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ABSTRACT

The paper discusses the problem of estimating the mean of a long-tailed
claim size distribution when the investigator's knowledge of the distribution
is only vague.

One method of dealing with this problem, the method developed by
Johnson and Hey, is examined and found to produce strongly biased esti-
mators.

The situation in which a sufficient statistic (but nothing else) for the claim
size distribution is known is examined, and an approximately unbiased
estimator developed. This estimator is substantially more efficient than the
arithmetic mean in some cases. It appears to be quite successful when the
sufficient statistic is real-valued. It is of limited use when the sufficient
statistic is vector-valued.

i. THE PROBLEM OF LONG-TAILED CLAIM SIZE DISTRIBUTIONS

For the purposes of this paper we can take a long-tailed distri-
bution to be one whose density converges to zero less rapidly than
the simple exponential family. Such distributions occur relatively
frequently in the field of nonlife insurance. They are particularly
prevalent among the distributions of individual claim sizes in
respect of fire policies and liability policies.

Since the mean of a distribution is one of its most important
properties—and indeed in the context of claim size distributions,
usually the most important property—it is necessary that one have
as reliable a method as possible for the estimation of this parameter.

In nonlife insurance this estimating problem can prove quite
troublesome, because of the fact that standard statistical tech-
niques are of limited applicability. This statement deserves some
explanation particularly as the majority of this paper is concerned
with methods which lie outside the scope of "standard" methods.

The statistician faced with the problem of estimating the mean
of a long-tailed (or any other) distribution would begin by defining
the family of likelihoods which are admissible as a representation
of the distribution under consideration. He would then select
estimates of the unknown parameters according to some opti-
mization criterion, e.g. maximum likelihood, minimum-variance
unbiasedness, etc.
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The difficulty for the actuary involved with nonlife insurance
arises at the very first stage, i.e. in deciding the admissible likelihood
functions. In practice, he may have only the vaguest notion of the
shape of the distribution. For example, he may be prepared to as-
sert that it is within the exponential family of likelihoods. The
exponential family is an extremely large one, so that although the
requirement of delimiting the admissible likelihoods has been
satisfied technically, the practical benefit of this stage of the
procedure is doubtful.

It is basically for this reason that alternative methods of ap-
proaching the estimation of mean claim size are necessary. Of
course, one can estimate this parameter with the sample mean.
This has the advantage of ensuring unbiasedness, but, as is well-
known, the sample mean from some long-tailed distributions has
rather a large variance. Since unbiasedness and small variance are
properties which one would usually like an estimator to possess
simultaneously, the need for considering estimators other than the
sample mean is immediate.

2. THE JOHNSON-HEY METHOD OF WEIGHTED AVERAGES

Hey (1970), concerned by the disturbance to the sample mean of
claim sizes resulting from a few but substantial large claims, sug-
gested that the difficulty might be alleviated by using a weighted
average of the sample claim sizes, the weights tending to decrease
with increasing claim size. This suggestion was followed up by
Johnson and Hey (1972).

To state this in mathematical terms, they were concerned that
the sample mean claim size, though an unbiased estimator of the
true mean, had too large a variance. Their solution was to estimate
the true mean claim size m by means of the statistic:

M = ( S S(d)ln) X G, (1)

where

Ci, C%, . . ., Cn are the sample values of claim size;
S( •) is a weight function which is nondecreasing but whose
first derivative is nonincreasing;
G is a "grossing-up factor" which is so chosen that
M is an unbiased estimate of m.
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3. PURPOSE OF THE PAPER

The purpose of the present paper is three-fold:

(i) to indicate certain dangers arising from use of the Johnson-
Hey (J-H) method;

(ii) to point out that there are sound theoretical reasons for
introducing the transformation 5;

(iii) to investigate ways other than the J-H method of producing
an estimate of m from the statistics Ci, . . ., Cn.

4. SOME COMMENTS ON THE JOHNSON-HEY METHOD

It is clear from a brief scrutiny of formula (1) that the prob-
lematic factor is G. Hey himself (1970, p. 81) noted that "we have
no knowledge of the sensitivity of the grossing-up factor". Other
difficulties arising from the manner in which G is estimated are
mentioned by Johnson and Hey (1972, pp. 227-8).

