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The proof of [1, Lemma 7.2] contains a gap: the equality ω�h0(Λltr(η,triv)) =

ω�h0(ω
∗Λtr(η)) is false. Indeed one can check that for X ∈ Sm(k) proper,

Hom(ω�h0(Λltr(ηX,triv)),Ga) �=Hom(ω�h0(ω
∗Λtr(ηX)),Ga),

as the left-hand side is Ga(ηX), whereas the right-hand side is Ga(X). For now, we can

give a proof only of a weaker version of [1, Proposition 7.3]:

Proposition 0.1. Let k be a perfect field. Then the compositions

CIlogdNis
i−→ Shvlog

dNis

ωlog
�−−→ ShvNis, CIltrdNis

itr−→ Shvltr
dNis

ωltr
�−−→ Shvtr

Nis

are faithful and exact. In particular, both functors are conservative.

Proof. Exactness follows from the exactness of i and ωlog
� (resp., itr and ωltr

� ). To show

faithfulness, it is enough to show that for all F ∈CIlogdNis (resp., CIltrdNis), the unit map

F → ωCI
logω

log
� F (resp., F → ωCI

ltr ω
ltr
� F )

is injective. By [1, Theorem 5.10], we have that for all X ∈ SmlSm(k),

F (X) ↪→ F (X−|∂X|) = ω∗
logω

log
� F (resp., ω∗

ltrω
ltr
� F ),

and hence u : F ↪→ω∗
logω

log
� F (resp., utr : F ↪→ω∗

ltrω
ltr
� F ) is injective. Because F is �-local,

the map u (resp., utr) factors through ωCI
logω

log
� F (resp., ωCI

ltr ω
ltr
� F ), which concludes the

proof.

We believe that the full statement of a more general version of [1, Proposition 7.3]

holds:

Conjecture 0.2. The functors of Proposition 0.1 are full.
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We stress that the previous statement does not assume (RS), nor transfers. We cannot

give a proof of [1, Lemma 7.2] at the moment, but we expect the statement to hold as a

consequence of the following conjecture:

Conjecture 0.3. The inclusion ιtr : CIltrdNis(k,Λ)⊆Shvltr
dNis(k,Λ) is Serre – that is, for all

F ∈CIltrdNis(k,Λ), if G⊆ F is a subsheaf with log stransfers, then G is strictly �-invariant
– that is, G lies in CIltrdNis(k,Λ).

If Conjecture 0.3 holds, then the counit map ιtrh0
ltrG→ G is a monomorphism for all

G ∈ ShvdNis(k,Λ). In particular, this would imply that the natural map

ωCI
ltr ω

ltr
CIF = ιtrh0

ltrω
∗
trω

ltr
� ιtrF ↪→ ω∗

ltrω
ltr
� ιtrF

is injective, so we could proceed as in [1, Proposition 7.3.] to prove Conjecture 0.2 in

the case with transfers. On the other hand, we do not expect Conjecture 0.3 to hold
for CIlogdNis(k,Λ), as its counterpart is already false for the category of A1-local sheaves

without transfers.

All the results of [1, §7] must be considered conjectural as well.
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