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1. Introduction

In this paper we introduce a generalised Hankel operator and generalised
Erdélyi-Kober operators and deduce some relations between them. The
operators are then applied to obtain solutions to some dual integral equations
which have applications in diffraction theory.

The analysis throughout is formal and many of the results which we require,
apart from those listed below, can be found in the book by Sneddon (2).
Indeed a comparison of the subsequent sections with the sections (2.1), (2.4),
(2.5), (4.2) and (4.3) of (2) will show how closely the work in this paper resembles
the development and application of the Erdélyi-Kober operators as described

by Sneddon.
Burlak (1) has shown that if —1<f<0, then the solutions of the integral
equations
fx :
Y2 =y p{k (x> — y*)}dy = h(x) (D
Jvo
and
Y? — x0T {k\J(y? —x*)}dy = m(x), (2)
are given by
d * - ’
Y(x)=k E;L yh()(x? = y?) DLy k(x> = y)}dy 3

and

Y(x)= —k ?51; _[w ym(y)(y? ~x?)"FEDI_ L kOGP =X}y, @

respectively. If Jg, the Bessel function of the first kind, is replaced by I, the
modified Bessel function of the first kind, in equations (1) and (2), then J_ 444,
must be replaced by J_ 4. 1) in equations (3) and (4). The condition —1<f<0
was not stated by Burlak but was pointed out in a more recent paper by
Srivastav (3).
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2. The generalised operator of the Hankel transform
We introduce the operator defined by

S (:;: C[:,’ ,;)f(x) = 2¢x20—a(x2_a2)_d
[ T RN (O ) A
k

which is related to the modified Hankel operator S, , defined in (2, p. 30), by

0,0, 0\ [0, 00}
S(n, a, a) - S(n, a, 0) = S ©®

Applying the Hankel inversion theorem (2, p. 29) to the equation
0, k, k
S ( ).f(X) = g(x),

n, & o
we find that
k, 0, O
fw) =5 (,M, - 6) g(w),

and hence an inversion theorem for the generalised operator of the Hankel
transform can be written in the form

~1{0, k, k k 0. 0O

1 s Dy _ >

S (11, a, o'> B S(ﬂ+a, —a, o)' 0
When k = O we see that the above equation becomes

-1 —
Sq, a Sr,+a, —-a’

which agrees with the result given in (2, p. 30).

3. The generalised Erdélyi-Kober operators
We define the operators J;(n, a) and K,(y, «) by the formulae

x

1, 0)f(x) = 2=x-2"-2“k1—“f wt R — D) k(6% - uh)} fu)d,

[4]
®
Kul, D f () = 25527~ j " utmanmae2 3 3em Dk J(u? —x3)] f(u)du,
) ©)

where «>0, 7> —1, and the operators J;(n, «) and K;,(n, «) by the above
equations when J,_, is replaced by I,_;. Similar formulae have been briefly
discussed by Srivastav (3).

We shall make use of some of the basic properties of the operators whose
derivation we shall now indicate.
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If we let k tend to zero we see that these operators are related to the
Erdélyi-K ober operators (2, p. 48) by

30(’7’ d) = In,a’ RO(’]’ a) = Kq,a- (10)
Letting o tend to zero in equations (10) we have the identity operators
SO('I’ 0)=Ir,,0=I: RO(": 0)=Kn,0=I' (11)
From the definitions (8) and (9) it follows immediately that
Sk(’h a)XZﬂf(x) = XZﬂSk(”+ﬁ’ a)f(x),
12
SKuln, )x(x) = xR - B, (). (12
Writing down the expressions for J,(n+«, f) and J,(y, «) we find that

Suln+a, BYJ(n, )f(x) = 2°+ix= 20t et D2 =ass

Jx u(x?—u?)-Vr,_ Lk J(x*—u?)}du

0

J“ prrame2 o y2yta-1y 1{k\/(u2 -y} (y)dy.

