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Abstract

This paper presents a new immersed finite volume element method for solving second-
order elliptic problems with discontinuous diffusion coefficient on a Cartesian mesh.
The new method possesses the local conservation property of classic finite volume
element method, and it can overcome the oscillating behaviour of the classic immersed
finite volume element method. The idea of this method is to reconstruct the control
volume according to the interface, which makes it easy to implement. Optimal error
estimates can be derived with respect to an energy norm under piecewise H2 regularity.
Numerical results show that the new method significantly outperforms the classic
immersed finite volume element method, and has second-order convergence in L∞ norm.

2020 Mathematics subject classification: 65N08.
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1. Introduction

We consider the following second-order elliptic interface problem:

−∇ · (β(x)∇u) = f in Ω− ∪Ω+,

u|∂Ω = 0,
(1.1)

where f ∈ L2(Ω), u ∈ H1
0(Ω), and Ω ⊂ R2 is divided by a C2 interface Γ into two disjoint

subdomains Ω+ and Ω−. The diffusion coefficient β(x) has a finite discontinuity across
the interface Γ, and it is assumed to be a piecewise constant function defined by

β(x) =

{
β− x = (x1, x2) ∈ Ω−

β+ x = (x1, x2) ∈ Ω+,
(1.2)
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such that min{β+, β−} > 0. Across the interface Γ, the solution and its flux are assumed
to be continuous

[u]|Γ = u+ − u− = 0,
[
β
∂u
∂n

]∣∣∣∣∣
Γ

= β+ ∂u+

∂n
− β−

∂u−

∂n
= 0, (1.3)

where us = u|Ωs (s = +,−), and n is the normal of Γ. The interface Γ is represented by
the zero level-set of a smooth function ϕ(x) which is called a level-set function, and
we assume that Ω− = {x ∈ Ω | ϕ(x) < 0} and Ω+ = {x ∈ Ω | ϕ(x) > 0}.

The interface problems arise from many applications in engineering and science,
such as multi-phase flows in fluid dynamics [4, 34], cell and tumour growth in
mathematical biology [12, 32] and shape optimization [18]. Conventional finite
element (FE) methods can solve the elliptic interface problems satisfactorily, provided
that solution meshes are tailored to fit the interfaces [2, 3]. However, for moving
interface problems, it takes additional cost to reform the mesh at each time step in
order to fit the moving interface. In that case, it may be advantageous to use a uniform
Cartesian mesh. Quite a few numerical methods in this category have been proposed
and studied, such as the immersed boundary method [33], the immersed interface
method [24], Nitsche-XFEM method [15] and unfitted penalty finite element method
[17]. The immersed finite element (IFE) methods are a particular class of finite element
methods based on Cartesian meshes [22, 27, 28, 31]. The basic idea of the IFE method
is to employ standard finite element functions on noninterface elements, and modify
the approximating functions on interface elements, so that the jump conditions (1.3)
are locally preserved in a certain sense. But numerical experiments illustrate that the
classic IFE method often has much larger pointwise errors over interface elements, and
its convergence order decreases slightly in the H1 norm when the mesh becomes very
fine [19, 29]. In addition, the convergence order in the L∞ norm has the oscillation
property.

To overcome the difficulties, the partially penalized immersed finite element
(PPIFE) methods are proposed in the literature [1, 19–21, 29]. The penalization terms
are added to IFE schemes to deal with the negative impacts caused by the discontinuity
in the IFE functions. The PPIFE methods can eliminate the shortcomings of the classic
IFE methods, and obtain smaller pointwise errors. Theoretically, it is difficult to prove
the coercivity of the PPIFE methods without extra stabilized terms, and piecewise H3

regularity is needed to establish the optimal convergence with respect to the defined
energy norm [29]. Computationally, adding penalized and stabilized terms makes the
method hard to implement and has a higher computational cost. The nonconforming
rotated-Q1 IFE method without stabilized term is developed [14, 30]. Numerical
results demonstrate that the convergence order in the L∞ norm is approximately
second-order. However, the degrees of freedom of the nonconforming IFE method
are about twice as much as that of the conforming IFE method on the same mesh.

