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At all scales, porous materials stir interstitial fluids as they are advected, leading to
complex (and chaotic) distributions of matter and energy. Of particular interest is whether
porous media naturally induce chaotic advection in Darcy flows at the macroscale, as
these stirring kinematics profoundly impact basic processes such as solute transport
and mixing, colloid transport and deposition and chemical, geochemical and biological
reactivity. While the prevalence of pore-scale chaotic advection has been established, and
many studies report complex transport phenomena characteristic of chaotic advection in
heterogeneous Darcy flow, it has also been shown that chaotic dynamics are prohibited in
a large class of Darcy flows. In this study we rigorously establish that chaotic advection is
inherent to steady three-dimensional (3-D) Darcy flow with anisotropic and heterogeneous
hydraulic conductivity fields. These conductivity fields generate non-trivial braiding of
streamlines, leading to both chaotic advection and (purely advective) transverse macro-
dispersion. We establish that steady 3-D Darcy flow has the same topology as unsteady 2-D
flow and use braid theory to establish a quantitative link between transverse dispersivity
and Lyapunov exponent in heterogeneous Darcy flow. Our main results show that chaotic
advection and transverse dispersion occur in both anisotropic weakly heterogeneous and
in heterogeneous weakly anisotropic conductivity fields, and that the quantitative link
between these phenomena persists across a broad range of conductivity fields. As the
ubiquity of macroscopic chaotic advection has profound implications for the myriad
processes hosted in porous media, these results call for re-evaluation of transport and
reaction methods in these systems.
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1. Introduction

Porous media abound in both nature and engineered systems. From biological tissues
to geological media and engineered materials, these media encompass a vast range of
applications (Bear 1972; Cushman 2013). Porous materials play host to a range of fluid-
borne phenomena, including mixing (Villermaux 2012; Dentz, Hidalgo & Lester 2023),
dispersion (Saffman 1959; Bear 1972; Gelhar & Axness 1983; Dagan 1989), transport
(Brenner & Edwards 1993) and reaction (Anna et al. 2013; Rolle & Le Borgne 2019;
Valocchi, Bolster & Werth 2019) of colloids, chemical and biological species (Alonso-
Matilla, Chakrabarti & Saintillan 2019; Dentz et al. 2022). These phenomena are governed
by the Lagrangian kinematics of the interstitial fluid, which provide an advective template
that organises the spatial structures upon which they play out. At all scales, porous
materials act to stir fluids as they are advected through (Villermaux 2012; Dentz et al.
2023), leading to highly striated material distributions which can have profound impacts
upon these fluid-borne phenomena.

For example, solute mixing and transport can be either significantly accelerated or
retarded by the Lagrangian kinematics of the flow, leading to the existence of e.g. isolated
fast or slow mixing regions and transport ‘barriers’ or ‘highways’ (Haller 2015; Wu et al.
2024). Similarly, the effective kinetics of reactive solutes are governed by transport and
mixing, including the formation of reaction ‘hot spots’ due to localised fluid deformation
(Rolle & Le Borgne 2019; Valocchi et al. 2019). It is impossible to understand, quantify
and predict these processes without resolving their underlying Lagrangian kinematics
(Metcalfe, Lester & Trefry 2023).

One important class of such kinematics is chaotic advection (Arnol’d 1965; Aref 1984)
where fluid stirring motions (stretching and folding) yield highly striated distributions of
matter and energy that can fundamentally alter these fluid-borne phenomena (Aref et al.
2017). For example, solute mixing is singular under chaotic advection (Fereday & Haynes
2004; Cerbelli et al. 2017) in that scalar dissipation persists in the limit of vanishingly
small molecular diffusivity. Similarly, chaotic advection qualitatively augments both
longitudinal (Jones & Young 1994) and transverse dispersion (Lester, Metcalfe & Trefry
2014). Colloidal transport is also strongly augmented by chaotic advection, leading to
formation of particle traps, repellers and deposition hot spots on fluid boundaries (Haller &
Sapsis 2008; Ouellette, O’Malley & Gollub 2008). Chaotic advection also fundamentally
alters chemical reactions (Tél et al. 2005; Neufeld & Hernandez-Garcia 2009) and
biological activity (Kdarolyi et al. 2000; Tél et al. 2000), leading to, e.g. singularly
enhanced kinetics, coexistence of competitive species and altered stability characteristics.
Hence, detection and quantification of chaotic advection in porous media flows is key
to understanding, prediction and upscaling the myriad fluidic processes hosted in porous
media.