0

Interchanging the order of the integrations and evaluating the inner integral
2, p- 31, (2.1.34)) we get

S+, B)IJu(n, Of(x)

2 —2(ntatp) J.x 1+2n7,.2 yat+p—-1
= x y A —y*) f(y)dy
I'(x+B) N

= 30(1’], a+ﬂ)f(x) = Ir],a+ﬁf(x),

so that we have the product rule

Sum+a, B3, @) =1, 445 (13)
In a similar way we can derive the formulae
Sin+a, BBy, ) =1, 445 (14)
and
K, DKM+, B = K, DKu(n+2, B) =K, 445 @15)

The above results indicate the manner in which we should define the operators
3i(n, @) and K,(n, o) for x<0. From equations (11) and (13) we have

3ik(’7+a’ —a)sk(ﬂ’ a) = I’ (16)
which suggests that if « <0 we define g = J,(n, «)f to be the solution of the
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integral equation

Su(n+a, —a)g(x)

— 2-ux-2qkl +o J‘ ul +211+2:z(x2 _ u2)—§(u+1)1_(a+ 1){k\/(x2 —uz)}g(u)du = f(x)

[+]
an
Using the results (1) and (3) it follows that J,(n, «)f is given by the equation

Sun, a)f(x) = 2%x~ 17202 di Jx ul * 2102 — g (ke f(x® —u?)} f(u)du
X Jo
= x7172720g {322, (n, a4+ 1) f(X)} (18)

when —1<a<0 and where we have written 9, = } di x~L
x

Similarly from equations (11) and (15) we see that if we define g = K,(n, ®)f
to be the solution of the integral equation &;,(5+a, —a)g = £, and use the results
(2) and (4), then

Kuln, f(x) = —2x ke L r ul =272 — 2P (ke (u® — %)} fu)du

dx ),

= —x2"719 {x3" MR, (n— 1, a+ D)), (19)

where —1<a<0.
Using a similar method to that employed in (2, p. 51) we can show that
when a <0 general expressions for the operators are

Sk(’?’ oc)f(x) =x" 1-2n- 2a9:|{x2m+ 1+2a+ Znsk(n’ o+ m)f(x)} (20)
and
Si(n, f(x) = (= )" GT{Pm 2Ry —m, a+m)f(0)},  (21)

where —m<a<0 and m is a positive integer.
Now that we have defined the operators for negative a we see that equations
(11), (13), (14) and (15) can be interpreted as yielding the inverse operators

Sl ) = Jun+a, —0), ', @) = Iplr+a, —o), (22)
Kl ) = Kn+a, —a), K (0, ) = Kuln+o, ~a). (23)
Finally it is an easy matter to show that
I x f(x)3u(n, W)g(x)dx = I xg(x)R(n, @) f(x)dx. (29)
° o
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4. Relations between the generalised Hankel and the generalised Erdélyi-Kober

operators
From the definitions (5) and (8) we have that
Suln+a, S (2 o ’;)f(x) A S T

J ul+2n+¢(x2_u2)§(ﬁ—l)lﬁ_l{k\/(XZ_u2)}du
0

r Y72 — k2T g4 (up)f(y)dy.

k

Interchanging the order of the integrations and evaluating the inner integral
using the result (2, p. 31, (2.1.34)), we get

9.9, ")f(x)

n, & O

3&(’7'*'“, ﬁ)S(

o gathy —a=p f ” yrranm 2oyt — k) =4, x5 = kD} f(y)dy

k
0, k, k .
=S (’7’ oc+ﬂ, O'—}.)f(x)’ (45)
where 21 = 2n+a+p.
In this way we have established the relation

0,0, kY _ (0, k Kk
Su(n+a, f)S (’1’ «, 0_) =8 (’1’ ot B, a—){)' (26)
Using the result (2, p. 31, (2.1.31)) we can, by a similar method, show that

R,(1,0)S (0’ 0, ") - s(o’ ko Kk ) 2= 2+ath.  @7)

n+a, B’ g n, a+ﬁ, 0'+},
By a similar process we can also establish the relations
0, 0 kyo(k 0,0 _
S(’H'a, B, 0) S(n, a, a—n—}a) = 31, a+f) (28
and
0,0,0y.(k, 00 B
5 ('1, o, 0) § <t1+a, B, q+a+%ﬂ> = Kuln, a+p). (29)

5. Solution of the dual integral equations
The dual integral equations

J T um W= kPP (xu)du = Fy(x), 0<x<1, k20, (30)
k

r Y (xu)du = G,(x), x>1, [63))
0
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where F,(x) and G,(x) are prescribed functions, have been solved by Burlak (1)
using a generalisation of the method introduced by Sneddon (2, p. 74) and

developed by Copson (2, p. 91) for solving the case u = v, k = 0.

