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ON VARIATION OF EQUICONTINUITY IN DYNAMICAL SYSTEMS

S. ELAYDI AND H.R. FARRAN

In this paper we investigate the relationships among the notions of minimality,
characteristic 0, equicontinuity, Lipschitz stability and isometry in dynamical sys-
tems. Examples are provided to show that the results obtained are sharp.

1. INTRODUCTION

We consider a dynamical system (Af, ir) (see [1, 8]) where M is a locally compact
metric space with a specified metric d and the action group G is either the additive
group of integers Z or the additive group of reals R. For each £ G G, the transition
map TT1: M —» M is defined by 7r*(x) = 7r(x, t) = xt. The orbit O(x) of x 6 M
is defined to be the set {xt | t G G}. The prolongation set D(x) is the set {y \
there exist sequences {xi} in M and {<<} in G such that Xj —> x, XiU —• y}. The pos-

itive limit set L+(x) of x is the set {y \ xti —> y, for some sequence {i;} in G with i< —>
oo}. We also need the following definitions.

DEFINITION 1.1: [6]. A closed nonempty subset A of M is said to be minimal
if it is invariant (At C A for all t G G) and contains no proper closed invariant subset.
The dynamical system (M, n) is said to be minimal if the orbit closure O(x) of each
x €E M is minimal.

DEFINITION 1.2: [5]. A point x 6 M is said to be of characteristic 0 if D(x) —
O(x). The dynamical system (M, n) is said to be of characteristic 0 if every point
x € M is of characteristic 0.

DEFINITION 1.3: [6]. The dynamical system (M, 7r) is said to be equicontinuous
at x G M if given e > 0, there exists 8 = 6(x, e) such that d(xt, yt) < e whenever
<f(x, y) < 6 and y G M. The dynamical system (M, ir) is said to be pointwise equicon-
tinuous if it is equicontinuous at every x G M. Furthermore, (Af, n) is uniformly
equicontinuous if it is pointwise equicontinuous and 6 can be chosen independently of
x G M .

DEFINITION 1.4: [3, 4]. The dynamical system (M, ?r) is said to be Lipschitz
stable if there exist Jfc ^ 1 and 6 > 0 such that <i(xi, yt) < kd(x, y), for all t G G and
x,y G Af, whenever <f(x, y) < f.
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DEFINITION 1.5: The dynamical system (M, n) is said to be isometric if for each
t G G, d(xt, yt) = d(x, y) for all x, y G M. In otherwords, it* is an isometry for every

teG.

The following diagram summarises the known connection among the preceding
notions.

Isometric =$• Lipschitz stable = > uniform equicontinuous =>• pointwise equicon-
[21

tinuous ==4> characteristic 0 ==> minimal.
In the sequel we show that the arrows in the above diagram may not be reversed even
in compact spaces (the only exception is that uniform equicontinuity and pointwise
equicontinuity are equivalent in compact spaces). However, we will give conditions
under which the above implications can be reversed.

2. MINIMALITY AND CHARACTERISTIC 0

There are many examples of dynamical systems which are minimal but not of
characteristic 0 (see Example 5.4 in [5]). Another simple example is the saddle in the
plane generated by the differential system x\ = — x\, x'2 = »2 •

We give below conditions under which the converse is true. But before doing so we
need to give the following definition.

DEFINITION 2.1: [1]. Let X be a subset of M. Then the set AU{X) - {y G
M | L+(y) D X ^ 0} is called the region of weak attraction of X. If AU(X) is a
neighbourhood of X, then X is said to be a weak attractor.

THEOREM 2 . 2 . Let (M, n) be a minimal dynamical system on a connected

space M in which every orbit closure is a weaic attractor. Then (M, n) is of char-

acteristic 0.

PROOF: Let x G M and Au(O(x)j be the region of weak attraction of O(x). It

follows from [1] that A,a(0(x)] is an open neighbourhood of O(x). Let y G Au(O{x)\.

Since L+(y) D O(x) ^ 0, we have 0{y) 0 0{x) ^ 0. By the minimality assumption,

it follows that O(x) = 0(y) and thus y G O(x). Hence Au(Wxfj = O(x). This

implies that O(x) is both open and closed. Since M is connected, O(x) = M and

consequently, (Af, TT) is of characteristic 0. U

3. CHARACTERISTIC 0 AND EQUICONTINUITY

We first remark that the discrete dynamical system given in [5, 5.3] is of charac-
teristic 0 but not pointwise equicontinuous. We now give an example of a continuous
dynamical system which is of characteristic 0 but not pointwise equicontinuous.
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EXAMPLE 3.1. Consider the continuous dynamical system (R2, TT) defined on the plane
by