In this section, however, we shall ignore these difficulties by
assuming that, for a single given m, it is possible to choose G
exactly correctly. We shall see that difficulties still arise in the use
of estimator M.

Let us deal with nonzero claims only and assume that their
sizes are sampled from a lognormal distribution. It is to be em-
phasised that this particular distribution has been chosen for
illustrative purposes only, though, as Hey (1970, pp. 62-3) and
others remark, it is not far from the truth for some classes of motor
insurance.

Thus, we assume that Ci, C2, . . ., Cn is a random sample in
which each log Cj has a normal distribution with mean [i and
variance a2. Then, as in well-known (see e.g. Kendall and Stuart,
1961, p. 68),

m = E[Ct] = exp {[x + 1 a8}. (2)
Also

= [x. (3)

Thus, if we choose S'(-) as log (•), then it follows from (1), (2)
and (3) that, for M to be unbiased, it is necessary that

G = (j.-iexp{[x + i a2}. (4)

A difficulty arises here due to the fact that G is dependent (often
quite strongly) on ji. and a2. This means that, if G is appropriate to
some particular fj. and <T2, it may not be appropriate to some other
choice of these parameters. This is the reason for the phenomenon
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noted by Johnson and Hey (1972, p. 228) that G appears to vary
between different risk categories.

In order to appreciate the extent of the difficulty, it is necessary
to understand that the J-H method provides that G be calculated
from the aggregation of data from all risk categories in such a way
that the estimate of m for the risk category of an individual chosen
at random from the whole portfolio is unbiased. Note that, despite
this type of unbiasedness, the resulting estimators may be biased in
respect of each separate risk category, and the bias will of course be
worse for the more extreme categories.

A number of simulations were carried out to illustrate this point
and some of the results are given in Tables 1 and 2. The sampling
distribution for claim size was taken to be lognormal with para-
meters (i. and a2, though, as is fairly obvious, the point being il-
lustrated here is valid for other distributions too. This was con-
firmed by other simulations whose results are not reproduced here.
The portfolio was assumed to consist of five different risk cate-
gories. In each case S(-) was taken as log (•).

Risk
Cate-
gory

i

2

3
4
5

4-
4-
4-
4-
4-

(X

ooo
2 5 0
5 0 0

625
750

<J2

I.2O
1.10
1.00

°-95
0.90

True Mean

exp{[x + £a2}

99
1 2 2

148
164
181

TABLE I

Arithmetic Mean
•sample
size = 1 0

94
127

139
164
188

sample
s. = 50

99
123

146
162

179

sample
s. = 250

99
1 2 0

149
165
183

J-H estimate
sample
s. = 10

128

137
144
148
154

sample
s. = 50

128

136
144
149
152

sample
s. = 25

130

138
146
150

154

* sample size in each risk category

TABLE 2

j ^ k True Mean Arithmetic Mean J-H estimate

Cate- [j. a2 exp{(x + Jet2} *sample sample sample sample sample sample
gory size = 10 s. ~ 50 s. = 250 s. = 10 s. = 50 s. = 250

1 4.48 1.00 145 149 147 147 151 149 148

2 4-49 I O ° 147 X47 T47 J 48 150 149 148
3 4-5O 1.00 148 157 150 148 153 149 149
4 451 1.00 150 152 150 151 152 149 149
5 4.52 1.00 151 152 151 151 151 150 149

1 sample size in each risk category

The main effect of the J-H method appears clearly in Table 1
where it can be seen that, although the true mean varies over risk
categories by a factor of 1.82, the J-H estimates vary by a factor of
the order of only 1.2 approximately. Generally, the J-H estimates
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for the various risk categories are "squashed together", with high-
risk categories underestimated and low-risk categories overesti-
mated.

This "squashedness" of the J-H estimates has obvious impli-
cations for tariff-splitting.

The same phenomenon becomes apparent upon a scrutiny of
Johnson and Hey's own results presented on p. 227 of their paper.
However, it is not quite so obvious there because their simulated
portfolio is rather like that represented in Table 2 of this paper, i.e.
risk categories are all quite close together.