Due to the local conservation property and other attractive properties, the finite
volume element (FVE) method is widely used in computational fluid dynamics (see
[5, 7, 13, 25, 37–39] and the references therein). Although the numerical analysis of
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Figure 1. Dual element/control volume with barycentre as internal point.

the FVE method is more difficult than that of the FE method, a general framework for
analysing the FVE methods has been proposed [8, 9, 11]. To solve the second-order
elliptic interface problems efficiently, the immersed finite volume element (IFVE)
method is designed [10]. Optimal error estimates in the energy norm are obtained
under piecewise H2 regularity. The bilinear IFVE method for solving the second-order
elliptic interface problem is presented by He et al. [16]. The elliptic interface problems
with nonhomogeneous jump conditions are solved by the linear IFVE method [41].
To improve the classic IFVE methods, certain stability terms are added on interface
elements [36].

A typical finite volume element method uses piecewise constant functions as test
functions, and to keep the same dimension for the spaces of the trial functions and
test functions, two different partitions of the domain Ω are needed. In Figure 1, the
primal partition is made up of the standard triangular elements, and the dual partition
is constructed as follows. Let Ai be a node of a triangle, A j ( j = 1,2, . . . ,6) the adjacent
nodes of Ai, and M j the midpoint of A jAi. We choose the barycentre Q j of triangle
4A jAiA j+1 (A7 = A1) as the node of the dual mesh. Also, we successively connect M1,
Q1, . . . ,M6, Q6, M1 to form a polygonal region Vi, called a control volume. When the
diffusion coefficient is continuous, the dual partition makes the corresponding finite
volume element schemes hold optimal L2 norm convergence order [40]. Numerical
results show that optimal convergence order in the L2 norm can also be obtained for
the elliptic interface problems [10, 36, 41]. However, numerical results illustrate that
the convergence order in the L∞ norm has the oscillating behaviour for a large jump of
the diffusion coefficients, which is also observed in the IFE methods.

In this paper, a modified immersed finite volume element (MIFVE) method is
developed to solve the second-order elliptic interface problems on a Cartesian mesh.
The idea is to modify the control volume associated with the interface elements.
Specifically, the construction of the control volume for noninterface element is the
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same as that of the standard FVE method. For the interface element, the control volume
is designed along the interface. Compared with other methods [36], the new method
is parameter free and easy to implement, which makes it applicable to other interface
problems, such as planar elasticity and Stokes interface problems [35]. Furthermore,
the coercivity and optimal error estimates can be derived in an energy norm under
piecewise H2 regularity.

The rest of the paper is organized as follows. In the next section, we introduce
some notations, immersed finite element space and modified immersed finite volume
element method for the elliptic interface problems. In Section 3, we present some
numerical results to confirm our theoretical analysis and efficiency of the new method.
The conclusions are summarized in the last section.

2. Some notations and MIFVE schemes

2.1. Some notations and immersed finite element space For the elliptic interface
problem described by (1.1) and (1.3), we consider the weak form: find u ∈ H1

0(Ω) such
that

a(u, v) = ( f , v) for all v ∈ H1
0(Ω), (2.1)

where

a(u, v) =

∫
Ω

β∇u · ∇v dx, ( f , v) =

∫
Ω

f v dx for all v ∈ H1
0(Ω).

To present error estimates, we define the following function space

H̃2(Ω) = {v | v|Ωs ∈ H2(Ωs), s = + or −},

equipped with the norm and semi-norm

‖v‖2H̃2(Ω) = ‖v‖2H2(Ω+) + ‖v‖2H2(Ω−),

|v|2H̃2(Ω) = |v|2H2(Ω+) + |v|2H2(Ω−),

where H2(Ωs) = W2
2 (Ωs) denotes the usual Sobolev space. Then, we have the following

regularity result for the weak solution of the variational problem [3, 6].

Theorem 2.1. The variational problem (2.1) has a unique solution u ∈ H̃2(Ω) ∩ H1
0(Ω)

which satisfies
‖u‖H̃2(Ω) ≤ C‖ f ‖L2(Ω)

for some constant C > 0.

Now we recall the linear IFE space [10, 27, 36]. Let Th = {T } be a regular triangular
grid of Ω with grid size h. We call an element T an interface element, if the interface Γ

passes through the interior of T ; otherwise, we call T a noninterface element. Without
loss of generality [30], we assume that interface elements in Th have the following
features when the mesh size h is small enough.
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Figure 2. A typical interface element.

