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On Harnack inequality and harmonic
Schwarz lemma
Rahim Kargar

Abstract. In this paper, we study the (s, C(s))-Harnack inequality in a domain G ⊂ Rn for s ∈ (0, 1)
and C(s) ≥ 1 and present a series of inequalities related to (s, C(s))-Harnack functions and the
Harnack metric. We also investigate the behavior of the Harnack metric under K-quasiconformal
and K-quasiregular mappings, where K ≥ 1. Finally, we provide a type of harmonic Schwarz lemma
and improve the Schwarz–Pick estimate for a real-valued harmonic function.

1 Introduction

Harnack’s inequality is a fundamental result in the study of partial differential equa-
tions (PDEs), with applications across various branches of mathematics, particularly
in the theory of elliptic and parabolic equations. The Harnack inequality typically
concerns positive solutions to elliptic or parabolic equations in divergence form.
In the case of elliptic equations, which describe steady-state problems such as heat
conduction or electrostatics, the inequality establishes bounds on the solutions by
comparing the maximum and minimum values within a domain. Moreover, the
German mathematician Axel Harnack developed the original formulation of this
inequality for harmonic functions in the plane (see [18] for more details). It should
be noted that this inequality was first published in 1887 in the book [11].

In the context of the theory of PDEs, the current formulation of the Harnack
inequality for harmonic functions is expressed as follows:

Harnack inequality. Let Bn(x , r) be a Euclidean ball centered at x with the radius
r ∈ (0, 1) such that the concentric ball Bn(x , 2r) is contained in a domain G ⊂ Rn ,
n ≥ 2. Then there exists a positive constant C depending on n such that

sup
Bn(x ,r)

u(z) ≤ C inf
Bn(x ,r)

u(z)(1.1)

holds for all nonnegative harmonic functions u ∶ G → R.
We recall that a real-valued function u ∶ G ⊂ Rn → R is called harmonic in a

domain G ⊂ Rn if it is twice continuously differentiable and satisfies the Laplace
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equation ∑n
i=1 ∂2u/∂x2

i = 0. The progress of potential analysis linked to the Laplace
equation hinges on the key role of Harnack’s inequality (1.1) (see [13]).

Subsequently, we revisit a definition presented in [24]. Define R
+ as the set {x ∈

R ∶ x > 0}.

Definition 1.1 Consider a proper subdomain G ofRn , and let u ∶ G → R
+ ∪ {0} be a

continuous function. We say that u satisfies the Harnack inequality in G if there exist
numbers s ∈ (0, 1) and C(s) ≥ 1 such that

max
Bx

u(z) ≤ C(s)min
Bx

u(z)(1.2)

holds, whenever Bn(x , r) ⊂ G and Bx = Bn(x , sr). A function that meets this condi-
tion is referred to as a Harnack function.

Here are some examples:

Example 1.1 (i) Let u ∶ G → R
+ be a continuous function on a domain G with

0 < m ≤ u(x) ≤ M < ∞. Then u satisfies (1.2) with C(s) = M/m for all x ∈ G.
(ii) Let G be a domain, and let d(x , ∂G) be the minimum distance from x to

the boundary of G. If u ∶ G → R
+ is defined as u(x) = α d(x , ∂G)β , where α > 0 and

β ≠ 0, then u satisfies (1.2) with C(s) = ((1 + s)/(1 − s))∣β∣.
(iii) All nonnegative harmonic functions satisfy (1.2) with a constant C(s) such

that C(s) → 1 as s → 0+ (see [8, p. 16]).
(iv) Let u(z) = arg z and G = R2 / {x ∈ R ∶ x ≥ 0}. Then u satisfies (1.2) in G with

C(s) = (4 + π)/(4 − π), where s = 1/2 (see [10, Exercise 6.33(1)]).

In this paper, we study the (s, C(s))-Harnack inequality, which is defined as
follows, where s ∈ (0, 1) and C(s) ≥ 1.

Definition 1.2 Under the assumptions of Definition 1.1, for s ∈ (0, 1) and Cs ≥ 1
we say that u satisfies the (s, C(s))-Harnack inequality in a domain G ⊂ Rn , if the
inequality (1.2) holds. A function satisfying (1.2) for all s ∈ (0, 1) is called the (s, C(s))-
Harnack function.