Chaotic advection is inherent to steady three-dimensional (3-D) pore-scale flow. It is
now firmly established (Lester, Metcalfe & Trefry 2013, 2016a; Kree & Villermaux 2017;
Turuban et al. 2018, 2019; Souzy et al. 2020; Heyman, Lester & Le Borgne 2021) that
pore-scale chaotic advection arises in almost all porous media, ranging from granular
matter to open pore networks. At the Darcy scale, chaotic advection has been predicted
or observed in both natural (Trefry er al. 2019; Wu et al. 2020; Metcalfe et al. 2023; Wu
et al. 2024) and engineered (Metcalfe er al. 2010; Mays & Neupauer 2012; Cho et al. 2019)
transient Darcy flows. However, chaotic advection has not been explicitly detected under
steady 3-D Darcy flow, despite consistent observations of complex Lagrangian kinematics
(Chiogna et al. 2014; Ye et al. 2015). Conversely, several recent studies (Lester ef al. 2021,
2022) have firmly established that chaotic dynamics cannot occur under steady 3-D Darcy
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flow with smooth (C'-continuous) isotropic hydraulic conductivity fields. As such, the
prevalence and nature of chaotic advection in steady heterogeneous Darcy flow is not
understood.

In general, chaotic dynamics are to be expected in heterogeneous steady 3-D Darcy flows
driven by a constant pressure gradient as these flows share many similarities with steady
3-D duct flows (Speetjens, Metcalfe & Rudman 2021) in that both flow classes comprise a
mean axial flow combined with spatially varying transverse flows that can generate chaotic
mixing. In the case of duct flows transverse flows are generated by the introduction of
static or moving boundary and internal elements, whereas for steady Darcy flow, these
transverse flows are generated by heterogeneities in the hydraulic conductivity field. These
transverse flows have been shown to generate chaotic advection in a broad set of steady 3-D
duct flows (Speetjens et al. 2021) ranging from industrial mixing flows (Hobbs & Muzzio
1997; Metcalfe et al. 2006; Speetjens, Metcalfe & Rudman 2006) to micro-fluidic devices
(Stroock et al. 2002; Stone, Stroock & Ajdari 2004; Squires & Quake 2005) and fusion
reactors (Boozer 2005) and biological flows (Vétel et al. 2009). The parallels between
these flow classes indicate that chaotic dynamics should be expected in heterogeneous
Darcy flow, however, the finding (Lester et al. 2022) that chaotic dynamics cannot occur
in some steady 3-D Darcy flows means further investigation is required.

In this study we rigorously establish that chaotic advection is inherent to all steady
Darcy flows that are generated by anisotropic and heterogeneous conductivity fields. This
is important as many porous media are inherently heterogeneous and anisotropic at the
Darcy scale (Bear 1972; Cushman 2013), and solute transport at this scale is typically
advection dominated (Bear 1972; Zech et al. 2019), hence chaotic advection profoundly
impacts solute transport, mixing and reactions. We consider the simplest non-trivial
case of steady 3-D Darcy flow arising from a mean potential gradient in an unbounded
porous medium with a smooth, finite hydraulic conductivity field. Although this precludes
systems with stagnation points, non-smooth conductivity fields or impermeable inclusions,
our focus here is to understand basic Darcy flow. To this end, from a conceptual
perspective throughout we consider Darcy flow arising from a random (and thus aperiodic)
heterogeneous hydraulic conductivity field, but due to computational limitations we
perform illustrative calculations on a spatially periodic conductivity field and discuss the
implications of such periodicity when interpreting the results of these computations. We
establish that chaotic advection arises in the simplest physically plausible heterogeneous
conductivity structures, even for weakly heterogeneous porous materials. Conversely,
strongly heterogeneous porous media exhibit a Lyapunov exponent close to the theoretical
upper bound for steady 3-D flow. We elucidate the underlying mechanisms and establish a
quantitative link between the strength of chaotic mixing and (purely advective) transverse
dispersion. Application of this link to experimental dispersion data also indicates chaotic
mixing is significant and ubiquitous in heterogeneous Darcy flow.