(H1) The interface Γ cannot intersect an edge of any element at more than two points,
unless the edge is part of Γ.

(H2) If Γ intersects the boundary of an element at two points, these intersection points
must be on different edges of this element.

Note that if Γ continuously intersects an edge of one triangle twice, then the element
is a noninterface element. The set of interface elements and the set of the noninterface
elements are denoted by T i

h and T n
h , respectively. As a common practice, the interface

Γ can be approximated by Γh which is composed of all the line segments connecting
the intersections of the elements and the interface. Such an approximation does not
affect second-order convergence, when Γ ∈ C2 (see [3, 6]). In addition, we use

Nh = {Ai | Ai is a node of element T ∈ Th}

to denote the set of all nodes of Th.
For a typical interface element 4A1A2A3, its geometric configuration is given in

Figure 2. Assume that the interface Γ meets the triangle at points D and E, and the
straight line DE separates T into T + and T−. We then define the shape function to be
a piecewise linear polynomial

φ(x) =

{
φ−(x) = a−x1 + b−x2 + c− if x ∈ T−

φ+(x) = a+x1 + b+x2 + c+ if x ∈ T +.

The coefficients are chosen such that

φ(Ai) = Ni, i = 1, 2, 3, (2.2)

φ+(D) = φ−(D), φ+(E) = φ−(E), β+ ∂φ+

∂nDE
= β−

∂φ−

∂nDE
, (2.3)

where Ni, i = 1, 2, 3 are given nodal values and nDE is the unit normal vector on
the line segment DE. The piecewise linear function φ(x) on interface element T is
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uniquely determined by the six conditions in (2.2)–(2.3), which has been proved by
Ewing et al. [10] and Li et al. [26]. We let Ŝ h(T ) denote the three-dimensional linear
space spanned by these piecewise linear functions. For any v ∈ H̃2(T ), we define
Ihv ∈ Ŝ h(T ) such that

Ihv(Ai) = v(Ai), i = 1, 2, 3,

where Ai, i = 1, 2, 3 are the vertices of T , and we call Ihv the interpolation of v in
Ŝ h(T ). For functions in Ŝ h(T ), they exactly satisfy a weak flux jump condition on the
interface Γ.

Lemma 2.2. For an interface element T , every function φ ∈ Ŝ h(T ) satisfies the flux jump
condition on Γ ∩ T in the following weak sense:∫

Γ∩T

(
β−
∂φ−

∂n
− β+ ∂φ

+

∂n

)
ds = 0.

For a noninterface element T ∈ T n
h , we use the standard piecewise linear

polynomials as local basis functions, and use S h(T ) to denote the linear space spanned
by the three nodal basis functions on T . Then we use the triangulation Th = {T } to
define the immersed finite element space Ŝ h(Ω) as the set of functions such that

φ|T ∈ S h(T ) if T ∈ T n
h

φ|T ∈ Ŝ h(T ) if T ∈ T i
h

φ is continuous at all nodes
φ(x) = 0 if x is a node on ∂Ω.

Now we have the following estimate that was proved by Li et al. [26].

Lemma 2.3. For every v ∈ H̃2(Ω) ∩ H1
0(Ω), there exists a constant C > 0 such that its

interpolation in the space Ŝ h(Ω) has the error bound

‖v − Ihv‖L2(Ω) + h
( ∑

T∈Th

‖v − Ihv‖2H1(T )

)1/2
≤ Ch2‖v‖H̃2(Ω).

2.2. MIFVE method Since the FVE method involves two different function
spaces, it is more difficult than finite element method to derive the error estimates. In
recent years, some approaches are established for analysing the FVE method applied
to second-order elliptic problems with continuous diffusion coefficients [8, 9, 11]. The
basic idea is to treat the FVE method a perturbation of the finite element method. So
first, we present some results about the IFE method for the elliptic interface problems
in the following.

