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INEQUALITIES FOR THE BETA FUNCTION
OF n VARIABLES
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Abstract

We present various inequalities for Euler's beta function of n variables. One of our theorems
states that the inequalities

B(i xn)<bn (•)

hold for all jc,- > 1 (i = 1, . . . , n; n > 3) with the best possible constants an = 0 and
bn = 1 — l/(n — 1)!. This extends a recently published result of Dragomir et al., who
investigated (*) for the special case n = 2.

1. Introduction

The classical beta function, which is also known as Euler's integral of the first kind,
is defined for positive real numbers x and y by

/•i

B(x,y)= / f-\l-ty~ldt. (1.1)

The beta function plays a central role in the theory of special functions and also has
applications in other fields, such as mathematical physics and probability theory; see
[4, 5, 8]. An extension of (1.1) to n variables is given by

B(xu.. J (]"[ l ^ ).,xn) = J (]"['*'
J > 0; / = 1, . . . , n; n > 2), where

A n _ , = { ( r , , . . . , * „ _ , ) e R " - ' | r , > 0 , . . . , * „ _ , > 0 , r, + ••• + / „ _ , < 1 }
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610 HorstAlzer [2]

denotes the standard simplex in R""1. There exists a close connection between
B(x\, ... , xn) and the gamma function,

/•OO

r(x) = / e-'t*-' dt (x > 0),
Jo

as the elegant identity

B(x x)-
o(X\, . . . ,Xn) —

reveals. A collection of the most important properties of the beta function of two and
more variables is given, for instance, in [4, 8].

Various inequalities for B(x, y) and Bp(x, y) = f£ t*~l(l — t)y~* dt appear in the
literature (see [12, 13, 15, 16, 19]), whereas inequalities for the beta function of three
or more variables are difficult to find. The following interesting inequality for B(x, v)
was published in 2000 by Dragomir et al. [9]:

0<l/(xy)-B(x,y)<l/A (x,y>l). (1.2)

The lower bound 0 is sharp, but the upper bound 1/4 can be improved. In [3] it
is shown that the second inequality of (1.2) is valid with the best possible constant
0.08731 It is natural to look for an extension of (1.2) to more than two variables.
In this paper we determine the best possible constants an and bn such that the double-
inequality (*) holds for all JC, > 1 (i = 1, . . . , n; n > 3). Furthermore, we establish
several new inequalities for B(x\, . . . , xn), which are valid for all n > 2. In Section 3
we provide sharp constants an{c) and fin(c) in

Tl" x~l/2+Xi F T x~l/2+*'x
V

where JT, > c > 0(i = 1, . . . , n). Moreover, we determine the best possible upper and
lower bounds for the ratio B(tAxx, / x x 2 , . . . . /xxn)/B(vxu vx2, •• • , vxn), depending
only on fi, v and w, and we establish that the inequalities

fl((*i +x2)/2, . . . , ( * „ + y n ) / 2 ) < y/B(xu... ,xn)B(yu... ,yn)

a n d

B(xi + y , xn + yn) < —(B(xlt... ,xn) +B(ylt... ,yn))

are valid for all *,- > 0 (/ = 1, . . . , n). In order to prove our results we need some
lemmas, which we present in the next section.
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[3] Inequalities for the beta function of n variables 611

2. Lemmas

First, we collect a few basic properties of the gamma function and its logarithmic
derivative \j/ = V/ V, which is known as the psi or digamma function.

LEMMA 2.1. Let a > 0, b > 0 and x > 0 be real numbers and let n > 1 be an
integer. Then we have

V^ (x -+ oo), (2.1)

(2.2)x + lo

T(2x) = _L4*r(;c)r(;t 4- 1/2), (2.3)
2/

b-" b)
)+l/x, (2.5)

(2.6)

J dt = (-!)-„! | ^ L ^ , (2.7)

I + _ L < r w < I + _L + _L. (2.8)

The formulas (2.1)-(2.7) can be found in [1], while (2.8) and corresponding rational
bounds for ij/M with n > 2 are given in [2, 10]. The following two lemmas present
inequalities for the psi function.