This paper is organized as follows: Section 2 provides the essential notations and
definitions required for the discussions in this paper. In Section 3, we investigate the
behavior of the (s, C(s))-Harnack functions and the Harnack metric. Lastly, Section 4
presents a version of the harmonic Schwarz lemma and improves the Schwarz–Pick
estimate for a real-valued harmonic function.

2 Preliminaries

This section establishes a foundation for our subsequent discussions by introducing
essential notations and definitions.

Let sh, ch, th, and arth denote the hyperbolic functions sinh, cosh, tanh, and
arctanh, respectively. Consider the Euclidean space R

n with n ≥ 2 and define H
n =

{x = (x1 , . . . , xn) ∈ Rn ∶ xn > 0} as the Poincaré half-space or the upper half-plane.
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942 R. Kargar

The ball with center x in R
n and radius r > 0 is denoted as Bn(x , r), defined as

the set {y ∈ Rn ∶ ∣y − x∣ < r}. Correspondingly, the sphere sharing the same center
and radius is Sn−1(x , r) = {y ∈ Rn ∶ ∣y − x∣ = r}. The unit ball will be denoted by
B

n = Bn(0, 1). Also, Bn(x , r) = {y ∈ Rn ∶ ∣y − x∣ ≤ r}. For any x within a domain G
in R

n , the Euclidean distance dG(x) is defined as the minimum distance from x
to the boundary of G, denoted by dG(x) = d(x , ∂G) = inf{∣x −w∣ ∶ w ∈ ∂G}. In the
hyperbolic space H

n , the hyperbolic distance ρ is characterized by the differential
equation dρ = ∣dx∣/xn . Explicit formulas for the distances between points in both the
upper half-space H

n and the unit ball Bn , respectively, are as follows (see [10, (4.8),
p. 52; (4.16), p. 55]):

chρHn(x , y) = 1 + ∣x − y∣2
2dHn(x)dHn(y) , x , y ∈ Hn

and

sh2 ρBn(x , y)
2

= ∣x − y∣2
(1 − ∣x∣2)(1 − ∣y∣2) , x , y ∈ Bn .

The quasihyperbolic distance, denoted as kG(x , y), between points x and y in the
domain G, is formally defined as the infimum of the integral along rectifiable curves
γ ⊂ G containing both x and y. This integral is calculated as the quotient of the absolute
value of the differential element dx by the distance function dG(x), as given by the
expression:

kG(x , y) = inf
γ ∫γ

∣dx∣
dG(x)

.

Gehring and Palka introduced the metric kG(x , y) in [7, p. 173] and provided a proof
for the sharp inequalities (see [7, Lemma 2.1]). These inequalities are expressed as
follows:

kG(x , y) ≥ ∣log dG(x)
dG(y) ∣(2.1)

and

kG(x , y) ≥ log(1 + ∣x − y∣
dG(x)

) .(2.2)

For a detailed discussion, we refer to [10], p. 68. It is well-known that (see [7], p. 174)

kHn(x , y) = ρHn(x , y) and kBn(x , y) ≤ ρBn(x , y) ≤ 2kBn(x , y).(2.3)

For any open set Ω in R
n , where Ω is not equal to the entire space R

n , the distance
ratio metric is defined by

jΩ(x , y) = log(1 + ∣x − y∣
min{dΩ(x), dΩ(y)}) , x , y ∈ Ω.

When Ω ∈ {Bn ,Hn} as per [10, Lemma 4.9], the following double-inequality holds:

jΩ(x , y) ≤ ρΩ(x , y) ≤ 2 jΩ(x , y).(2.4)
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Figure 1: Conformal invariant μG(x , y).