Now we describe the IFE method for the elliptic interface problems (1.1)–(1.3):
find uh ∈ Ŝ h(Ω) such that

ah(uh, vh) = ( f , vh) for all vh ∈ Ŝ h(Ω), (2.4)

where
ah(uh, vh) =

∑
T∈Th

∫
T
β∇uh · ∇vh dx for all vh ∈ Ŝ h(Ω).
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To show the boundedness and coercivity of the bilinear form ah(·, ·), we define the
following energy norm

‖vh‖h =
√

ah(vh, vh) =

√∑
T∈Th

‖vh‖
2
h,T for all vh ∈ Ŝ h(Ω),

where ‖vh‖
2
h,T =

∫
T β∇vh · ∇vh dx. Then we have the following lemma.

Lemma 2.4. There exist two positive constants C0,C1 such that for any uh, vh ∈ Ŝ h(Ω),

|ah(uh, vh)| ≤ C0‖uh‖h‖vh‖h, ah(uh, uh) ≥ C1‖uh‖
2
h.

Next, we derive the error bound of IFE solutions for completeness.

Theorem 2.5. Let u ∈ H̃2(Ω) ∩ H1
0(Ω), uh ∈ Ŝ h(Ω) be the solutions of (2.1) and (2.4),

respectively. Then there exists a constant C such that

‖u − uh‖h ≤ Ch‖u‖H̃2(Ω). (2.5)

Proof. From the weak forms (2.1) and (2.4),

ah(u − wh, vh) = ah(uh − wh, vh) for all vh,wh ∈ Ŝ h(Ω).

Taking vh = uh − wh and using the coercivity of ah(·, ·) yield

C1‖uh − wh‖
2
h ≤ ah(uh − wh, uh − wh)

= ah(u − wh, uh − wh)

=
∑
T∈Th

∫
T
β∇(u − wh) · ∇(uh − wh) dx

≤

( ∑
T∈Th

‖β1/2∇(u − wh)‖2L2(T )

)1/2( ∑
T∈Th

‖β1/2∇(uh − wh)‖2L2(T )

)1/2

≤ C2‖∇(u − wh)‖2L2(Ω) +
C1

2
‖uh − wh‖

2
h.

Then, taking wh = Ihu and using the Lemma 2.3,

‖uh − wh‖h ≤ C3h‖u‖H̃2(Ω).

Finally, we obtain the desired error estimate (2.5) from the triangle inequality

‖u − uh‖h ≤ ‖u − Ihu‖h + ‖uh − Ihu‖h
≤ Ch‖u‖H̃2(Ω). �

Now we present the formulation of the MIFVE method. For the noninterface
element, the construction of dual partition is the same as the standard FVE method.
Let M1, M2 and M3 be the midpoints of the 4A1A2A3. We take the barycentre Q in
4A1A2A3, and connect Q to the points M1, M2 and M3, respectively. For the interface
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Figure 3. Non-interface element (left) and interface element (right).

element, we will design the dual partition along the interface Γh. Let M and F be the
midpoints of A1A2 and DE, respectively. Then connecting F to the point M, we get
the dual grid on the interface element. Their geometric configurations are given in
Figure 3. We call Vi a control volume or a dual element centred at Ai which is a vertex
of element T . At last, the dual partition T ∗h corresponding to the primal partition Th is
defined as the collection of all these control volumes.

Let
S ∗h = {v ∈ L2(Ω) | v|V is constant for all V ∈ T ∗h and v|∂Ω = 0}

be the test function space defined on the dual mesh T ∗h , and I∗h : Ŝ h(Ω)→ S ∗h be the
piecewise constant interpolation operator such that

I∗hu(x) = u(A j) for all x ∈ V j, A j ∈ Nh.

By the interpolation theorem of Sobolev spaces, for v ∈ Ŝ h(Ω)

‖v − I∗hv‖L2(Ω) ≤ Ch|v|H1(Ω).

Then the MIFVE schemes for (1.1) are defined as follows: find uh ∈ Ŝ h(Ω) such
that

ãh(uh, I∗hvh) = ( f , I∗hvh) for all vh ∈ Ŝ h(Ω), (2.6)

where

ãh(uh, I∗hvh) = −
∑

Vi

I∗hvh

∫
∂Vi

β∇uh · n ds.

In fact, the bilinear form ãh(·, I∗h ·) can be treated as a perturbation of the bilinear
form ah(·, ·). The corresponding results are presented in the following lemmas (see
[10, 36, 41]).