This work is organised as follows. In §2 we show that all realistic models of
heterogeneous media must have anisotropic hydraulic conductivity fields. The braiding
of streamlines in Darcy flow and the connection with chaotic advection are then
considered in §3, including development of a quantitative link between transverse
dispersion and Lyapunov exponent in random braiding flows. The mechanisms that
generate chaotic advection in both periodic and random Darcy flows are considered in
§ 4. Numerical simulations are performed in § 5, including anisotropic Darcy flow with
variable heterogeneity and heterogeneous Darcy flow with varying anisotropy. In §6
the implications of chaotic advection upon solute mixing, dispersion and reactions are
discussed. Conclusions are given in § 7.
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2. Kinematics of porous media flows
2.1. Background

We first consider the kinematics of steady 3-D pore-scale flow before upscaling to Darcy
flow. Steady 3-D pore-scale flow is described by the Stokes equations

uvix) —Vp, V.9=0, xey, 2.1)

subject to no-slip conditions f)lagﬁ, =0 at the pore boundary 02s. Here, u is the fluid
viscosity, ¥ is the pore-scale velocity, p the pore-scale pressure field, £2 7, £2; respectively
are the fluid (pore) and solid (grain) domains. For steady 3-D flow, the topological
complexity of the boundary 02 generates pore-scale chaotic advection (Lester et al.
2013). Upscaling by suitable averaging of (2.1) (denoted by (-) ,) yields the Darcy equation
Bear 1972)

vx)=—K(x):-Vop((x), V.v=0, xe82, 2.2)

where 2= (27U £2), denotes the Darcy-scale porous medium, v = (v), is the
(upscaled) Darcy-scale velocity, ¢ = (p),, the upscaled potential field and K (x) is the
hydraulic conductivity tensor field that captures viscous drag due to no-slip conditions
on 082f. As this pore boundary generates chaotic advection, omission of 32 in (2.2)
via upscaling also omits these pore-scale kinematics. Hence, homogeneous Darcy flow
(i.e. K(x)=const.) is non-chaotic at the Darcy scale while the pore-scale flow is in
general chaotic. At the Darcy scale, the effects of pore-scale chaotic advection must
be incorporated via coarse-grained models of e.g. solute mixing (Lester et al. 2016D),
dispersion (Puyguiraud, Gouze & Dentz 2021) and reaction (Aquino et al. 2023). As
shall be shown, transverse solute dispersion is especially relevant to understanding chaotic
advection in Darcy flow. For solute dispersion, this pore-scale chaotic advection generates
mechanical dispersion under pure advection, whereas for diffusive solutes, the interplay
of molecular diffusion with pore-scale velocity fluctuations generates hydrodynamic
dispersion, which is a function of the pore-scale Péclet number, Pe,, (Bear 1972; Bijeljic &
Blunt 2006, 2007; Liu et al. 2024), that compares the advection and diffusion time scales
over a characteristic pore length. Hydrodynamic dispersion due to pore-scale velocity
fluctuations is also referred to as local-scale dispersion. For many applications the pore-
scale transverse dispersion coefficient Dt , is assumed to scale with the mean velocity as

Dr,p = Dm +ar pllv|l", (2.3)

where D, is molecular diffusivity, ar, , is the pore-scale transverse dispersivity and the
empirical index n € [1, 2] is often taken as unity.