Thus, as the portfolio becomes more homogeneous, so is the bias
in the J-H method reduced. But then so also is the need for rec-
ognizing different risk categories. Regrettably, we must conclude
that the J-H method attains reasonable effectiveness only when it
is least needed.

5. THEORETICAL JUSTIFICATION FOR WEIGHTED AVERAGE

Let us consider the family of likelihoods, dependent upon some
parameter 0, which have the form:

/ ( * I 6) = c(0) h(x) exp [ S 71,(0) *,(*)]. (5)

This is the so-called exponential family of likelihoods. It is very
rich in the sense that, for most of our practically occurring dis-
tributions, we can find a member of the family which will serve as a
good approximation.

Moreover, the exponential family has a number of attractive
properties which make it relatively easy to work with. In particular
(see e.g. Ferguson (1967, pp. 125-37)):

n n

1. The s ta t i s t ic T = ( S h(X{), . . . , 2 tp(Xi)) is a sufficient
i- 1 i-1

statistic, i.e. contains just as much information as does the
whole vector of observations Xi, . . ., Xn in a sample of size n.

2. The likelihood of T is also a member of the exponential
family, with the same TT/S as inf{x | 0).

3. Under rather weak conditions which will usually be met by an
insurance portfolio, it is possible to conclude that, if g(T) is
an unbiased estimator of a function of 0, then it has the smal-
lest variance among all unbiased estimators.

Since the object of Johnson and Hey's quest was stability of the
estimator, Property 3 is particularly suggestive, although it must
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be mentioned that this property does not preclude the existence of
more stable but biased estimators.

Now if a claim size distribution is a member of the exponential
family, then, by Property i,

T = ( 2 h(Ct), . . . . 2 tp(Ct))
i-X

is a sufficient statistic. We thus have in Property 3 a theoretical
justification for basing our estimate of 0 on the average (or, equi-
valently, the sum) of transformed claim sizes. Furthermore, the
transformation to be used is by no means arbitrary, but is deter-
mined by (5).

The usefulness of this observation is seen fully when viewed
against the background of the actuary's vague knowledge of the
shape of the distribution, as described in Section 1. If the situation
is slightly better than described there and the actuary is willing
to assert that p — 1 and h(.) = log (.), then from this none too
definitive assertion, we may deduce that 6 should be estimated by

some function of 2 log C%.
i = I

6. AN EXAMPLE OF THE USE OF TRANSFORMED CLAIM SIZES

Suppose that C has a lognormal distribution with parameter
6 = ((A, CTS), then

f(C I 6) = (j/2^ 0 C) -1 exp [— (log C — [J.)2/2fT2]

= c(0) h(C) exp [TUI(6) h(C) + 712(6)

c(0) = (j/irc cr) -1 exp [— io.2/2(72],

7ll(0) = (J./(T2, ti{C) = log C,
2, h(C) = (logC)2.

Thus we lose no information from our claim size observations if
we reduce them to the two values,

J\ = - 2 logQ and T2 = - 2 (log Q)2 — T\.

It is not immediately clear how an unbiased estimator is to be
constructed from T\ and T2. However, in the case of the lognormal
distribution, it was shown by Finney (1941) that an unbiased
estimator of E[C] is

e x P ( r i) g(i T2), (6)
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where

n — i x2 (n — i)2 x3

^ = 1+X+nT^2l+V^U^+J)^ + --- (7)

For large n, g(x) does not differ by too much from ex, so that (6)
becomes approximately:

{ II Ctyi» exp [i Ta]. (8)

This is approximately unbiased, and so, by Property 3 above,
has small variance.

We have thus constructed an unbiased estimator with small
variance in terms of transformed claim size, where the trans-
formation is:

C WWVA_> (logC, (logC)2).

7. FURTHER DEVELOPMENT OF THE USE OF TRANSFORMED CLAIM

SIZES

It is apparent that the method used in the previous section for
estimating E[C] when C is lognormally distributed differs con-
siderably from the J-H method. It was also pointed out that the
methods used there lead to minimum-variance unbiased estimators.