Lemma 2.6. Assume that uh, vh ∈ Ŝ h(Ω); then

ah(uh, vh) = ãh(uh, I∗hvh) + Eh(uh, vh),
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where
Eh(uh, vh) =

∑
T∈T i

h

∫
∂T

(β∇uh · n)(vh − I∗hvh) ds,

and
|Eh(uh, vh)| ≤ Ch‖uh‖h‖vh‖h.

Lemma 2.7. There exist two constants C0,C1 > 0 independent of the interface location
and h0 > 0 such that for all 0 < h ≤ h0,

|ãh(uh, I∗hvh)| ≤ C0‖uh‖h‖vh‖h, ãh(vh, I∗hvh) ≥ C1‖vh‖
2
h.

Lemma 2.8. There exist constants C > 0 and h0 > 0 such that for all 0 < h ≤ h0,

‖uh‖h ≤ C‖ f ‖L2(Ω).

Lemma 2.9. For any u ∈ H̃2(Ω) ∩ H1
0(Ω) and vh ∈ Ŝ (Ω), there exists a constant C

independent of h and interface location such that

|Fh(u, vh)| ≤ Ch‖u‖H̃2(Ω)‖vh‖h,

where
Fh(u, vh) =

∑
T∈Th

∫
∂T
β
∂u
∂n

vh ds.

Using the above lemmas, we can derive the error bound for MIFVE solutions
generated by (2.6).

Theorem 2.10. Assume that Th is regular, u ∈ H̃2(Ω) ∩ H1
0(Ω) and uh ∈ Ŝ (Ω) are the

solutions of (2.1) and (2.6), respectively, then there exists a constant C > 0 such that

‖u − uh‖h ≤ Ch(‖u‖H̃2(Ω) + ‖ f ‖L2(Ω)). (2.7)

Proof. For vh ∈ Ŝ h(Ω),

ah(u, vh) =
∑
T∈Th

∫
T
β∇u · ∇vh dx

=
∑
T∈Th

−

∫
T

vh∇ · (β∇u) dx +

∫
∂T
β
∂u
∂n

vh ds

= ( f , vh) +
∑
T∈Th

∫
∂T
β
∂u
∂n

vh ds.

From Lemma 2.6 we obtain

ah(u − uh, vh) = ah(u, vh) − ah(uh, vh)
= ( f , vh) + Fh(u, vh) − ãh(uh, I∗hvh) − Eh(uh, vh)
= ( f , vh − I∗hvh) + Fh(u, vh) − Eh(uh, vh).
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For wh ∈ Ŝ h(Ω), letting vh = uh − wh and using the coercivity of ãh(·, I∗h ·) yield

C1‖vh‖
2
h ≤ |ãh(uh − wh, I∗hvh)|

= |ãh(u − wh, I∗hvh)|

= |ah(u − wh, vh) − Eh(u − wh, vh)|

= |( f , vh − I∗hvh) + Fh(u, vh) − Eh(wh, vh) − Eh(u − wh, vh)|

= |R1 + R2 + R3 + R4|,

where R1 = ( f , vh − I∗hvh), R2 = Fh(u, vh), R3 = −Eh(wh, vh) and R4 = −Eh(u − wh, vh).
For R1,

|R1| ≤
∑
T∈Th

( f , vh − I∗hvh)T

≤ C2h
∑
T∈Th

‖ f ‖L2(T )‖vh‖h,T

≤ C3h‖ f ‖L2(Ω)‖vh‖h.

Using Lemma 2.6 and 2.9, R2, R3 and R4 can be bounded by as follows:

|R2| ≤ C4h‖u‖H̃2(Ω)‖vh‖h,

|R3| ≤ C5h‖wh‖h‖vh‖h,

|R4| ≤ C6h‖u − wh‖h‖vh‖h.

Putting the bounds for Ri, i = 1, 2, 3, 4,

‖vh‖
2
h ≤ C7h

(
‖ f ‖L2(Ω) + ‖u‖H̃2(Ω) + ‖u − wh‖h

)
‖vh‖h.

Taking wh = Ihu and using Lemma 2.3,

‖uh − Ihu‖h ≤ C8h
(
‖ f ‖L2(Ω) + ‖u‖H̃2(Ω)

)
.