LEMMA 2.2. Let t > 3 be a real number and let a = 1 — 1/ T(i). Then we have
for all real numbers x > 1:

0 < ax1'1 + (ax' - \)f(tx). (2.9)

PROOF. We denote the expression on the right-hand side of (2.9) by / (x). Differ-
entiation gives

xf\x) = g(x) + a(t - I)*'"1 + atx'+^'itx), (2.10)

where g(x) = atx'\j/(tx) — tx\j/'(tx). Since \j/ is positive on (1.461... , oo), x > 1
and a > 1/2 imply g(x)/(tx) > \j/(tx)/2 — f(tx). Since \}r and — \jr' are strictly
increasing on (0, oo), we obtain

>>tx 2 (2.11)
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From (2.10) and (2.11) we conclude that/'(x) > 0 for* > 1. Hence we have

/ ( * ) > / ( 1 ) = a + ( a - 1 ) ^ ( 0 = ^ | , (2-12)

where h(t) = V(t) - V(0 - 1. Differentiation yields h'(t) = T'(r) - x]/'(t) and
h"{t) = r"(t) - V"(0- Since F" and -\J/" are positive on (0, oo), we obtain for
t > 3: h'(t) > h'(3) = 1.450... and h(t) > hQ) = 0.077 . . . , so that (2.12) implies
that / is positive on [1, oo).

LEMMA 2.3. Let n > 3 be an integer and let a = 1 — 1/ T(n). 77ie« we have for
all real numbers Xj > 1 (i = 1, . . . , n):

| > j |̂ z f\Xl - 1 j + a (max*,) fjx,,0 <

PROOF. We may assume that xt > • • • > xn > 1. Let

cf\ \af\xi-l\+aY\xi

/ L J «=2

x) = / (x, ... ,x,xq+i, . . . , xn), where x > 0 and g € {1, . . . , n — 1}. We
prove that / , is increasing on [xq+i, oo). Let x > xq+l and y = qx + Yl"=q+\ xi — n-
Differentiation gives

a q

n "I n

Y\ x,- 1 + rj/(y)ax"-i f ] x, + a(l - l/q)x"-2

[=17+1 J i=q+\ i

n

L i=q+\ J 1=9+1 1=9+1

Since xq J~["= +1 xt > I, a > 0, \(r(y) > 0, and y)/'(y) > 0, we obtain

-f'Ax) >(a- l)\Jr'(y) + a\jr(y) = g(y), say.

The functions (a — l)\js' and axj/ are strictly increasing on (0, 00), so that we get

r(n)g(y) > r(n)g(n) = tfr(/i)[r(n) - 1] - ^'(n) - fc(n), say.

Since h'(n) = \fr'(n)[r(n) - 1] + ^(w)r'(«) - V "̂(«) > 0 for n > 3, we obtain

A(«) > A(3) = 0.527 . . . .

This implies that/'(.x) > 0 for x > xq+\. Thus we get

>fi{x3) > ••• > / „ - , ( * „ )

Applying Lemma 2.2 we conclude that/(;ci, . . . , xn) > 0.
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[5] Inequalities for the beta function of n variables 613

Further, we need the following monotonicity theorem.

LEMMA 2.4. Let a > I be a real number. The Junction

4>a(x) = a(x - 1/2) log* - (ax - 1/2) log (ax) - a log r(*) + log T(ox) (2.13)

is strictly increasing on (0, oo) with lirn^oo <)>a(x) = — \(a — 1) log (2n).

