
A SUMMATION FORMULA INVOLVING *k(n), k > 1 

C. NASIM 

1. Introduction. The existence of certain formulae analogous to Poisson's 
summation formula (9, pp. 60-64), 

MwO) + Ë Fc(nfi)\ = a1/2{e/(0) + £ / ( « « ) } , 
\ w=0 v V n=0 J 

where aft = 2ir, a > 0, and Fc(x) is the Fourier cosine transform of / (#) , but 
involving number-theoretic functions as coefficients, was first demonstrated by 
Voronoï (10) in 1904. He proved that 

E r(n)f(n) = f f(u)R(u) du + h(b)f(b) - Jr(a)/(a) 
n>a *J a 

+ E T(n) I f(u)a(nu) du, 
n=\ J a 

where r(n) is an arithmetic function,/(x) is continuous in (a, b) and a(x) and 
i?(x) are analytic functions dependent on r{n). Later, numerous papers were 
published by various authors giving formulae of this type involving d(n), the 
number of divisors of n (3), and rp(n), the number of ways of expressing n as 
the sum of p squares of integers (8). 

In 1937, Ferrar (4) developed a general theory of summation formulae, 
using complex analysis. Around that time, Guinand (5) also published papers 
where he developed the general theory from a different point of view. He 
applied the theory of mean convergence for the transforms of class L2(0, oo ). 
Later in 1950, Bochner (1) gave a general summation formula. However, these 
theories failed to give a satisfactory form of the summation formula with 
coefficients ak(n), k > 1, where ak(n) is the sum of feth powers of the divisors 
of n, although in 1939, Guinand (5), gave a formula involving ak(n), when 
0 < \k\ < 1. The difficulties arose from the divergence of certain integrals at 
the origin. In the present paper, methods are developed to overcome these 
difficulties and a summation formula with ak(n) as coefficients is proved for 
k > 1. The main result gives a relation between the sums ^ ak(n)n~k/2f(n) and 
]T (rk(n)n~k/2g(n), where/(x) and g(x) are Hankel transforms and k > 1. I t is 
unnecessary to consider negative k separately since 

lm=n lm=n lm=n 
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and hence ak(n)n~k/2 is unchanged when k is replaced by —k. The case k = 1 
shall be given elsewhere, since it presents special difficulties at the origin. 

2. The kernel. Let Ç(s) = Y*n=in~s, R(s) > 1, be the Riemann zeta-
function, and let 

K(s) = ^ = ^ > where *(s) = f (s - k/2)?(s + k/2), k ^ 0. 

Then define 

(2.1) 

NowK(s)K(l - s) = l a n d | X ( l / 2 + i/)| = 1, hence K(s)/(k/2 + 1 - * ) f t h e 
Mellin transform of Ak+i(x)/x, belongs to L 2 ( l /2 — ico, 1/2 + ico). Further, 
the integral in (2.1) exists in the mean square and Ak+i(x)/x £ L2(0, co ) ; see 
(9, § 8.5). We shall call Ak+i{x) the truncated Hankel kernel of order k + 1, 
since it is expressed in terms of truncated Bessel functions of order k + 1. By 
using the functional equation of f (s), we can write 

(2.2) Ak+1(x) = — (2irr2sT(s + k/2)T(s - k/2 - 1) 
irl • / i /2-fco 

X {cos ITS + cos Tk/2}x ~s ds 

Considering Mellin's inversion formulae of the Bessel functions Jk+\(x), 
Yk+i(x), and Kk+1(x) and shifting their lines of integration to R(s) = 1/2, the 
integral in (2.2) can be evaluated to yield 

x~1/2Ak+1(x) = —sin ^TrkJk+1(4:TX1/2) 

- cos hirk{ F,+ 1(4TTX1 / 2) + ~Kk+1{4,irx1'2) 
7T 

[fc/4+1/4] 

irki. 

-2-cos ix* w ' x T -lk + ] ~2n) (2«i/sr*-1. 
Now put 

»l/2+i!T 

Then 
^ ' ( *> = i™ 2S J1/2_,, W2 + T=TKk/2 + 2-^x ds-

Fk+*{x) = (k + 2)x~{k'2+1) P Ak+1(t)t
k/2dt - Ak+1{x). 