Following Sneddon we use the notation J; = {x: 0 £ x<1}, I, = {x: x>1}

and write any function f(x), x = 0, as

() = f1i(x)+ f5(x)

fx), xel,, )0, xely,
]l(x) { ’ erI fz( ) {f(x) XEIZ

where

If we make the substitutions

Y) = u' o), flx) =2""xTHF(x), g(x) =27"x"G(x),
we see that equations (30) and (31) can be written in the operator form

0,0, k _
S (ﬁ’ ﬂ—2ﬂ9 ﬁ) ¢(x) _'f(x)a
s (0’ . 8) 8() = g(x),

\&

where ¢(x), f>(x) and g,(x) are unknown and the functions

S1(x) =27 7HF (x),  ga(x) = 27°X*G,(x)
are given.

5.1. First method of solution
It follows from the results (26) and (27) that

0, 0, k
Suln—B, B—w)S (ﬁ, u—2p, ﬂ)
0 N 0’ k’ k
= KB, v— ﬂ)S( v, —v, 0) - 5<ﬂ’ —B %ﬂ)

and hence we can write equations (33) and (34) in the form

0, k,
S(ﬁ, B, %B) ¢(x) = h(x).

hy(x) = Julu—B, B—fi(x),  ha(x) = KB, v—Hga(x)

are known functions.
Applying the inversion formula (7) to equation (37) we see that

~1(0, k, k, 0, 0
o) =5 1<B 8, %ﬁ)"() 5<o B ﬂf)"()

where

(32)

(33)

(34

(3%

(36)

(37

(38)

(39

Reverting to the original variables (32) and making use of the formulae (12)
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we find that the solution of the dual integral equations can be written as

Y() = u T g(w) = u'*'S (’g y gﬁ) h(w), (40

which is
Y(u) = Put V(w2 — k¥~ ¥ {jl hy(x)+ J
(1]

1

-]

h 2(x)} x! BT p{x\/(u? = k?)}dx, (41)

where
hy(x) = 2#7 28520783, (3p, B— p)F ,(x), } 42)
hy(x) = 27" "] (B—3v, v— F)Go(x).

We consider four cases.

() Whenv>p>u>—1.
Using the definitions (8) and (9) we see that equations (42) are

hy(x) =27 Fkt*u-b Jx et 2)REmum D (kJ(E=D)YF(Ddt,  (43)

0

hy(x) = 2‘”k‘+ﬂ‘”xzﬂj (R =X 0g _{kJ(P = XxP)}Gy(Ddt, (44)
which together with equation (41) furnish a solution to the dual integral
equations.

(ii) When 1+B>pu>p>v>p—1.
Applying the definitions (18) and (19) we find that equations (42) become

hy(x) = 2-Fx~ 1ke=P di f T a2 — 2)O-BL_ Lk [(x?—2)}F(0)dt, (46)
xJo

hay(x) = —2-Px28=1)R= dir £ — X200tk (82— x?)}G,(1)d1. (4T)

x

The solution to the dual integral equations, given by equations (41), (46)
and (47), is in complete agreement with that obtained by Burlak.

(i) Whenv = u, p—1<u<§.
In this case y(u) is given by equation (41) with v = u, hy(x) by equation
(43) and A,(x) by equation (47) with v = p.

(v) Whenv =y, B<u<pB+1.
Here y/(u) is given by equation (41) with v = p, hy(x) by equation (46)
and A,(x) is given by equation (44) with v = p.
E.M.S.—K
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It is perhaps of interest to note that if, in the solutions (iii) and (iv), we write
B = u—oa and let k tend to zero, we obtain solutions to the equations

fw u” 22y (u)J ,(xu)du = Fy(x), 0<x<1,

4]
- /]
f Y(u)J (xu)du = Gp(x), x>1,
o
valid for —1<a<0 and O<a< 1 respectively, which are in agreement with

those given in (2, pp. 86-87).