Modulus of a curve family. Let � be a family of curves in R
n . Also, let F(�) denote

the family of all nonnegative Borel-measurable functions σ ∶ Rn → R ∪ {∞} such that
∫γ σdτ ≥ 1 for each locally rectifiable curve γ ∈ �. The modulus of a curve family � ⊂
R

n is defined by (see [10], p. 104)

M(�) = inf
σ∈F(�)

∫
Rn

σ ndm,

where m stands for the n-dimensional Lebesgue measure.
We denote by Δ(E , F; G) the family of all closed nonconstant curves joining two

non-empty sets E and F in a domain G, where E, F, and G are subsets of R
n

.
Modulus metric. Let G be a proper subdomain of R

n
. The modulus metric is

defined by

μG(x , y) = inf
Cx y

M(Δ(Cx y , ∂G; G)),

where the infimum is taken over all continuous paths Cx y in G joining x and y,
represented by a continuous function γ ∶ [0, 1] → G satisfying γ(0) = x and γ(1) = y.
The definition of modulus metric is illustrated in Figure 1.

Uniformity. (See [10, Definition 6.1]) A domain G of Rn , where G ≠ Rn , is termed
uniform if there exists a constant A = A(G) ≥ 1 such that kG(x , y) ≤ AjG(x , y) for
all x , y ∈ G. The unit ball Bn and the upper half-space H

n are examples of uniform
domains with the constant 2, as implied by (2.3) and (2.4), respectively.

Absolutely continuous on lines (ACL). Consider Rn−1
j as the set Rn−1

j = {x ∈ Rn ∶
x j = 0}, where j = 1, 2, . . . , n. Suppose that Tj ∶ Rn → R

n−1
j is an onto orthogonal

projection Tjx = x − x j e j and Q = {x ∈ Rn ∶ a j ≤ x j ≤ b j} is a closed n-interval. A
mapping ϕ ∶ Q → R is called absolutely continuous on lines, abbreviated as ACL, if it
is absolutely continuous on almost every line segment in Q, parallel to the coordinate
axes e1 , . . . , en . More precisely, if E j is the set of all x ∈ TjQ such that the mapping

https://doi.org/10.4153/S0008439524000298 Published online by Cambridge University Press

https://doi.org/10.4153/S0008439524000298


944 R. Kargar

t ↦ ϕ(x + te j) is not absolutely continuous on [a j , b j], then mn−1(E j) = 0 for all
j = 1, . . . , n.

For an open set Ω in R
n , an ACL mapping ϕ ∶ Ω → R is said to be ACLn , n ≥ 1, if

ϕ is locally Ln-integrable in Ω and if the partial derivatives ∂ jϕ (which exist a.e. and
are measurable) of ϕ are locally Ln-integrable as well (see [20, p. 22]).

Quasiregular mappings. Consider a domain G ⊂ Rn . A mapping f ∶ G → R
n is

said to be K-quasiregular if f belongs to ACLn and if there exists a constant K ≥ 1
satisfying the inequality

∣ f ′(x)∣n ≤ KJ f (x), where ∣ f ′(x)∣ = max
∣ϕ∣=1

∣ f ′(x)ϕ∣,

almost everywhere in G. Here, f ′(x) and J f (x) represent the formal derivative and
the Jacobian determinant of f at the point x, respectively.

Quasiconformal mappings. Let G, G′ be domains in R
n = Rn ∪ {∞}, K ≥ 1 and

let f ∶ G → G′ be a homeomorphism. Then, f is K-quasiconformal if and only if the
following conditions are satisfied:
• f is ACLn ;
• f is differentiable;
• for almost all x ∈ G

∣ f ′(x)∣n/K ≤ ∣J f (x)∣ ≤ KL( f ′(x))n ,

where L(λ) =min∣ϕ∣=1 ∣λϕ∣.
The Harnack inequality provides a basis for defining a Harnack (pseudo) metric.
Consider H+(G) as the class of all positive harmonic functions u in G.

Harnack metric. For arbitrary x , y ∈ G, the Harnack metric is defined by

hG(x , y) = sup ∣log u(x)
u(y) ∣ ,

where the supremum is taken over all u ∈H+(G). This metric has been investigated
in various contexts, including studies in [3, 5, 15, 14, 19, 22].