Repeating this process A times, we obtain: 

Fk+n+i(x) = (k + 2\ + 2)x-(*+2X+2)/2 P F,+2X+1(0<tt+2X)/2^ - F w . ( * ) , 
• / 0 

where 

, (*/2 + 5 ) r ( / f e / 2 - 5 + X + 3) 
r9 ^ F M - i;m * f1/2+iT r(V2 + 5 + x + i)r(fe/2 - 5 + 1) 
{1.6) tk+^+3(x) = lim —— I —— 

Xtf(s)*1_'<fc. 
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On the line 5 = 1/2 + it, by Sterling's approximation of T(s), 

T(k/2 + s + \+ l)T(k/2 - 5 + 1 ) _ x 
! T(k/2 + s)T(k/2-s + \ + 3) A W - ^ A 

and therefore belongs to L 2 ( l /2 — ico, 1/2 + ico), when integrated with 
respect to t. Hence, the integral in (2.3) converges in mean square and 

^ + 2 X ^ 3 ( x ) g L 2 ( 0 , o o ) . 

Furthermore, Fk+2\+z (x) is a Hankel kernel of order k + 2X + 3. By considering 
Mellin's inversion formulae of the Bessel functions Jk+2\+z(x)y Yk+2\+z(x)} and 
Kk+2\+z(x), and shifting their line of integration to R(s) = 1/2, the integral in 
(2.3) can be evaluated. This yields an expression for Fk+2\+z(x) in terms of 
truncated Bessel functions of order k + 2X + 3. 

We now define x*(*0 by 

xk/2Ak+1(x) = P tk/2
Xk(t)dt, k>0, 

whence 

(2.4) XJC(X) = —2T sin %irkjk(4:irx1/2) 

- 2TTCOS $Tk\ F , ( 4 T T / / 2 ) - -Kk(4:TX1/2) 
\ 7T 

^ ™o 1 I, V r ( ^ + 1 — 2 n ) , \4»-jfe-l 2w-*/2-l 
— —COS s™ 2-J 7^ 7^ K^Tt) X 

ir S (2n - 1) 
We find that x*0*0 belongs to a class of kernels, Dk

2, defined by Miller (7), 
since the following conditions are satisfied: 

(1) There is defined K(s) = ^(1 — s)/\//(s), where 

4,(s) = f ( 5 - É / 2 ) f ( ^ + */2), 

with the properties K(s)K(l - s) = 1 and \K(l/2 + it)\ = 1; 
(2) Let Wk+2\+2(x) be defined by 

Then ^ + 2 \+2(x) is bounded and continuous in (0, 00) and 

• dt = 0(x~ZIA) as x —* 00 ; r 
W^+ 2 \+2(*0 j , _ ^ ^ - 3 / 4 N 

(3) The function Ak+±(x) = 0(ar1 / 4) as x —> 00. 

Next we define a class of functions G\2(0, 00), which was first defined by 
Guinand (6) and Miller (7). 

Definition. A function fix) belongs to Cx2(0, co) if 
(i) there exists almost everywhere in (0, <x>) a function /(X) (x), where f(X)(x) 
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denotes the Xth derivative of/(#) (a part from a factor ( — l)x) such that 

holds everywhere in x > 0, 
( i i )x x /^(x) 6 L2(0, oo). 

I t can be shown that if f(x) € G\2(0, oo ), then: 
(i) / (# ) is continuous and approaches zero as x —» oo, 

(ii) / (*) G £2(0, oo ), and 
(iii) x*+1/2fW (x) -> 0 as x -* 0 or oo , 0 g J < X. 

3. Preliminary lemmas. The following result is due to Miller (7). 

LEMMA 3.1. Let x*C*0 € Dk
2. Then for a function f (x) 6 £x2, X > 1/2, /&er£ 

exisfo g (x), defined by 

J»->oo 

f(t)x*(xt)dt, x > 0, 

a/sp belonging to G\2(0, oo). Furthermore, 

/(*) = g(t)xt(xt)dt, x>0. 

