matter demands it, or when it greatly clarifies the exposition.

The publisher recognizes that some authors do not have the facilities for producing drawings of a sufficiently high standard to be reproduced directly and is therefore willing to have such diagrams re-drawn, provided that they are clear.

4 Tables

Tables should be numbered (above the table) and set out on separate sheets. Indicate the position of each in the text as for figures:

Table 3 here

5 References

References should be collected at the end of the paper numbered in alphabetical order of the authors' names. A reference to a book should give the title, in italics, and then in roman type the publisher's name and the place and year of publication:

[4] N. Dunford & J. T. Schwartz Linear Operators Part I. Wiley: New York, 1958.

A reference to a paper should give in italics the title of the periodical, the number of the volume and year, and the beginning and end pages of the paper. Titles should be abbreviated as in *Mathematical Reviews*:

[6] J. E. Littlewood. The 'pits effect' for functions in the unit circle. J. Analyse Math. 23 (1970), 236-268.

Ergodic theory and dynamical systems

VOLUME 5 PART 4 DECEMBER 1985

CONTENTS

Adler, R., Kitchens, B. and Marcus, B. Almost topological classification of finite-to-one factor maps between shifts of finite	195
type	48.2
Alsedà, L., Llibre, J., Misiurewicz, M. and Simó, C. Twist periodic	
of degree one which have a fixed point	501
Batterson, S. and Smillie, J. Smale diffeomorphisms and surface	
topology	519
Bernstein, D. Birkhoff periodic orbits for twist maps with the graph	
intersection property	531
Fried, D. Growth rate of surface homeomorphisms and flow	
equivalence	539
Giordano, T. and Skandalis, G. On infinite tensor products of factors	
of type I_2	565
Im Hof, HC. An Anosov action on the bundle of Weyl chambers	587
Ledrappier, F. and Misiurewicz, M. Dimension of invariant measures	
for maps with exponent zero	595
Nowicki, T. Symmetric S-unimodal mappings and positive Liapunov	
exponents	611
Robinson, E. A. Mixing and spectral multiplicity	617
Ziemian, K. Almost sure invariance principle for some maps of an	
interval	625
Index to Volume 5	641

© Cambridge University Press 1985

CAMBRIDGE UNIVERSITY PRESS

The Pitt Building, Trumpington Street, Cambridge CB2 1RP

32 East 57th Street, New York, NY 10022, USA

10 Stamford Road, Oakleigh, Melbourne 3166, Australia

Printed in Great Britain by J. W. Arrowsmith Ltd, Bristol