3 (s, C(s))-Harnack functions and Harnack metric

In this section, we present our results on (s, C(s))-Harnack functions and the
Harnack metric under K-quasiconformal and K-quasiregular mappings. We start
with the following:

Lemma 3.1 All positive harmonic functions on Bn(x , r) ⊂ Rn are (s, C(s))-Harnack
with

C(s) = C(s, n) = 1
1 − s2 (

1 + s
1 − s

)
n

for all s ∈ (0, 1).
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Proof Let u be any positive harmonic function on Bn(x , r) and 0 < δ < r. Then, by
[13, Theorem 3.2.1], we have

u(x1)
u(x2)

≤ r2

r2 − δ2 (
r + δ
r − δ

)
n

(3.1)

for all x1 , x2 ∈ Bn(x , δ). Now, it is enough to put δ = rs in (3.1) since rs < r for all
s ∈ (0, 1). ∎

Theorem 3.2 (i) Let s ∈ (0, 1) and u ∶ Bn → (0,∞) be a Harnack function. Then for
all x , y ∈ Bn

u(x) ≤ C(s)1+tu(y), t = log((1 + r)/(1 − r))
log((1 + s)/(1 − s)) ,

where r = th(ρBn(x , y)/2) and C(s) ≥ 1. (ii) If u is a positive harmonic function, x ∈
B

n , s ∈ (0, 1) and y ∈ Sn−1(x , s(1 − ∣x∣)), then

u(x) ≤ 1
1 − s2 (

1 + s
1 − s

)
n

u(y), s < exp(ρBn(x , y)) − 1.

Proof (i) The proof follows from Definition 1.2 and [10, Lemma 6.23]. (ii) It follows
from [10, Lemma 4.9(1)] that

ρBn(x , y) ≥ jBn(x , y) ≥ log(1 + s(1 − ∣x∣)
1 − ∣x∣ ) = log(1 + s).

This completes the proof. ∎

We continue with the following result on quasiregular mappings; in fact, we show
that if f ∶ G → R

n is a quasiregular mapping, and if ∂ f G satisfies some additional
conditions, then the function u(x) = d f G( f (x)), (x ∈ G), satisfies the (s, C(s))-
Harnack inequality.

Remark 3.3 It is important to clarify that the theorem presented herein diverges
from Theorem 5.2 in [23]. Specifically, our theorem assumes that f G is a A-uniform
domain with a connected boundary, while Sugawa et al. [23] regarded ∂ f G as
uniformly perfect. The connectedness of ∂ f G is decisive in the following theorem, as
demonstrated in Remark 3.5. Conversely, in the proof of Theorem 5.2, Sugawa et al.
[23] employ the definition of the modulus metric μG to establish an upper bound,
whereas we utilize a general upper bound derived from Lemma 10.6(2) of [10] for
y ∈ Bn(x , sdG(x)). Moreover, the constant C(s)obtained here is more generality than
the constant obtained by Sugawa et al. in [23].

Theorem 3.4 Let G be a proper subdomain of R
n , and let f ∶ G → R

n be a
K-quasiregular mapping such that f G ⊂ Rn is a A-uniform domain. Also, let
∂ f G be connected such that it consists of at least two points. Then, the function
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946 R. Kargar

u(x) = d f G( f (x)), (x ∈ G), satisfies the (s, C(s))-Harnack inequality with the
constant

C(s) = exp
⎛
⎝

AKI( f )
cn

ωn−1 (log sdG(x)
∣x − y∣ )

1−n⎞
⎠

, s ∈ (0, 1),(3.2)

for y ∈ Bx ,s = Bn(x , sdG(x)), where ωn−1 is the (n − 1)-dimensional surface area of
Sn−1, KI( f ) is the inner dilatation of f, and cn is a constant number depending only
on n.