LEMMA 3.2. If the functions f(x), g(x), and x&M satisfy the conditions of 
Lemma 3.1, /Aew 

F(*) = * lw2+{^Y+V* /2/(*)} c«* 
(3-D > % + 1 

are transforms of L2(0, oo ), wi/A respect to the Hankel kernel Fk+2\+z(x)* 

Proof. Let F(s) and G (5) denote the Mellin transforms of f(x) and g(x), 
respectively. Now F(x) 6 L2(0, 00), and therefore has a Mellin transform 
given by 

w ^ i ; T(s + k/2) P{S)t 

belonging to L 2 ( l /2 — ico, 1/2 + 200). By the Parseval Theorem for Mellin 
transforms, 

^,1+^/2+x J»oo 

^FWFt+a+tixt) dt 
0 

1+s/2+x j _ f1/2+fe° _ r(&/2 + * + x + i)r(fe/2 - g + i) 
2 « J1/2_ico ' U S) T(k/2 + s)T(k/2 - s + X + 3) 

2 pi/2H 

27TÎ J 1 / 2 -

X 

J/J.,,,, v y r(*/2 + s ) r (* /2-* + x + 3) 
X K(s)x1~s ds 

1/2+ico F ( 1 _ s ) K ( s ) T ( k / 2 + 5 + X + 1) * / 2 _ 5 + X + 2 

/2_fo (k/2 - 5 + X + 2 ) r (* /2 + 5) 

tk/2+x+1G(t) dt, 
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since F (I — s)K(s) = G(s), and the Mellin transform of G(x) is 

(-l)xT(s + k/2 + \+l) 
T(s + k/2) L z W* 

A similar relation with F(x) and G(x) interchanged can also be established 
likewise. Hence, the theorem follows. 

Let 

(3.2) • « . {jg^jj g „w<x - »>> - w
r g *>;;%»»""} 

X aT(1+*/2+X) 

= A ( * ) * T ( 1 4 W ) . 

It is known that (11) 

Dx(x) = 0(x1+x) as x -> oo when A > k + 1/2, k > 0. 

Therefore, 

0(x) = 0(x~k/2) as x —>oo, 

= 0(x*/2) a s x - > 0 . 

Hence, <£(x) G Z,2(0, oo ) when \ > k + 1/2, i > 1, and therefore has a Mellin 
transform $ 0 ) 6 L 2 ( l /2 - ioo, 1/2 + ioo), and 

J»co 

<£(x)xs_1dx; 
o 

the integral converges for — k/2 < R(s) < k/2, k > 1, hence includes the line 
R(s) = 1/2. 

- j o J A W » ax T{2 + k + X) s + k/2 ' 

The integral converges for R(s) < k/2, and this yields an analytic continuation 
of $(5) into R(s) < —k/2 and in this region 

*(*) = w / x n r 2 **(»)(* - «)V-* / 2 - x - 2^x 
1 (A + l ; «/l «S* 

_f(i + ft)r(i + fe) r ^ / 2 - i , r(i + fe)rq + fe) 1 
r (2 + * + X) J i r (2 + £ + A) s + * / 2 " 
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The last two terms cancel, and we obtain: 

(3.3) $(5) = r ( x
1

+ 1 ) J " E **(»)(* - «)Xxs-*/2-X-2 ^ 

r(2 + k/2 - 5) fœ v M,-*/*-** 

= r(2 + */2 + x - , ) Jx £ a*(n)t dt 

r ( i + fe/2-5) f, , . _*/*-i 

r ( i + fe/2 - 5) f ( 1 + ft/2 _ 5 ) f (1 _ fe/2 _ 5)_ 
r(2 + fc/2 + X - s) 

Consider the integral 

By Parseval's theorem for Mellin transforms of L2-functions, the above integral 
is equal to 

l w 2 + x _ 1 _ r1 / 2 + I œ
 ( 1 _ s) j W 2 + 5 + X + l_)_T(k/2_- s + 1) K ( ) 1 - , 

= J _ f1/2+fa>f (1 - 5 - &/2)f (1 - s + fe/2)r(l + k/2 - s) 2«/2+x-s, 
2»» J,,»-,», r (2 + £/2 + X - s ) ( 2 + fc/2 + X - s ) * 

Further, 
f (1 - 5 - k/2)t(1 - 5 + fe/2) 

X ( S ) f (s - k/2)t(s + k/2) 

= f 4>{t)i 
• / 0 

/1+*/2+xd*. 

Thus, we have the following result. 

LEMMA 3.3. Let <f>(x) be defined as in (3.2). Then <j>(x) is self-reciprocal with 
respect to the kernel Fk+2\+z(x), given by (2.5). 