From Lemma 2.3 and triangle inequality, we have

‖u − uh‖h ≤ ‖u − Ihu‖h + ‖uh − Ihu‖h
≤ Ch

(
‖ f ‖L2(Ω) + ‖u‖H̃2(Ω)

)
.

This completes the proof. �

Remark 2.11. The estimate given in (2.7) is derived under piecewise H2 regularity.
If the full piecewise H2 regularity is not achieved, such as u ∈ H̃3/2, the R2 can be
bounded by O(h) [23]. However, the analysis requires the interpolation error estimates
for IFE functions based on u ∈ H̃3/2, which is the barrier for the error estimate.
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Figure 4. A typical Cartesian mesh for Example 3.1.

3. Numerical examples

In this section, we will provide four numerical examples to confirm our theoretical
results and demonstrate the features of the modified immersed finite volume element
method for the elliptic interface problems. To illustrate the accuracy of the proposed
method, we estimate the experimental order (EO) of accuracy by computing the
logarithmic ratios of the errors between two successive refined meshes, that is,

EO = log2(||e2h||/||eh||), eh = uh − u,

where uh is the numerical solution with space step size h and u is the analytical
solution. The rate should be close to two for second-order accuracy. We consider
the elliptic interface problem (1.1)–(1.3), except when the nonhomogeneous boundary
condition u|∂Ω

= g is used. Let the solution domain Ω be the square domain (−1, 1) ×
(−1, 1) which is partitioned into 2N2 triangles with mesh size h = 2/N.

Example 3.1. The interface Γ is a circle centred at the origin with a radius r0 = 0.5
[10, 19]. The level-set function ϕ(x) = x2

1 + x2
2 − 0.25. The boundary condition g and

the source function f are chosen such that the exact solution is

u(x) =


r3

β−
if x ∈ Ω−

r3

β+
+

( 1
β−
−

1
β+

)
r3

0 if x ∈ Ω+,

where r =

√
x2

1 + x2
2. A typical Cartesian mesh for the interface problem is presented

in Figure 4.
The numerical results of our MIFVE method for high coefficient contrasts (β−, β+) =

(1, 104) and (β−, β+) = (104, 1) are reported in Table 1. The MIFVE method converges
optimally in the H1 norm, which validates our error estimates. The data in the table
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Figure 5. The L∞ error under uniform refinement of the mesh for Example 3.1 with (β−, β+) = (1, 104)
(left) and (β−, β+) = (104, 1) (right).

Table 1. Errors of the MIFVE method for Example 3.1 with high coefficient contrasts.

Cases N L∞ error EO L2 error EO H1 error EO
β− = 1 64 9.3550E-04 — 3.3650E-04 — 2.0956E-02 —
β+ = 104 128 2.6498E-04 1.82 7.6990E-05 2.12 1.0320E-02 1.02

256 7.1770E-05 1.88 1.8887E-05 2.03 4.9944E-03 1.05
512 1.9166E-05 1.90 4.7996E-06 1.98 2.4825E-03 1.00
1024 5.0387E-06 1.93 1.0827E-06 2.15 1.2202E-03 1.02
2048 1.3058E-06 1.95 2.7199E-07 1.99 6.1216E-04 1.00

β− = 104 64 4.7553E-04 — 1.3089E-03 — 1.0027E-01 —
β+ = 1 128 1.3351E-04 1.83 3.3128E-04 1.98 5.0144E-02 1.00

256 3.4139E-05 1.97 8.3129E-05 1.99 2.5043E-02 1.00
512 8.6644E-06 1.98 2.0762E-05 2.00 1.2520E-02 1.00
1024 2.5988E-06 1.74 5.2366E-06 1.99 6.2563E-03 1.00
2048 7.0997E-07 1.87 1.3077E-06 2.00 3.1286E-03 1.00

demonstrate a clear second-order accuracy in the L2 norm. The numerical results
also show that the MIFVE solution has the second-order convergence in the L∞ norm,
which is optimal from the viewpoint of polynomial degrees. Similar conclusions can
be obtained for small coefficient jumps (for example, β− = 1, β+ = 10), which are
omitted in the paper for the sake of brevity and readability.