Proof Since ∂ f G is a connected domain and f G is a A-uniform domain, by [10,
Lemma 10.8(1)] and by definition, we have

μ f G( f (x), f (y)) ≥ cn j f G( f (x), f (y)) ≥ cn

A
k f G( f (x), f (y)), x , y ∈ G ,(3.3)

where A ≥ 1, and cn is a constant number depending on n. Also, by [10, Theorem
15.36(1)], the following inequality

μ f G( f (x), f (y)) ≤ KI( f )μG(x , y), x , y ∈ G(3.4)

holds for a nonconstant quasiregular mapping f ∶ G → R
n , where KI( f ) ≥ 1 is the

inner dilatation of f. It follows from [10, Lemma 10.6(2)] that if x ∈ G and y ∈ Bx ,s =
Bn(x , sdG(x)) with x ≠ y, then

μG(x , y) ≤ μBx ,s(x , y) ≤ ωn−1 (log 1
r
)

1−n
,(3.5)

where r = ∣x − y∣/(sdG(x)). Now, by (2.1) and (3.3)–(3.5), we obtain

∣log
d f G( f (x))
d f G( f (y)) ∣ ≤ k f G( f (x), f (y)) ≤ A

cn
μ f G( f (x), f (y)) ≤ AKI( f )

cn
μG(x , y)

≤ AKI( f )
cn

μBx ,s(x , y) ≤ AKI( f )
cn

ωn−1 (log sdG(x)
∣x − y∣ )

1−n

.

This establishes the desired inequality (3.2), and thus concludes the proof. ∎

Remark 3.5 In Theorem 3.4, the connectedness of ∂ f G is crucial. However, it is
noteworthy that the statement of Theorem 3.4 can be invalidated by the existence of
an analytic function f ∶ B2 → B

2 / {0} = fB2. An explicit example of such a function
is defined by f ∶ B2 → B

2 / {0} as

f (z) = exp( z + 1
z − 1

) , z ∈ B2 .

Let xp = (e p − 1)/(e p + 1) for p = 1, 2, . . .. Considering f (xp) = exp(−e p) and
f (xp+1) = exp(−e p+1), we can deduce

∣
f (xp)

f (xp+1)
∣ = exp(e p+1)

exp(e p) .
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Additionally, employing a straightforward calculation, we can infer from (2.2) that

(log
sd(xp)
∣xp − xp+1∣

)
1−n

≤ (log s
exp(kB2(xp , xp+1)) − 1

)
1−n

.

Moreover, due to kB2(x , y) ≤ 2 jB2(x , y), the preceding inequality leads to

(log
sd(xp)
∣xp − xp+1∣

)
1−n

≤ (log s
exp(2 jB2(xp , xp+1)) − 1

)
1−n

.

Finally, by applying Theorem 3.4 and utilizing (2.4), we derive

exp(e p+1)
exp(e p) ≤ exp

⎛
⎝

AKI( f )
cn

ωn−1 (log s
exp(2ρB2(xp , xp+1)) − 1

)
1−n⎞
⎠

.

As ρB2(xp , xp+1) = 1, the right-hand side of the last inequality remains bounded.
However, the left-hand side of the same inequality diverges to infinity as p approaches
infinity. Consequently, we can infer that the assertion in Theorem 3.4 loses validity
when ∂ f G includes isolated points.

In the following, we shall study the Harnack metric hG(x , y), where G is a proper
subdomain of Rn .

Theorem 3.6 Let s ∈ (0, 1) and C(s) ≥ 1. (i) If G is a proper subdomain of Rn , then

hG(x , y) ≤ (1 + kG(x , y)
2 log(1 + s)) log C(s).

(ii) If G = Bn or G = Hn , then we have

hG(x , y) ≤ (1 + ρG(x , y)
log[(1 + s)/(1 − s)]) log C(s).

Proof (i) Let u ∶ G → (0,∞) be a Harnack function. By [10, Lemma 6.23], we have

u(x)
u(y) ≤ C(s)1+t ⇔ log u(x)

u(y) ≤ (1 + t) log C(s),

where t = kG(x , y)/(2 log(1 + s)). The claim is now a direct consequence of the
Harnack metric definition. (ii) According to [10, Lemma 6.23], the proof closely
resembles that of part (i), so we skip the details. ∎

To prove the next results, the following two lemmas will be helpful.

Lemma 3.7 [2, Corollary 1] For all x , y ∈ Bn ,

hBn(x , y) = 2ρBn(x , y).