This lemma is similar to a lemma of Busbridge (2). Next consider the 
function 

(3.4) Lix) = (cos 2*x - £ i ^ ^ - V ^ 2 ^ 

= g(x)x- (1« /2+X), say, 

= 0(x 2 M / 2 + x + 1 ) a s x ^ O , 

= 0 ( * Ï M / Ï ^ - 1 ) a s x ^ o o . 
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Therefore, L{x) Ç L2(0, oo), whenever 
(i) (* + 2X - 3)/4 < / < (k + 2X + l ) /4 , 

(ii) X is a positive odd integer, and 
(iii) k 9* 4tn+l,n = 0,1, 
Let H (s) denote the Mellin transform of L(x). Then 

H(s) = f°° L(x)xs-X dx. 

The integral converges for k/2 - 21 + X - 1 < R(s) < k/2 - 21 + X + 1, this 
range includes the line R(s) = 1/2. Thus, 

J»oo 

q(x)xs-k/2~x-2 dx. 
o 

Integrating by parts 21 + 1 times, we obtain: 

*« - [ § (s)'«e> 
s-fc/2-X+r-l loo 

X (5 - ife/2 - X - 1)0 - k/2 - X) . . . (s - k/2 ~ X + r - 1)J0 

I ( ~ 1 ) ( 2 71") I °° • O s - i t / 2 - H 2 j - l 7 

+ 7 77^ r h -( TT^ , , 07 7T I sin27rxx ^ dx. 
(s — k/2 — X — 1) . . . (s — &/2 — X + 21 — 1) J 0 

The integrated terms at the lower limit are 

0(x2z-*/2-x+m) = o as x -> 0, for 12(s) > k/2 + X - 21 - 1, 

and at the upper limit the integrated terms are 

0(3C2ï-*/2-x+»-i) _> o as x -> oo , for R(s) < k/2 + X - 21 + 1. 

Thus, the integrated terms vanish at both the limits. Now the integral can be 
evaluated to yield: 

(2TT)* /2+X-*+1 sin ^ ( 5 - k/2 - X)T(s -k/2-X + 21) 
{S) (s - k/2 - X - 1 )0 - k/2 - X) ... (s - k/2 - X + 21 - 1) 

= (27r)*/2+X-s+1sin JTTO - */2 - X)T(s - k/2 - X - 1). 

Now apply Parseval's theorem for Mellin transforms of L2-functions to L{x) 
and x~1FJc+2\+d(x)\ we then obtain: 

J»co 

r1h(t)F„.a+t(xt) dt 
0 

i « w l f , / 2 + i c°H-n_ x rflfe/2 + x + 5 + i)r(fe/2 - 5 + l) 
x 2 « Ji/s-fa, u 5 ; r(* + */2)r(*/2 + x - s + 3) 

XK(5)x1_Sc/5. 
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Now using the definition of K(s) and the functional equation 

r ( * ) r ( l - Z) = TTCSC7TZ 

and the fact that X is odd, the above becomes 

»l/2+fa> 

2wt Jl/2-fco 
^ (2x) m / 2 + x ~ s r (5 - k/2- X - 1) sin |7r(fe/2 + X - 5) 
7T2 t/1/2—fa, 

&/2+X-S+2 /»z 

by Parseval's theorem, since the Mellin transform of the function tk/2+x+1, t < x, 
is given by x8+k/2+x+1/(s + k/2 + X + 1). Thus, we have the following result. 

LEMMA 3.4. Let L(x) be defined as in (3.4). Then L(x) is self-reciprocal with 
respect to the kernel Fk+2\+z(x), given by (2.5). 

4. The main theorem (Theorem 4.1). Let 

f(x) = 4>(x) - (27r)-(x+1)(-l)(x+1) /2f(l - k)L(x), 

where 0(#) and L(x) are defined by (3.2) and (3.4), respectively. By 
Lemmas 3.3 and 3.4, \[/(x) G £2(0, °°) and is self-reciprocal with respect to 
Fk+2\+*(x), whenever 

(i) k 9* 4n + 1, n = 0, 1, 2, . . . , 
(ii) 1 < k < X - 1/2, 

(iii) X is an odd integer, and 
(iv) I = [(2X + k + l ) /4 ] . Here the notation [p] stands for the greatest 

integer less than p. Now let 

Ao(*) = E **(») - ^tP x+" - ^-fd - *) 

x{si„2Tx-'"f"(ini")r}. 
v ^0 (2w + 1)! ) 

If Ax(x) denotes the Xth integral of A0(#), then 
${x) = Ax(x)x-(1+*/2+X). 