cos(||z||2*) sin(||z||2t)l

-sin(||z||2i) cos(||x||2/)JX

for each z £ R2 and t £ R, where ||z|| is the Euclidean norm of x. Then TT* rotates
each x £ R2 through an angle ||z|| t counterclockwise about the origin. Every point
x in the plane is periodic with period 2TT/ ||Z|| , while the origin is a rest point. Then
(R2, TT) is of characteristic 0. If a point x is closer to the origin than a point y, then
the period of y is smaller than that of z. Hence xt, t > 0, lags increasingly behind yt
and no matter how close is x to y, after a sufficient time s > 0, xs will be as much as
half a cycle behind ys. Hence the dynamical system is not pointwise equicontinuous.

One may argue similarly to show that the dynamical system generated by the
differential system x' = y, y' — sin z, is of characteristic 0 but not pointwise equicon-
tinuous.

It is well known [6] that if a system (M, ir) is pointwise equicontinuous then so
is the squared system (M x M , ffXir). This implies [2] that (M x M i X f ) is of
characteristic 0. The following theorem is a partial converse.

THEOREM 3 . 2 . Let (M, ir) be a dynamical system such that the orbit closure
of every x £ M is compact. If (M x M, ir x ir) is of characteristic 0 then (M, ir) is
pointwise equicontinuous.

PROOF: Suppose that (M, ir) is not equicontinuous at some x € M. Then there
are sequences {«<}, {yi\ in M, {U} in G with z; —> z, yt- —> x, U —* oo (or —oo) and
e > 0 such that d(x{ti, j/,<,) > e for all t. If {xtti} diverges, then there exists an open
neighbourhood U with compact closure U, O(x) C U and x$i £ U for all i > t0,
for some t'o. One may find a sequence {si} in G with ẑ a,- £ U and ZJ(SJ + 1) ^ U.
Since {z,-«,-} C U, there exists a subsequence {r,-} of {a;} such that x&i —> y £ U.
Thus Xi(ri + 1) -> y(l) £ U. But y(l) £ D(x) = O(x) C U and hence we have a
contradiction. Hence we may assume that Z{t,- —> a and i/;f; —> 6. This implies that
(a, b) £ Z)(z, z) = 0(z, z). Therefore a = 6 which contradicts the assumption that
d[xiU, ydi) > e for all t. Thus (M, n) is pointwise equicontinuous and the proof of
the theorem is now complete. U

As remarked earlier, pointwise equicontinuity implies uniform equicontinuity if the
space is compact. This is false however if the space is not compact as it is the case for
the discrete system defined on the open interval (0, 1) by Tn(z) = z2" .

4. EQUICONTINUITY AND LIPSCHITZ STABILITY

It has been believed for quite some time that uniform equicontinuity is equivalent
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to Lipschitz stability. The following example shows that this is not true.

EXAMPLE 4.1. Let M = {(*, y) € R2 | -1 < y < 1} with the usual metric. To define
a continuous dynamical system on M, we start by describing the curves that will
constitute the orbits. These will be the graphs of the functions y = fe(x), c e [-1, 1]
defined by:

(i) if c ^ 0 then
/ / \

if \x\ < 1

if |*| >l
(ii) fo{x) = 0.

The dynamical system i on M can be defined via the transition map: n*(a, b) =
(o + t, /6(o + t)). (See the figure). It is trivial to check that this system is uniformly
equicontinuous. To see that it is not Lipschitz stable take, for example, the two points
( -5 , 0), (-5, e), e > 0. 7rs(-5, 0) = (0, 0) and 7rs(-5, e) = {Q,y/i).

- 1

1

- 1

1

Hence
d(7rs(-5, 0), ,r5(-5, e)) 1

d((-5, 0), (-5, e)) ~ Ji'
Now it is clear that the above ratio can be made arbitrarily large by making e arbitrarily
small. This shows that this sytem is not Lipschitz stable.

For the rest of the paper, all the dynamical systems considered will be smooth.
That is to say, the space M will be smooth connected complete Riemannian manifold
and, V<€G, IT*: M -» M will be a diffeomorphism.

It is natural to ask whether uniform equicontinuity and Lipschitz stability are
equivalent in the nice situation of smooth dynamical systems. The answer is again in
the negative as can be seen from the following example which is, in fact, a modification
of Example 4.1.
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EXAMPLE 4.2. The orbits in Example 4.1 can be smoothed at z = - 1 , 0, 1. After
doing so we take the restriction of the smooth system obtained to the subset [—a, a] x
[—1, 1] for a sufficiently large o > 0. By identifying each point (—a, y) with (a, y)
and each (as, —1) with (x, 1) we obtain a differentiable dynamical system on an anchor
ring. This system is again uniformly equicontinuous but not Lipschitz stable.