Lemma 3.8 [3, Lemma 2.5] If x , y ∈ Hn , then

hHn(x , y) = ρHn(x , y).
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Theorem 3.9 (i) If f ∶ Bn → fBn is a nonconstant K-quasiregular mapping with
fBn ⊂ Bn , then the inequality

h fBn( f (x), f (y)) ≤ 2K(hBn(x , y)/2 + log 4)
holds for all x , y ∈ Bn .

(ii) If f ∶ Bn → fBn = Bn is a K-quasiconformal mapping, then the inequality

h fBn( f (x), f (y)) ≤ b max{hBn(x , y), 21−α hBn(x , y)α}

holds, where α = K 1/(1−n) and b is a constant depending on K and n. Here, b tends to 1
as K tends to 1.

Proof (i) By [10, Theorem 16.2(2)], we have

ρ fBn( f (x), f (y)) ≤ K(ρBn(x , y) + log 4)(3.6)

for all x , y ∈ Bn , where f ∶ Bn → fBn ⊂ Bn is a K-quasiregular mapping. It follows
also from Lemma 3.7 that, for x , y ∈ Bn

h fBn( f (x), f (y)) = 2ρ fBn( f (x), f (y)).(3.7)

Now, combining (3.7) and (3.6) with Lemma 3.7 gives the desired result. (ii) Let f ∶
B

n → fBn = Bn be a K-quasiconformal mapping and x , y ∈ Bn . Then, by Corollary
18.5 in [10], we have

ρBn( f (x), f (y)) ≤ b max{ρBn(x , y), ρBn(x , y)α},(3.8)

where α = K 1/(1−n) and b is a constant depending on K and n. Now, by (3.8), and using
Lemma 3.7, the conclusion is obtained. ∎

Theorem 3.10 Let f ∶ Hn → H
n be a nonconstant K-quasiregular mapping such that

fHn ⊂ Hn . Then

h fHn( f (x), f (y)) ≤ K(hHn(x , y) + log 4),
where K ≥ 1.

Proof If f ∶ Hn → H
n is a nonconstant K-quasiregular mapping such that fHn ⊂

H
n , then by [10, Theorem 16.2(2)], we have

ρ fHn( f (x), f (y)) ≤ K(ρHn(x , y) + log 4),(3.9)

where K ≥ 1. Also, by Lemma 3.8, for all x , y ∈ fHn ⊂ Hn , we have

h fHn( f (x), f (y)) = ρ fHn( f (x), f (y)).(3.10)

The result now follows from (3.9), (3.10), and Lemma 3.8. The proof is now
complete. ∎

For r ∈ (0, 1) and K ∈ [1,∞), the function φK ∶ [0, 1] → [0, 1] is defined as follows:

φK(r) = μ−1 ( μ(r)
K
) , φK(0) = 0; φK(1) = 1,
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where μ ∶ (0, 1) → (0,∞) is a decreasing homeomorphism given by

μ(r) = π
2
K(
√

1 − r2)
K(r) , with K(r) = π

2
F ( 1

2
, 1

2
; 1; r2) ,

and F represents the Gaussian hypergeometric function. For additional information
about the function φK(r) and its approximation, readers are encouraged to con-
sult [17].

Theorem 3.11 If f ∶ B2 → B
2 is a nonconstant K-quasiregular mapping, then

hB2( f (x), f (y)) ≤ c(K)max{hB2(x , y), 21−1/K hB2(x , y)1/K}

for all x , y ∈ B2, where c(K) = 2arth(φK(th(1/2))). In particular, c(1) = 1.

Proof Let f ∶ B2 → B
2 be a nonconstant K-quasiregular mapping. Then, by

Theorem [10, Theorem 16.39], we have

ρB2( f (x), f (y)) ≤ c(K)max{ρB2(x , y), ρB2(x , y)1/K}(3.11)

for all x , y ∈ B2, where c(K) = 2arth(φK(th(1/2))). The desired assertion can be
obtained by utilizing Lemma 3.7 and inequality (3.11). ∎

4 Harmonic Schwarz lemma

This section first generalizes the Schwarz lemma for harmonic functions in the
complex plane utilizing the Poisson integral formula. Then, it improves the Schwarz–
Pick estimate for a real-valued harmonic function. First, we recall that the classical
Schwarz lemma states that if u ∶ B2 → B

2 is a holomorphic function with u(0) = 0,
then:
• ∣u(z)∣ ≤ ∣z∣ for all z ∈ B2;
• ∣u′(0)∣ ≤ 1.