Unfortunately, however, the actuary may not be in a position
to make as strong an assertion as that claim size is lognormally
distributed. Possibly the strongest assertion he can make with any
confidence is that claim sizes, after some prescribed transformation
(e.g. log) are roughly exponentially distributed. This really amounts
to asserting something like the order of convergence of the prob-
ability density of claim size.

Under these circumstances, it is natural to seek some extension
of the method used in Section 6. This aim is pursued in this section,
but it should be stated at the outset that the success achieved in
this direction is limited, and perhaps the main result emerging
from the study is that, when knowledge of the claim size distri-
bution is as vague as above, the simple arithmetic mean is sur-
prisingly efficient.

Let us suppose that the sample of claim sizes, Ci, C2, . . ., Cn, is
drawn from a distribution belonging to the exponential family with
h a one-to-one transform. Henceforth we denote h by just t. The
statistic,

Tn=l'i t(Ct), (9)
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is a minimum-variance unbiased estimator of E[t(C)], by Properties
2 and 3 given in Section 5. It is therefore reasonable to assume
that the statistic t^x{Tn), after approximate correction for bias
will provide an estimator of E\C] of relatively small variance.

Let us write

[i = E[t(C)]t cra = Var[*(C)].

From Section 2,

m = E[C].

Now, we know that

E[rl(T1)] = E[tl-
1(t1(C))] = tn. (10)

We therefore need to estimate the difference,

£[*-i(r»)]-£[*-i(ri)] ,

occasioned by increase of sample size from 1 to n. This change
represents the bias in f~1(T'») as an estimator of m.

Let us now write Zn for the standardized version of Tn, i.e.

T vi
7 _ " ^

n ~ <y)/n '

Let the d.f. of Zn be expanded in an Edgeworth series,

where, as usual, O<*) is the A-th derivative of the standard normal
d.f. Then

E[t->(Tn)] = 2 c» £<» [ r 1 ^ - ^ aZw + v))], (11)

where £(*) [function of Zre] denotes the expected value of the
argument on the assumption that Zn has "distribution function"

Now, if D denotes the differentiation operator, repeated in-
tegration by parts gives

under obvious regularity conditions on the functions t'1, Dt'1,
DH\ etc.

Thus, by (11) and (12),

Eir'iTJ] = S "c» «-fc/2 (-a)fc£(0> [DH-1 (TJ + n~^ «,ZJ]. (13)
t - 0
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It is apparent from (10) and (13) that

E\t-1(Tn)] = m— £ (-*)* {<££<»> [0**-1 ft + «Z)]
1^ + n-*oZ)]},

where the subscripts on Z have been suppressed since they are
made irrelevant by the distributional assumptions implied by

). Hence an unbiased estimator of m is

— n"*'a c\ £<°> [DT1 ft + n~v* aZ)]}, (14)

Now it is known that

c2 o crn T rn rn
c0 — i , c t — c2 —

where YI and Y2 are the coefficients of skewness and excess re-
spectively of Tn. Moreover,

Yicr3 = K3,

where Kj is the j-th cumulant of t(C).

Using these facts, we can simplify (14) somewhat to give:

aZ)]—EW [t~l ft + »-% aZ)]}
l{ri + oZ)]—n^EW [DH^ ft

-1 (rj + aZ)]—n-zEW [DH-i (r;

Since we do not have true values of \i, a, Kz and KA, we replace
them by estimates. The obvious choices are (see Cramer, 1946,
352)

l/ n

" n — 1

(n — I ) ( M — 2)

where «v is the v-th sample central moment of t(C).
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Thus we finally adopt as our estimator of n the statistic:

(Tn + 9Z)]—n~2£«0 [DH^ (Tn + n^

i(Tn + ZZ)] — n-*E«» [DH~i (Tn + » - *

+ • • • • (15)
It is of course apparent that m is not in general unbiased. How-

ever, the inclusion of the corrective terms should remove the
majority of the bias which would be present if t~l{Tn) alone were
taken as estimator of m.

8. NUMERICAL RESULTS

Although the development of m as an estimator of m began with
considerations which rested on sound theory (see Section 5), a
number of subsequent approximations have led to the position in
which the bias and stability of m are not entirely clear. For this
reason, a number of simulations were carried out in order to com-
pare the estimator m with the simple arithmetic mean for bias and
stability. The most informative results are summarized in Tables
3 and 4 below.