Let / (#) and g(x) € GX+T2; then these certainly belong to Gx2, for r > 0; hence, 
Lemma 3.1 could be applied. 

Applying Parseval's theorem for the pairs of i?
A;+2x+3-transforms, \f/(x), \p(x) 

and F(x), G(x), the latter defined in (3.1), we have: 

J»oo /»oo 

$(x)F(x) dx = ^(x)G(x) dx. 
0 «/o 

Or, 

(4.1) £ A,(x)(£f+\x-k/if(x)} dx = J " A,(x)(£f+\x-k'2g(x)\ dx. 
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The left-hand side can be written as 

lim f Ax(x)Da+1){x-k,2f(x)}dx, 
V-^m «J 0 

where D = d/dx. Integrating by parts X + 1 times, the above integral yields: 

(4.2) l im{ | E (-lYA^r(x)D(X-r){x-k/2f(x)} \ 

+ ( -1) X + 1 £ x-k,2f(x)d(Ao(x))Y 

Since/(x) Ç Gx+T
2, we have: 

/<«> (x) = 0(x-n~m) as x -» 0 or oo, if 0 ^ n < X + r, 
and 

p(x-r)jx-A/2y(x)} = 0(x_*/2-x+r-i/2) as x -> 0 or oo. 

Furthermore, 

Ax_r(x) = 0(x1+k+x~T) + 0(x2l'r+2) as x -> 0. 

Hence, at the lower limit, the integrated terms in (4.2) are 

0(x*/2+1/2) + 0(x2 '-* /2-x+3/2) = 0 as x - • 0 for k > 0 and I > (k + 2X - 3)/4. 

We shall now show that the integrated terms in (4.2) at the upper limit, x = N, 
are limitable by Riesz means (R, N, r) to zero as N —> oo for a large r. Let 

S(N)= £ (-l)rAX-r(iV)^(X-r){iV-fc/2/(iV)}. 
r=0 

It is required to show that 

lim TN~T 5 (0 (iV - 0T _ 1 * = 0. 

£ (-i)V lim iv-T r Ax_r(t)D
iX-T){rkl2f(t)} (N - ty-'dt 

r = 0 iV^oo ** 0 

ig by parts r — 1 times, we obtain: 

(4.4) £ ( - D V l i m W r Z (-l)m+1Ax_r+M(/)i)(M-1) 

r = 0 iV->oo vL. m = l 

The left-hand side is 
x 

^ • -

r = 0 iV^oo «^ 0 

Integrating by parts r — 1 times, we obtain 

T-l n ( X - r ) if-kl2f(*\ U 

Jo x [(iv-o -D( Mr*7(0}] 

+ (-i)T+1 J " Ax-^-iW^^Kiv - 0T_1^(X~r){r^/2/(/)}]^}. 

Now D<m-»[(N - ty-lD^-r^{t-k'2f{t))} can be expressed in terms of finite 
series of the form 

(N - ty-i-nD^-r+m-i-v{t-ki2f(t)}, 
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where O ^ w ^ w — 1, O ^ r ^ X , and 1 g ra ^ r — 1, which vanishes at 
/ = N. Furthermore, this contributes a term of the order 

from (4.3). 
From the definition of A\(t), we have: 

AX-r+«(0 = 0(^+x- r+w+1) + 0(t2l-r+m+2) as / -> 0. 