5.2 Second method of solution (Burlak’s method)
We regard the function

k, 0, 0
$w) =S (0 p H,) () 48)
as a trial solution of equations (33) and (34) where A(x) is a function as yet

undetermined.

Substituting this expression for ¢(u) in equations (33) and (34) and using the
formulae (28) and (29) we get

f)=5 (‘,} f;_ 25, ’; s (’g ‘,;j 2,,) h=S0, p-Ph(x), (49

9() = (‘j > 8) s (’g ; ;’ﬁ) h = Ku(v, B—h(). (50)

Making use of the inverse operators (22) and (23) we obtain the following
expressions for the functions 4,(x) and A,(x)

hy(x) = 3¢ 10, p— P)fs(x) = Julu—B, B—wfi(x), (51

hy(x) = 827 (v, B—)g2(x) = KB, v—B)g (). (52)

The expression for ¢(u) is then given by equations (48), (51) and (52) and
this is identical with the solution found by the first method.

5.3. Functions derived from the solutions of the integral equations

In many mixed boundary value problems the quantities of interest are not
only the solution y/(«) of equations (30) and (31) but also the functions F,(x)
and G,(x) defined by these equations for the ranges x>1 and 0 £ x<1,
respectively. We now indicate a method of determining these functions in
terms of the known functions F;(x) and G,(x).
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In terms of the original variables (32) we see from equations (49) and (50)
that

F(x) = 2% 7#x#=283,(0, pu— B)h(x), (53)

G(x) = 2°x7"Ru(v, B~ v)h(x), (54)

where the functions 4,(x) and h,(x) are given by equations (42).
We shall distinguish two cases.

() When 14B8>v>p>u>p-1.

In this case equations (42) become equations (43) and (44) and can be
written in the form
hy(x) =278k Y BFY(X)H(1 —x), hy(x) = 27 8x2PK1*8~vGY(x)H(x—-1), (55)
where H(x) is the Heaviside unit function and

F¥(x) = r 1Ha(x2 — 2pC-e=Dp, (k2= D)}F,(1)dt, (56)

0

G3(x) = F (2= xEOTE Vg k(2= xD)}Gy(0dt. &1))

x

From equation (53) we have

Fx) = kx~*! di { f " FHu)H(1—u)+ k2P~ r PG (u)H(u— 1)}
X

0 o
u(x2 —u?)e-By _ Lk /(x* —u?)}du,
and hence

1 d

Fy(x) = kx™#"1 — {Il Fi(u)+ kv Jx uz”G‘;(u)}
dx

V] 1
u(x> —u?) =g lk [(x2-u?)}du.  (58)
In a similar way from equation (54) we obtain

1 ]
Gi(x) = —kx*~1! ;;{k"*“'”'[‘ u~2F¥u) + J. G;‘(u)}
x 1

u(u? ~x* -1, Lk J(w?—xP)}du.  (59)

Equations (58) and (59) determine the functions F,(x) and G,(x) in terms of
the known functions F3(x) and G}(x) which are given by equations (56) and
(57) respectively.
(ii) When 1+B>u>p>v>p—1.

The functions A,(x) and h,(x) are given by equations (46) and (47) which
we write in the form

hy(x) = 27 8x~ k"~ PFT*(x)H(1 — x),

hy(x) = —27Px2~1P-VGE¥(x)H(x ~ 1), (60)
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where

F}*(x) = :—x J . (2 — 2R Emnp,_ {k(x* = )}F (Ddt, (61)

(o]

G3¥*(x) = d% fw (R = xR0k (12~ xP)}G,(n)dt. (62)

x

From equations (53) and (54) it is easily shown that in this case we get
Fy(x) = kx { j | P () — k2 f ) uzﬂG;*(u)}
0 1
(x2—u?)ret-Dg, o {kJ(x*—u?)}du, (63)
Gi(x) = kx” {k”"'zﬁ Il u”?Fi¥*uw) - Jw G;*(u)}
1

x

@ —=x)FE =V (k@ —xD}du.  (64)
The results (63) and (64) are exactly the same as those given by Burlak.
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