In Table 3 the sampling distribution for claim size was taken to
be log-Laplacian, i.e. log C(= L, say) was taken to have a likelihood
function, dependent upon parameter k, equal to

\k exp [— k j L I ], — 00 < L < 00.

TABLE 3

Risk k True Mean Arithmetic Mean m
Cate- k2l(k2— 1) sample sample sample sample sample sample
gory *size=io size = 50 size = 250 size = 10 size = 50 size = 250

1 1.10 5.8 2.3(4.2) 3-7(4O-i) 4-°(27-5) 6.3(884) 3.5(10.2) 3-3(i-8)
2 1.30 2.4 2.6(46.8) 2.2(1.7) 2.4(1.4) 5.1(679) 2.2(1.4) 2.2(0.2)

3 1.49 1.8 1-7(1-8) 1.8(1.0) 1.8(0.1) 2.1(10.3) 1.8(0.8) 1.7(0.1)

4 i-7° I-5 !-5(°-9) 1-6(0.3) 1-5(0-02) 1.7(3.9) 1.6(0.2) 1.5(0.02)

5 i-89 i-4 x-4(°-3) 1.4(0.1) 1.4(0.02) 1.5(0.5) 1.4(0.1) 1.4(0.01)

*sample size in each risk category

In Table 4, the sampling distribution was taken to be lognormal
as in Tables 1 and 2. As in Tables 1 and 2, the portfolio is assumed
to consist of five risk categories, and t(-) is taken to be log (.).
The figures for "arithmetic mean" and m are simulated values of
these estimators. The figures in parentheses are the corresponding
simulated values of the variances of the estimates.
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Risk
Cate-
gory

T

2

3
4
5

4.000

4.250

4.500

4.625
4-75°

1.20

1.10

1.00

095
0.90

True Mean

99
122

148
164
181

TABLE 4

Arithmetic Mean

sample
*size = 10

94(1800)
127(3100)
139(3200)
164(5600)
188(5900)

sample
size = 50

99(55°)
123(700)

162(740)
179(870)

sample
size = 250

100(110)
120(100)
149(160)

165(150)
183(140)

sample
size = 10

98(2200)
I35(5ioo)
143(4100)

97

sample
size = 50

101(630)
124(750)
147(800)

173(10000) 163(780)
195(9600) 181(930)

* sample size in each risk category

9. CONCLUSIONS

The theme of the paper has been the estimation of mean claim
size in the light of only vague information about the claim size
distribution. When this information includes knowledge of a suf-
ficient statistic, it is tempting to base the estimator on this statistic.

One such estimator is provided by the Johnson-Hey method, but
Section 4, and particularly Table 1 therein, reveals that there are
quite common situations in which this estimator gives poor results.

The estimator m developed in Section 7 attempts to improve on
the J-H method. Indeed, Table 3 indicates that for some long-
tailed claim size distributions, this estimator is largely unbiased
and achieves a significant reduction in variance as compared with
a simple arithmetic mean. The longer the tail, the larger is the
reduction in variance.

The usefulness of m as an estimator is limited, however, as is
evidenced by Table 4 where the variance of m is slightly greater
than the variance of the arithmetic mean. The reason for this is,
presumably, that the sufficient statistic for the distribution involved
here is an ordered pair rather than a single real value (as in the case
of Table 3), and in such a case the transformation (9) makes only
partial use of our knowledge of the sufficient statistic.

Perhaps the estimator m can be refined to make fuller use of the
sufficient statistic ?

Perhaps also the main conclusion to be drawn from this investiga-
tion is that, in the possession of only the vague knowledge outlined
in Section 1, it is often very difficult to improve upon the simple
arithmetic mean as an estimator of mean claim size.

10. ACKNOWLEDGEMENT

The author gratefully acknowledges the use of computing and
other facilities provided by the University of Essex, Colchester,
England and Heriot-Watt University, Edinburgh, Scotland.

sample
size = 250

100(110)
121(110)
149(160)
165(150)
183(140)
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