Heinz (see [12]) has obtained an improvement of the classical Schwarz lemma for
a complex-valued harmonic function (see Lemma 4.1). A complex-valued function
f ∶ G → C, where f = u + iv is said to be harmonic if both u ∶ G → R and v ∶ G → R

are harmonic in the sense defined above.

Lemma 4.1 Let u ∶ B2 → B
2 be a complex-valued harmonic function with u(0) = 0.

Then

∣u(z)∣ ≤ 4
π

arctan ∣z∣.

The inequality is sharp for each point z ∈ B2.

The following Theorem 4.2 is known as the Poisson integral formula (see, for
example, [9]).
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Theorem 4.2 Let u be a complex-valued function continuous on B2(a, R), (R > 0),
and harmonic on B2(a, R). Then for r ∈ [0, R) and t ∈ R the following formulas hold:

u (a + re i t) = 1
2π ∫

π

−π

R2 − r2

R2 + r2 − 2rR cos(t − θ)u (a + Re iθ)dθ(4.1)

and

u(a) = 1
2π ∫

π

−π
u (a + Re iθ)dθ .(4.2)

Motivated by Lemma 4.1 and applying Theorem 4.2, we derive the following
Theorem 4.3 which is an extension of the above Schwarz lemma:

Theorem 4.3 Let 0 < r < R and M > 0. If u is a complex-valued harmonic mapping
in the disk B2(a, R) such that ∣u(w)∣ ≤ M for all w ∈ B2(a, R), then

∣u(a + z) − R2 − ∣z∣2
R2 + ∣z∣2 u(a)∣ ≤ 2M

π
arctan( 2R∣z∣

R2 − ∣z∣2 ) , z = re i t .

The result is sharp.

Proof Suppose that 0 < r < R. Applying formula (4.1) for z = r, we obtain

u (a + r) − R2 − r2

R2 + r2 u(a)

= 1
2π ∫

π

−π
( R2 − r2

R2 + r2 − 2rR cos(θ) −
R2 − r2

R2 + r2 )u (a + Re iθ)dθ

= rR(R2 − r2)
π(R2 + r2) ∫

π

−π

cos(θ)
R2 + r2 − 2rR cos(θ)u (a + Re iθ)dθ .

By the last equality and the assumption ∣u∣ ≤ M, we obtain

∣u (a + r) − R2 − r2

R2 + r2 u(a)∣ ≤ M rR(R2 − r2)
π(R2 + r2) ∫

π

−π

∣ cos(θ)∣
R2 + r2 − 2rR cos(θ)dθ .(4.3)

Now, we calculate the integral

I = ∫
π

−π

∣ cos(θ)∣
R2 + r2 − 2rR cos(θ)dθ .

It is easy to check that

I = ∫
π/2

−π/2
( cos(θ)

R2 + r2 − 2rR cos(θ) +
cos(θ)

R2 + r2 + 2rR cos(θ))dθ

= 2(R2 + r2)∫
π/2

−π/2

cos(θ)
(R2 + r2)2 − 4r2R2 cos2(θ)dθ
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= 4(R2 + r2)∫
π/2

0

cos(θ)
(R2 − r2)2 + 4r2R2 sin2(θ)

dθ

= 2(R2 + r2)
rR(R2 − r2) arctan( 2rR

R2 − r2 ) .

Thus, from (4.3) follows that

∣u (a + r) − R2 − r2

R2 + r2 u(a)∣ ≤ 2M
π

arctan( 2rR
R2 − r2 ) ,

which implies the desired result. It is easy to see that the result is sharp for the function

u0(z) = −
2M
π

arg(R − z
R + z

) = 2M
π

arctan(2rR sin θ
R2 − r2 ) , z = re i t ,

or one of its rotations, where 0 < r < R and M > 0, completing the proof. ∎

Remark 4.4 It should be noted that Theorem 4.3 is also an extension of [21, Theorem
3.6.1]. Indeed, Pavlović proved that if f ∶ B2 → B

2
is a complex-valued harmonic

function, then the following sharp inequality holds:

∣u(z) − 1 − ∣z∣2
1 + ∣z∣2 u(0)∣ ≤ 4

π
arctan ∣z∣, z = re i t .