PROOF. Let x > 0. Differentiation gives

x<t>'a(x) = ~ axloga-axir(x) + axi/(ax) = pa(x), say. (2.14)

Further, we get

-P'a(x) = -\oga- f(x) + ir(ax) - xijf'W + ax^(ax) (2.15)

and

-p"a(x)=q(ax)-q(x), (2.16)
a

where q(x) = 2xyj/'(x) + x2i]t"(x). Next, we prove that q is strictly increasing on
(0, oo). We obtain

1 , _ 2 , 4 „
X2 X2 X

Using the integral formulas (2.7) and

1 1 [°° _It . _, ,
— = / e t at (x > 0;n = 1, 2 , . . . ) ,
x" (n-iy.Jo

and the convolution theorem for Laplace transforms, we get

—q'(x)= / e~x'A(t)dt, (2.17)
x2 Jo

where
f s /"' s2

= 2t ds-6
Jo 1 - e~s Jo I- e~3

2 t3

l-e-'

Let / > 0. Then we obtain
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614 Horst Alzer [6]

and

(1 " e-? 2, A = 2 + t+(t-2)e' = ^ ^ > 0 .

Since A(0) = A'(0) = 0, we get A(/) > 0 for t > 0. From (2.17) we conclude that q
is strictly increasing on (0, oo), so that (2.16) implies p'^(x) > 0 for x > 0. Using the
asymptotic expansion (2.6) and the limit relation lim,_>ooxrj/'(x) = 1, we conclude
from (2.14) and (2.15) that lim^ooPoOc) = lim^oop^Oc) = 0. Thus pa is positive
on (0, oo). From (2.14) we obtain that 4>a is strictly increasing on (0, oo).

The asymptotic formula (2.2) implies linv^oo <pa(x) = —\{a — 1) log (2n).

3. Main results

We are now in a position to prove the inequalities for the beta function that we
announced in Section 1. Our first theorem provides a generalisation of the double-
inequality (1.2).

THEOREM 3.1. Let n > 3 be an integer. Then we have for all real numbers *, > 1

-.,*„) <!-—!-—• (3-1)

Both bounds are best possible.

PROOF. The first inequality of (3.1) is equivalent to

n

0 < log r(jc, + • • • +xn) - J2 log T(x, + 1). (3.2)

To prove (3.2) we may assume that ^i > • • • > * „ > 1. We denote the right-hand side
of (3.2) b y / (x ,*„) . Further, let q e {1 n - l},x > j : , + , ,and

/<?(* ) = / ( * . • • • , x , x q + i , . . . ,xn)

= logr(qx+J^x,\-q log r(* + 1) - ]T log r(x, + 1).
\ I=I?+1 / i=q+\

Since \/f is strictly increasing on (0, oo), we get

x\ - Hx + D > 0,
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so that/, is strictly increasing on [xq+i, oo). This implies

/ 2 f o ) > • • • > fn-l(xn)

615

= logr(n*n)-nlogr(;cn + l).

Let g(x) = log r(nx) - n log T(x + 1). Then we get for* > 1:

g'(x)/n =

(3.3)

and

*(*) > > logT(3) = log 2. (3.4)

From (3.3) and (3.4) we conclude that (3.2) is valid.
Using the asymptotic formula (2.1) we obtain

lim (l/xn - B(x x))= lim (l/xn - (r(x)Y/r(nx)) = 0,

which implies that in (3.1) the lower bound 0 cannot be replaced by a larger constant.
Let a = 1 — l/(/i — 1)!. To prove the right-hand side of (3.1) we have to show that

0 it,x<) a tlXi ~ l + f l r(;c'
,=i / L i=i J /=i

say.

Let q € { 1 , . . . ,n — \),X\ > • • • > xn > 1, and

uq(x) = u(x,... ,x,xq+u... ,xn)

ax" f j Xl, - f ] r(jc,-
1=9+1

We set y = qx + ]C"=o+i x< anc^ aPP'y Lemma 2.3. Then we get forx > xq+i:

ti; - 1 + OX 9 - 1

1=9+1

o.
1=9+1

Hence uq is strictly increasing on [xq+i, oo). This implies

U(xt X n ) = M i ( j T i ) > UX(X2) - U2(X2) > • • • > M n - l

= (axn
n - i)r(nxn) + (!-(*,, + 1))". (3.5)
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Let v(x) = (axn - l)T(nx) + (V(x + 1))". Then we have

p ax"-1 + (ax" W(nx) + ^= ax"-1 + (ax" - W(nx) +p ax + (ax W(nx) + ^ .