In Figure 5, the development of the L∞ error of MIFVE and IFVE method in the
log–log scale versus the mesh size h is shown. The results indicate that the MIFVE
solution converges to the exact solution with second-order convergence. But the IFVE
solution does not always have the second-order convergence in the L∞ norm, and it has
the oscillation property which is observed in other numerical methods. In other words,
the MIFVE method outperforms the IFVE method for the high coefficient contrasts.
Additionally, the MIFVE solutions with N = 64 for these two contrasting coefficient
are plotted in Figure 6.
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Figure 6. MIFVE solutions for Example 3.1 with (β−, β+) = (1, 104) (left) and (β−, β+) = (104, 1) (right).

Figure 7. A typical Cartesian mesh for Example 3.2.

The efficiency of the MIFVE method is demonstrated in Examples 3.2–3.4. Note
that the MIFVE method again shows the optimal convergence behaviour in H1, L2 and
L∞ norms. But the IFVE method does not always have the second-order convergence
in the L∞ norm.

Example 3.2. We consider the case when the interface has a sharp corner. The level-set
function ϕ(x) = ((x1 − 1) tan θ)2x1 − x2

2, where θ = 40◦. The exact solution is chosen
as

u(x) =


ϕ(x)
β−

if x ∈ Ω−

ϕ(x)
β+

if x ∈ Ω+.

A typical Cartesian mesh for the interface problem is presented in Figure 7. Table 2
shows the error on different grids. In Figure 8, we plot the L∞ error of MIFVE and
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Figure 8. The L∞ error under uniform refinement of the mesh for Example 3.2 with (β−, β+) = (1, 104)
(left) and (β−, β+) = (104, 1) (right).

Table 2. Errors of the MIFVE method for Example 3.2 with high coefficient contrasts and θ = 40◦.

Cases N L∞ error EO L2 error EO H1 error EO
β− = 1 64 6.4820E-04 — 7.6188E-04 — 7.4978E-02 —
β+ = 104 128 1.8912E-04 1.78 1.9176E-04 1.99 3.7456E-02 1.00

256 4.9901E-05 1.92 4.7069E-05 2.03 1.8719E-02 1.00
512 1.1891E-05 2.06 1.1835E-05 1.99 9.3589E-03 1.00
1024 3.1475E-06 1.92 2.9477E-06 2.00 4.6787E-03 1.00
2048 8.0156E-07 1.97 7.3497E-07 2.00 2.3392E-03 1.00

β− = 104 64 8.0487E-04 — 7.5543E-05 — 1.5454E-02 —
β+ = 1 128 2.3135E-04 1.80 2.1058E-05 1.84 7.5756E-03 1.03

256 6.3518E-05 1.86 4.3745E-06 2.26 3.7250E-03 1.02
512 1.7388E-05 1.87 1.1555E-06 1.92 1.8595E-03 1.00
1024 4.6126E-06 1.91 2.7080E-07 2.09 9.2522E-04 1.01
2048 1.2046E-06 1.94 6.6836E-08 2.02 4.6190E-04 1.00

IFVE method in the log–log scale versus the mesh size h. Figure 9 shows the MIFVE
solutions with N = 64 for these two contrasting coefficients.

Example 3.3. The level-set function ϕ(x) = x2 − 3x1(x1 − 0.3)(x1 − 0.8) − 0.34 [21].
The exact solution is chosen as

u(x) =


ϕ(x)
β−

if x ∈ Ω−

ϕ(x)
β+

if x ∈ Ω+.

A typical Cartesian mesh for the interface problem is presented in Figure 10. Table 3
shows the error on different grids. In Figure 11, we plot the L∞ error of MIFVE and
IFVE method in the log–log scale versus the mesh size h. Figure 12 shows the MIFVE
solutions with N = 64 for these two contrasting coefficients.
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Figure 9. MIFVE solutions for Example 3.2 with (β−, β+) = (1, 104) (left) and (β−, β+) = (104, 1) (right).

Figure 10. A typical Cartesian mesh for Example 3.3.

Example 3.4. This example has a flower-like interface and the level-set function [14]

ϕ(x) = (x2
1 + x2

2)2{1 + 0.4 sin(6 arctan(x2/x1))} − 0.3.

The exact solution is chosen as

u(x) =


ϕ(x)
β−

if x ∈ Ω−

ϕ(x)
β+

if x ∈ Ω+.