Therefore, the integrated terms in (4.4), at the lower limit, are 

limriV-(w+1){0(^/2+w+3/2) + 0 (^-*/2-x+n+5/2 ) } = 0f 

as / -> 0, where 0 ^ » ^ m - l , fc>0, and / > (jfe + 2X - 5)/4. Now the 
expression (4.4) reduces to 

è ( - l ) T + r + 1 r lim JV~T r A x _ l + 1 ^ i ( 0 P ( ^ 1 ) [ ( i V - O ^ ^ ^ f ^ ' V W } ] * . 
7=0 iV->co «^ 0 

Splitting the range of integration into (0,ô), (5, iV), <5 > 0, and writing 
Z)(r-i)[(iv-/)r-ijD(x-r){ r*/2y^)}] a s a s u m 0f finite s e r i e s of the form 

(N - t)nD^-r+nH-k/2f(t), where 0 ^ w ^ r - 1, the above integral can be 
written as 

(4.5) l i m W f + (N)A^r+T^(t)(N - tTDiX-r+n){rk,2f(t)} dt, 

where O ^ r ^ X , O ^ W ^ T - 1 . 

Now from (4.3), 

(4.6) D<*-r+n>{t-*/2f(t)} = o(r*/2-x+r-»-i/2) as * -> 0 or oo 

and 

Ax-r+r-i(0 = 0 ( ^ x - r + T ) + 0(/2,-r+H-i) as / -> 0. 

Hence, the integral with the range (0, 8) contributes terms of the type 

HmiV W - r {0(^ / 2 ^ + T + 1 / 2 ) + 0 (^-*/2-A+x-„+3/2 ) } = Q 

as t -> 0, since 0 g » g r - U > 0 , and / > (ife + 2X - 2r + 2n - 3)/4. 
The last condition holds since I > (fe + 2X — 3)/4. 

We know that (11) 

FÔTTT) £ "«<* " ">" - f 0 r p t ) î + t * ) ' H W " 0(*'+X) 

as x —» oo and 0 < & < X — 1/2. Therefore, 

Ax_r+T_i(0 = O(/*-'+0 + 0(*2,-'+*-1) 

as /—> oo and 0 < & < X — r + r — 3/2, 0 ^ r S X. To ensure this when 
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r = X, let r > k + 3/2 and & > 1. Then the integral with the range (5, iV) 
yields: 

From (4.6), the above is 

l i m i \ T T r {0(tt-kl2-n-1'2) + 0 ( / ^ / 2 - X + r - W - 3 / 2 ) } ( i V _ t)ndt 

= HmiV(1-w/2o{ P x T -* / 2 - " - 1 / 2 ( l -x r<fx} 

+ lim iV^_t/2-X-l/2c>i f1
 x2M/2-X+,-B_3/2(1 _x)ndx\ 0 g *» g T - 1. 

The first integral is: 

KmO(iV1/2-*/2) i f T - * / 2 - » + l / 2 > 0 , 

lim 0(iVw-T) if r - jfe/2 - n + 1/2 < 0, 
iV->oo 

and 
lim 0(Nn~T\ogN) if r - k/2 - n + 1/2 = 0, 

all of which vanish for 0 ^ n ^ r — 1 and & > 1. 
The second integral contributes a term which is 

lim 0(N2l~k/2-X-1/2) if 21 - k/2 - X + r - * - 1/2 > 0, 

lim 0{Nn~T) iï2l-k/2-\ + r - n - 1/2 < 0, 
iV^oo 

or 

lim 0(i\r"TlogiV) if 21 - */2 - X + r - w - 1/2 = 0, 

which consequently vanishes for 0 ^ n ^ r — 1 and / < (& + 2X + l ) /4 . 
Hence, the integral with the range (5, N) in (4.5) vanishes, and thus (4.5) 
vanishes as well. Ultimately, we have shown that 

s(t)(N - ty-ldt = o, 

as required, whenever r > k + 3/2. 
Now the integral in (4.2) yields: 

lim tN~T f (N-tyUt (tx-Jc/2f(x)d(A0(x)). 
iV->oo «^ 0 • / 0 

By substituting the value of A0(x) in it, the above can be written as 
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lim tN'] (N (N - ty-1 it i ' x"*/2/(x) di £ **(»)) 