From Lemma 2.2 we conclude that v is strictly increasing on [1, oo). Thus

v(x) > u(l) = 0 for x > 1,

so that (3.5) yields u(x\,... , xn) > 0.
If *, = • • • = xn = 1, then the second inequality of (3.1) holds with equality. This

implies that the upper bound 1 — l/(n — l)!is sharp.

REMARK. The inequalities (3.1) are not valid for all positive real numbers xt

(i = 1, . . . , n). More precisely: there do not exist constants C\(n) and c2(n) such that

B(xu... ,xn) <c2(n) (3.6)
n,=i x,

holds for all*, > 0 (i = 1, . . . ,n;n>2). Indeed, if we set^i = • • • = xn_i = x > 0
and xn = y > 1, then the left-hand side of (3.6) yields

r«n-i)x+y) •
We let* tend to 0 and obtain the incorrect inequality 0 < l — Fiy + l)/F(y) = l—y-
And, if we set X\ = • • • = xn = x > 0, then the right-hand side of (3.6) gives

V(nx + 1) - nx(r(x + 1))" ^

x" F(nx) xT(nx + 1)

This is false, since the term on the left-hand side tends to oo, if we let x tend to 0.

The next theorem provides sharp upper and lower bounds for B(xt,... , xn), which
are valid in [c, oo)", where c > 0 is a fixed real number.

THEOREM 3.2. Let c > 0 be a real number and let n > 2 be an integer. Then we
have for all real numbers *,• > c (i = 1,... , n):

j-rn -1 /2+JT, i-rn -1/2+x,

an(c) lli=l '' „ x </?(*, xn)<fa{c) U ' = l ' x , (3.7)

with the best possible constants

an(c) = (2ny-»<2 and f}n(c) = n"^2c<"-»<2^^. (3.8)
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[9] Inequalities for the beta function of n variables 617

PROOF. Let x > 0 and x, > 0 (/ = 1, . . . , n) be real numbers and let
q € {1 , . . . , n — 1}. We define

/ (*„ ... , xn) = £(*, - 1/2) log*, - ( £ * , - l-] log
;=i \;=i V \;=i

and
fq(x) = f (.X, . . . ,X, Xq+\, . . . , Xn)

= q ( x - - j + 2^0c/-l/2)logx,
1=9+1

io g r U x + J2 x>) •

Then we gfAf'q{x)/q = g{x) - g(y), where g(z) - logz - l/(2z) - \j/(z) and y =
<7*+ £?=,+i*/- The left-hand side of (2.8) implies g'(z) = l/z + l / (2z2)- \jf'{z) < 0
for z > 0. Hence we conclude from y > * that g(y) < g(x). This implies that/ , is
strictly increasing on (0, oo).

To prove the right-hand inequality of (3.7) with fin (c) as defined in (3.8), we assume
that X] > • • • > xn > c. Then we obtain

/ ( * , , . . . ,Xn) =

= 0»(*»), (3-9)

where 0n is defined in (2.13). From Lemma 2.4 we get

*» (*„)>*„ (c) = - l o g fl, (c), (3.10)

so that (3.9) and (3.10) lead to

f(.xl,...,xn)>-logpn(c), (3.11)

which is equivalent to the second inequality of (3.7). Moreover, since fq and <pn are
strictly monotonic, we conclude that the sign of equality holds in (3.11) if and only if
x x = ••• =xn = c.

To prove the left-hand side of (3.7) with an(c) = (2n)(n~n/2 we suppose that
c <xi < •• • <xn. The monotonicity of/, and Lemma 2.4 lead to

, . . . , xn) = / , ( * , ) < fl(x1) =f2(x2) < /2(JC3) < • • • < fn-\{xn)
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= <t>n(xn) < ( - l / 2 ) ( n - 1) log (2TT) = - log M e ) ,

which leads to the first inequality of (3.7) with an(c) = (2n)(n~1)/2.
Conversely, we assume that the left-hand inequality of (3.7) is valid for all xt > c

(i = 1, . . . , n). Then we set xi = • • • = xn = x > 0 and obtain an(c) < e~*"M.
Applying Lemma 2.4 we get an(c) < lim^_0O e~

4>"M = (27r)("~1)/2. Thus in (3.7) the
factor an(c) = (2n){n~X)/2 cannot be replaced by a larger constant.