A typical Cartesian mesh for the interface problem is presented in Figure 13. Table 4
shows the error on different grids. In Figure 14, we plot the L∞ error of MIFVE and
IFVE method in the log–log scale versus the mesh size h. Figure 15 shows the MIFVE
solutions with N = 64 for these two contrasting coefficients.
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Figure 11. The L∞ error under uniform refinement of the mesh for Example 3.3 with (β−, β+) = (1, 104)
(left) and (β−, β+) = (104, 1) (right).

Figure 12. MIFVE solutions for Example 3.3 with (β−, β+) = (1, 104) (left) and (β−, β+) = (104, 1) (right).

Table 3. Errors of the MIFVE method for Example 3.3 with high coefficient contrasts.

Cases N L∞ error EO L2 error EO H1 error EO
β− = 1 64 2.7495E-03 — 6.4299E-04 — 8.4430E-02 —
β+ = 104 128 7.3210E-04 1.91 1.5699E-04 2.03 4.2123E-02 1.00

256 1.9862E-04 1.88 4.0144E-05 1.97 2.1050E-02 1.00
512 5.0794E-05 1.97 1.0085E-05 1.99 1.0507E-02 1.00
1024 1.2679E-05 2.00 2.5124E-06 2.01 5.2534E-03 1.00
2048 3.3927E-06 1.90 6.3434E-07 1.99 2.6245E-03 1.00

β− = 104 64 2.7232E-03 — 1.5580E-03 — 2.0587E-01 —
β+ = 1 128 8.0876E-04 1.75 3.8798E-04 2.01 1.0291E-01 1.00

256 1.9899E-04 2.02 9.7074E-05 2.00 5.1436E-02 1.00
512 5.3159E-05 1.90 2.4293E-05 2.00 2.5711E-02 1.00
1024 1.3422E-05 1.99 6.0746E-06 2.00 1.2855E-02 1.00
2048 3.3697E-06 1.99 1.5226E-06 2.00 6.4265E-03 1.00
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Figure 13. A typical Cartesian mesh for Example 3.4.

Table 4. Errors of the MIFVE method for Example 3.4 with high coefficient contrasts.

Cases N L∞ error EO L2 error EO H1 error EO
β− = 1 64 2.7395E-03 — 1.2005E-03 — 7.9166E-02 —
β+ = 104 128 8.1628E-04 1.75 2.8317E-04 2.08 3.9584E-02 1.00

256 2.3158E-04 1.82 7.8718E-05 1.85 1.9589E-02 1.01
512 5.7989E-05 2.00 1.9787E-05 1.99 9.7602E-03 1.01
1024 1.4628E-05 1.99 5.3857E-06 1.88 4.8746E-03 1.00
2048 3.8427E-06 1.93 1.4461E-06 1.90 2.4307E-03 1.00

β− = 104 64 1.8939E-03 — 3.1155E-03 — 2.4508E-01 —
β+ = 1 128 5.1095E-04 1.89 8.0779E-04 1.95 1.2256E-01 1.00

256 1.1468E-04 2.16 1.8608E-04 2.12 6.1154E-02 1.00
512 3.0088E-05 1.93 4.5673E-05 2.03 3.0560E-02 1.00
1024 9.2734E-06 1.70 1.1196E-05 2.03 1.5276E-02 1.00
2048 2.4782E-06 1.90 2.7630E-06 2.02 7.6361E-03 1.00

4. Conclusions

In this paper, we introduced a modified immersed finite volume element method for
solving second-order elliptic interface problems with large discontinuous coefficient
on nonbody fitted meshes. By reconstructing the control volume according to the
interface, we can overcome the oscillating behaviour of the IFVE method. Further-
more, the new method has the same computational cost as the IFVE method, and it is
easier than the IFVE method. Numerical results show that the new method has optimal
convergence order in the H1, L2 and L∞ norms. Further works related to the method are
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Figure 14. The L∞ error under uniform refinement of the mesh for Example 3.4 with (β−, β+) = (1, 104)
(left) and (β−, β+) = (104, 1) (right).

Figure 15. MIFVE solutions for Example 3.4 with (β−, β+) = (1, 104) (left) and (β−, β+) = (104, 1) (right).

elliptic interface problems with nonhomogeneous jumps, parabolic interface problems
with a moving interface and planar elasticity interface problems.
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