- f ( l + jfe) f (N-ty-Ut ( xk,2f(x)dx 
Jo «̂  o 

- r(i - *) r (^ - f) r _ i ^ r x-k/2f(x) 
Jo «̂  o 

= lim/i\r{ f x-k/2f(x)d( £ **(»)) f 

X | c o s 2 « - g ^ |<2x 
w=0 

N 

(N - t)T-ldt 

- f (1 + *) f x*/2/(x) dx f (JV - O r _ 1 dt - f (1 - k) [ x-':'2f(x) 
Jo Jx Jo 

X {cos 2.x - " g " ^ g g f } - - } * X ' ( i V - / r X * ] • 

The inversion is justified because of absolute convergence. Evaluating the 
integrals with range (x, N) and using the fact that ^ B ^ ak(n) is a step func­
tion, and non-decreasing, the above can be written (by Stieltjes integral) as: 

lim g <7*(W)«-*/2/(W)(i - | ) T - f(l + *) £xkiy(X)(i - ^j dx 

- f ( l - * ) Jo x '/(*)|cos2**- g (â^jj f\}-N) dx\-

Treating the right-hand side of (4.1) in the same manner, we obtain a similar 
expression involving g(x). Thus, we have the following result. 

THEOREM 4.1. Let XJC(X) be as defined by (2.4). If fix) G G\+T
2, then there exists 

g(x) (E GX+T2, such that 

and 

f(t)Xk(xt)dt, x > 0 , 

g(t)x*(xt)dt, x > 0. 

Further, if (i) 1 < & < X - 1/2, (ii) jfe ^ 4w + 1, n = 0, 1, . . . , (iii) \ is a 
positive odd integer, and (iv) T > k -\- 3/2, tffeen 

lim 

= lim 

g <Tk(n)n-klîf(n){l - | ) ' - f (1 + fe) J V 2 / ( x ) ( l - | ) ^ x 

Z], hs r -»/*„ J 9
 [ (^ /41°(-ir(2.x)2 ' !V1 x V . l - f ( l - è ) j 0 x /(x)|cos2.x- g m {{!--) dxj 

g ff*(»)n-*/2g(»)(l - | ) T - Kl + *) Jo
W^ / 2g(x)(l - j^fdx 

- f(l - *) Jo x g(x)lCos 2.x - g i—fè^-1-fc - -) a: 

https://doi.org/10.4153/CJM-1969-104-3 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1969-104-3


<jk(n) 963 

For the case that k = \n + 1, n = 0, 1, 2, . . . , note that ^(x) = </>(x). Now 
using the same technique which has been used to prove the main theorem, for 
the two pairs of Tv^x+s-transforms, 0(x), <j>(x) and F(x), G(x), we obtain the 
following result. 

THEOREM 4.2. Let Xk(x)jf(x), and g(x) be as defined in Theorem 4.1. Then if 
(i) k = 4n + 1, n = 1, 2, . . . , 

(ii) 1 < k < X - 1/2, and 
(iii) r > k + 3/2, 

lim { g <rAM?T*/2/(W)(l - | ) r - f (1 + A) J]V2/(*)(l - | ) ^ * } 

= Hm | g «7,(«)^/2g(«)(l - | ) T - f(l + *) £V 2g(*)( l - Ç)Tdx 

5. An example. Let 

J»oo 
f(t)x*(xt)dt. 

0 

The kernel Xk(%) c a n De evaluated explicitly from (4.3) when k is an odd 
integer and is given by 

(2^)(-l)^+i)/V,(47rx1 /2); 

then 

g(x) = 2TT(-1) (*+ 1 ) / 2 f°° f,2e-tvJk(±W(xt))dt 
Jo 

= (2T)* + l ( - i ) ( * + i ) / y ( 1 + w 4 ' , a : / , f . 

The functions/(x) and g(x) satisfy all the conditions of the summation formula 
which becomes: 

± ak(n)e-""- (-l) (*+ 1 ) / 2(2^)*+yc i +*> £ ^ ( n ) * - " ' " " 

= f(1 + *) P « * c - w dx + f(1 + *) ( - l ) ( t + 1 ) / 2 (27r ) t + y ( 1 + * ) r «-*'**** d», 

whenever & is a positive odd integer. Evaluating the integrals in the above 
equation, the summation formula can be expressed as 

£ «An)e-nv- (-l)(t+1)/2(2^)*+y(1+w £ «•.(n)^'"" 

/ 1 \ * + l / -g \ <*—1) /2 

- 2 ( * + l ) 5 * + 1 + 2 ( * + l ) ( 2 T ) y ^ + 1 ' 
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where Bi, B2, . . . , are Bernoulli's numbers, such that 

2 4 

7~Z~Ï= * - s / 2 + ^ 1 ^ - ^ 2 j j + . . . . 
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