If a function / satisfies the inequality / (Sxlt ... , 8xn) < Sf (x\,... , xn) for all
Xi > 0 ( / = 1 , . . . , n) and 8 e (0, 1), then/ is said to be starshaped on R+. Interesting
properties of these functions can be found in [6, 7]. As an immediate consequence of
the following theorem we obtain that the beta function is not starshaped on R+.

THEOREM 3.3. Let /z and v be real numbers with /x > v > 0 and let n > 2 be an
integer. Then we have for all real numbers JC,- > 0 (i = 1 , . . . , n):

" 1 (3.12)0 < * ( / » . • / « » • • • - . * « • > < (}L)"1 .
B(vxi, vx2, ... , vxn) \nJ

Both bounds are best possible.

PROOF. TO establish the second inequality of (3.12) it suffices to show that the
function f (t) = tn~xB{tx\,..., txn) is strictly decreasing on (0, oo). Let t > 0.
Differentiation yields

' f'(t) = n-\-

We set yi = tx> > 0 (i = 1 , . . . , n) and define

In order to prove

, y n ) > n - l (3.14)

we assume that yx > • • • > yn > 0. Let q e { 1 , . . . , n — 1}, y > 0,, and

i,--- . y B )

= f I ay + ^2 yn igy + J2 yA - qy^iy) - ^ yit(y.)-
\ i=fl+l / \ i=9+l / 1=17+1
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Then we get

(3.15)

where
n

K) and z = qy+ V yh (3.16)

Using the series representation (2.7) we obtain

h'(x) = 2t\x)+xV\x) = 2T -^— > 0.

Since z > y, we get h(z) > h(y), so that (3.15) implies that gq is strictly increasing
on (0, oo). Hence we have

g(y\, ••• ,yn) = gi(yi) > ^ I C ^ ) = giiyz) >•••> g n - \ ( y n )

= nyM{nyn) - f(yn)}. (3.17)

Let

a>(y) = nyMny) - *(y)]. (3.18)

Then co'(y)/n = h(ny) — h(y), where h is defined in (3.16). Since h is strictly
increasing on (0, oo), we obtain co'(y) > 0 and

o>(y) > limo)(r) (y > 0). (3.19)
<->o

The recurrence formula (2.5) implies

lim<u(0 = n - 1, (3.20)

so that (3.17)-(3.20) lead to (3.14). From (3.13) and (3.14) we conclude tha t / is
strictly decreasing on (0, od).

If we set Xi = • • • = xn = x > 0, then we have

B(vxu... ,vxn) )

This implies

.. B(jixu... ,fixn) ( v \
hm — = I - I • (3.21)
x̂ O B(VX\ VXn) \IX/
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And, if we put JCJ = x > 0, x2 = • • • = xn — 1, then we get

u ... , nxn)
B(vxu...,vxn) rOix + (n -

From (2.4) and (3.22) we obtain

B(fixu... ,fixn)hm — = 0. (3.23)
x-oo B(VXi VXn)

The limit relations (3.21) and (3.23) imply that the bounds given in (3.12) are best
possible.

A function / : R" —• R is called midconvex (or Jensen-convex) if we have for all

/ ((*, + yi)/2, . . . , ( * „ + yn)/2) < l-(f (xu • • • ,xn) + / (yu ... , y j ) . (3.24)

It is known that a continuous midconvex function is also convex; see [17]. We now
prove that / (xt, . . . , xn) = log B(xi, . . . , *„) satisfies (3.24), which implies that the
beta function is log-convex on R .̂. This extends a result given in [9], where a proof
for the log-convexity of B(x, y) is given.