Let ∇u be the gradient of u at x defined by

∇u(x) = (∂u/∂x1 , . . . , ∂u/∂xn).
In 1989 (see [6]), Colonna proved the following Schwarz–Pick estimate for complex-
valued harmonic functions u from the unit disk B

2 to itself:

∣∂u(z)
∂z

∣ + ∣∂u(z)
∂z

∣ ≤ 4
π

1
1 − ∣z∣2 , z ∈ B2 .

If u is a real-valued function, Kalaj and Vuorinen established the above Schwarz–Pick
estimate as the following theorem; refer to [16, Theorem 1.8] for details.

Theorem 4.5 Let u be a real harmonic function of the unit disk into (−1, 1). Then the
following sharp inequality holds:

∣∇u(z)∣ ≤ 4
π

1 − ∣u(z)∣2
1 − ∣z∣2 , z ∈ B2 .

In accordance with the findings of Chen [4, Theorem 1.2], the subsequent result
has been derived:

Theorem 4.6 Let u be a real harmonic mapping of B2 into the open interval (−1, 1).
Then

∣∇u(z)∣ ≤ 4
π

cos ( π
2 u(z))

1 − ∣z∣2
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holds for z ∈ B2. The inequality is sharp for any z ∈ B2 and any value of u(z), and the
equality occurs for some point inB

2 if and only if u(z) = (4Re{arctan f (z)})/π, z ∈ B2

with a Möbius transformation f of B2 onto itself.

In the subsequent discussion, we aim to expand upon Theorem 4.5 in the following
manner: Furthermore, it is worth noting that our extension encompasses the findings
presented in Theorem 6.26 of [1].

Theorem 4.7 Let α and β be two real numbers such that α < β. If u ∶ B2 → (α, β) is
a real-valued harmonic function, then we have

∣∇u(z)∣ ≤ 2(β − α)
π

1 − 4
(β−α)2 ∣u(z) − α+β

2 ∣
2

1 − ∣z∣2 , z ∈ B2 .

The result is sharp.

Proof Define v(z) as

v(z) = 2
β − α

(u(z) − α + β
2
) , z ∈ B2 ,

where u ∶ B2 → (α, β) is a real-valued harmonic function, α and β are real numbers
such that α < β. Then it is clear that v is a harmonic function of the unit disk B

2 into
(−1, 1). Therefore, v satisfies the assumption of Theorem 4.5. Moreover, we have

2
β − α

∣∇u∣ = ∣∇v∣ ≤ 4
π

1 − 4
(β−α)2 ∣u(z) − α+β

2 ∣
2

1 − ∣z∣2 , z ∈ B2 ,

which implies the desired result. To show that the result is sharp, we take the harmonic
function

�(z) = α + β
2

+ β − α
π

arctan 2y
1 − x2 − y2 , z ∈ B2 .

It is easy to see α < �(z) < β. A simple calculation yields

∣∇�(0)∣ = 2(β − α)
2

= 2(β − α)
2

⋅
1 − 4

(β−α)2 ∣ α+β
2 − α+β

2 ∣
2

1 − 02 ,

which is the desired conclusion. ∎

Applying Theorem 4.6, we get the following result:

Theorem 4.8 If u ∶ B2 → (α, β) is an into harmonic mapping, then

∣∇u(z)∣ ≤ 2(β − α)
π

cos( π
β−α (u(z) − α+β

2 ))
1 − ∣z∣2 ,

where α and β are real numbers such that α < β. The result is sharp.
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Proof The proof is the same as the proof of Theorem 4.7, therefore, we omit the
details. ∎

We conclude this paper by presenting the following open question:

Open question. What is the connection between the Harnack metric h and the
hyperbolic metric ρ in a simply connected Jordan domain in the complex plane C?
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