Before we give our result on the conditions under which uniform equicontinuity
implies Lipschitz stability we need the following lemma.

LEMMA 4 . 3 . Let ( Af, ir) be a uniformly equicontinuous dynamical system. Then
for any pair x, y G M, we have Sxv = sup{d(xt, yt) | i G G} < oo.

PROOF: For a small e > 0, there exists 6 > 0 such that d(at, bt) < e, for all
f G G, whenever d(a, b) < 6. Now if for some x, y G M, Sxy is not finite, then the
orbits O[x) and O(y) will be diverging from each other. Let X\ be midpoint between x
and y on a minimal geodesic connecting x and y [0]. Then the orbit O{x\) is diverging
either from O(x) or from O(y). Assume that O{x\) is diverging from O(x). Now, in a
similar way, take x2 the midpoint between x and X\ , then O(x2) either diverges from
O(x) or O(xi), say from O(x\). By repeating this process one obtains two points Xi,
Xj with d(x{, Xj) < 6 and d{xia, XJS) > e for some s G G, which is a contradiction.
This completes the proof of the lemma. 0

THEOREM 4 . 4 . Let (M, 7r) be a uniformly equicontinuous dynamical system

in which M is compact. If for each o G Af, lim Sxa/d(x, a) exists, then (M, TT) is

Lipschitz stable.

PROOF: For each a G Af, let tpa = lim STa/d(x, a). Define a function h: M x

M -> R by

( <Pa n a — b.

Then h is continuous. Since Af x Af is compact, it follows that for all x, y G Af,
h(x, y) < k for some constant k > 0. Hence Sxy/d(x, y) < fc for all x,y E M. This
implies that <2(zi, yt)/d(x, y) ^ k and thus (Af, TT) is Lipschitz stable. U

5. LIPSCHITZ STABILITY AND ISOMETRIES

Recall that we are working on smooth dynamical systems (Af, n), where Af is
a complete Riemannian manifold. If g denotes the Riemannian metric on Af then g
induces a norm ||-|| on the tangent bundle TM and a distance function d on Af. For
each ir*, Tirf denotes the differential of irf.

It was shown in [4] that Lipschitz stability is independent of the choice of the metric
g or the distance function d provided that the manifold is compact. This suggests
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one way to construct Lipschitz stable non-isometric systems on compact manifolds.
To construct such a system we simply start with an isometric (and hence Lipschitz
stable) dynamical system (M, ir) where (M, g) is a compact Riemannian manifold.
Then one can find another Riemannian metric g' on M under which (M, 7r) is not
isometric. Since the system is Lipschitz stable on (M, g) then it is also Lipschitz stable
on (M, g'). This shows that we have plenty of examples of non-isometric Lipschitz
stable dynamical systems. However, all these systems "came from" isometric ones.
This raises the fundamental question whether every Lipschitz stable system must be
isometric with respect to some metric. Before we answer this question we need the
following definitions.

DEFINITION 5.1: The dynamical system (M, TT) is said to be isometric in variation
if | |2V(t;) | | = ||v|| for all v G M .

In [0], Kobayashi and Nomizu showed that the notions of isometry and i some try in
variation are equivalent. In [4] the authors introduced the notion of Lipschitz stability
in variation for smooth dynamical systems. This is defined as follows.

DEFINITION 5.2: A smooth dynamical system (M, n) is said to be Lipschitz stable
in variation if there exist Jfc ^ 1, 6 > 0 such that ||T7r'(t;)|| < Jfc ||«|| for all v G TM
with ||w|| < 6 and all t G G.

The authors then generalised the result of Kobayashi and Nomizu mentioned above
by showing that the notion of Lipschitz stability, Lipschitz stability in variation and
global Libschitz stability (that is, when 6 = co) axe all equivalent [4].

Now we use the above information to give a positive answer to the question raised
earlier in the section.

THEOREM 5 . 3 . Let (M, ir) be a Lipschitz stable dynamical system on a mani-

fold M with a Riemannian metric g. Then M admits a Riemannian metric g" under

which (Af, TT) is isometric.

PROOF: For v G TM, let

Since | |ZV(v)| | < ib||i»|| for all t G G, then |||.||| is a norm on TM. It is straight-
forward to verify that |||.||| satisfies the parallelogram law ||jw + to|||2 + |||u — w\\\2 —

2[||MH2 + IIMII2] for any v,w e TM. This implies [7] that |||.||| is generated by an
inner product or a Riemannian metric g* on M in the sense that [g\v, v)\ll2 — |||v|||.
It is clear that (M, v) is isometric with respect to ~g. D
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