THEOREM 3.4. Let n > 2 be an integer. Then we have for all real numbers with
Xj > 0 and y,> > 0 (i = 1 , . . . , n):

o < *(C».+y.>/2.-.(*. + *)/2) < L ( 3 2 5 )

V f l ( * i , . . . . X J B O M . ••• , y n )

Both bounds are best possible.

PROOF. The Cauchy-Schwarz inequality for integrals yields

(son + y,,x2 + yi))
2 = (I f-l/2(i-ty>-1'2r>'-'/2(i-ty*-l/2dt\

< f ^ ' - ' ( 1 - r)1*2-1 dt f r2"-'(l - 02y2"' ^
7o Jo

= B(2xu2x2)B(2yu2y2). (3.26)

Using the representation

B ( x u . . . ,xH) = Y l B ( ^ )
.•=1
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and (3.26) we obtain

+ y u . . . ,Xn + yn))2 = {~I U \J2XJ +J2yJ>Xi+l + yi+l )

^ f l l B (2Ejc>'2x' B (

= B(2xu...12xn)B(2yl,...,2yn).

This proves the right-hand side of (3.25). If we set x,, = y,•. = z > 0 (i = 1 n),
then equality holds in the second inequality of (3.25). Further, we have

(*((*i+yi)/2 Oc + yn)/2))2

lim = 0,
o B ( )«( )

so that in (3.25) the lower bound 0 cannot be improved.

A function / : R[J. —> R is said to be subadditive if the inequality

y i , . . . ,xn + yH)<f(xi,... ,xtt)+f(ylt... ,yn) (3.27)

holds for all JC,-, y, > 0 (/ = 1, . . . , n). Subadditive functions play a role in the
theory of differential equations, in the theory of convex bodies, and also in the theory
of semi-groups; see [18]. From the following theorem we conclude that for all real
numbers c > 0 the function (xu ... ,xn) H> (B(XU ..., xn))

c is subadditive on R".

THEOREM 3.5. Let c > 0 be a real number and let n > 2 be an integer. Then we
have for all real numbers JC, > 0 and y, > 0 (/ = 1, . . . , n):

0 < s - v " ' '"'" '"" ' ""' < 2-f(n-1)-1. (3.28)

Both bounds are best possible.

PROOF. TO prove the second inequality of (3.28) we apply Theorem 3.4, the arith-
metic mean-geometric mean inequality, and Theorem 3.3 (with (x = 2, v = 1). Then
we get

yn))
c < [ B ( 2 x l , ..., 2 x n ) B { 2 y u ..., 2yn)Y<2

,2yn))c]

https://doi.org/10.1017/S1446181100012979 Published online by Cambridge University Press

https://doi.org/10.1017/S1446181100012979


622 HorstAlzer [14]

It remains to show that the bounds given in (3.28) are sharp. First, we set xt = yt =
z > 0(i = 1,... ,n). The duplication formula (2.3) leads to, say,

i xa)y+(B(yu... ,yn))c

Since T(l/2) = y/n, we obtain

= 2-c( '-1)-1. (3.29)

And using (2.1) we get

l im/(z) = O. (3.30)
z-*oo

From (3.29) and (3.30) we conclude that both bounds in (3.28) are best possible.

REMARK. A multiplicative analogue of the definition (3.27) is given by

I, ••• ,xnyn) < / ( * i , . . . ,xn)f(yu... ,yn). (3.31)

If/ satisfies (3.31) for all xh y, > 0 (i = 1, . . . , n), then/ is said to be submulti-
plicative on R". These functions have applications in functional analysis and group
theory; see [11, 14]. If (3.31) holds with ">" instead of "<", then/ is called super-
multiplicative. Let n > 2. We set *, = 1 (2 < i < n) and y, = 1 (1 < i < n; i ^ 2).
Then we obtain, say,

B(Xlyu... ,xnyn)

Applying (2.4) we get: if y2 > 1, then limIl^,0Oa(xi) = 0; and, if yi e (0, 1), then we
have limj^ooCT^i) = oo. This implies that (JCI, . . . ,xn) i-> B(x\,... ,xn) is neither
submultiplicative nor supermultiplicative on R[J..
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