In this study we focus solely on heterogeneous conductivity fields as the majority of
porous materials are heterogeneous at the Darcy scale (Bear 1972; Cushman 2013). At
scales significantly larger than the largest correlation length scale ¢ of the conductivity
field K(x), the impact of Darcy-scale velocity fluctuations on solute spreading are
captured via the macro-dispersion concept (Gelhar & Axness 1983; Dagan 1987).

On the continuum scale, solute transport is typically advection dominated, that is,
advection dominates over local-scale dispersion on the correlation scale of hydraulic
conductivity. This is measured by the Darcy-scale Péclet number, Pe, which compares the
advection and dispersion times over correlation scale £. As shall be shown, the scaling of
the transverse macro-dispersion coefficient D7, with the pore-scale transverse dispersion
coefficient Dt , provides important insights regarding the prevalence of chaotic advection
in heterogeneous Darcy flow.
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For most porous materials the hydraulic conductivity tensor K (x) is anisotropic due
to anisotropy of the underlying pore-scale structure, which occurs in, e.g. stratified
formations in geological media and structured engineered media (Bear 1972). Under
conventional upscaling approaches the conductivity tensor K (x) (a second rank tensor)
is symmetric and positive definite (Bear 1972), with six independent components in
3-D space which vary spatially in heterogeneous formations but are all assumed to be
smooth, continuous and finite. In the absence of boundaries and fluid sources and sinks,
the positive—definite nature of K (x) renders Darcy-scale flow stagnation free, i.e. v(x) #
0Vx € £2 (Bear 1972). As K (x) is symmetric, it may be locally diagonalised into principal
directions with three independent components as K'(x) = R(x) - K(x) - R~ !(x), where
R(x) is a rotation tensor field and

K (x) 0 0
K= o k,&x o | 2.4)
0 0 K@)

Even if R(x) is spatially invariant, this conductivity field is fundamentally anisotropic if
one of the diagonal components K/;(x) differs from the others.

Conversely, many studies (Gelhar & Axness 1983; Neuman & Zhang 1990; Chaudhuri &
Sekhar 2005; Delgado 2007; Jankovi€ et al. 2009; Beaudoin & de Dreuzy 2013; Boon et al.
2016; Dartois, Beaudoin & Huberson 2018) consider the hydraulic conductivity tensor to
be isotropic as K (x) = k(x)I, where k(x) = Kl./l.(x) fori =1:3, and (2.2) simplifies to

v(x)=—k(x)V¢, V.v=0, xef. (2.5)

The kinematics of isotropic Darcy flow markedly differ from that of anisotropic Darcy
flow. If k(x) is smooth and v does not admit stagnation points, then isotropic Darcy
flow only admits simple kinematics because the helicity density H(x)=v . (V x v) is
identically zero

H(x) =kVe - (V$ x Vk) =0, (2.6)

regardless of the heterogeneity of k(x). For inviscid flows, the total helicity H =
[ H(x) dx over the flow domain §2 is a topological invariant that characterises the
topological complexity (knottedness) of vortex lines of the flow (Woltjer 1958; Moreau
1961; Moffatt 1969), but in general the zero helicity density condition H (x) = O precludes
chaotic dynamics in steady 3-D flows (Arnol’d 1965; Moffatt & Tsinober 1992). Hence
steady 3-D isotropic Darcy flows are non-chaotic and integrable and so admit two
invariants 11, ¥ that act as streamfunctions (Yoshida 2009; Lester et al. 2022), leading
to the Euler velocity representation

v(x) = Vi (x) x Vi (x). 2.7)

Streamlines of steady isotropic Darcy flow are confined to the intersections of streamsur-
faces given by level sets of ¥r1(x), ¥2(x). Such confinement prohibits transverse macro-
dispersion (henceforth simply termed transverse dispersion) of the streamlines of v in the
absence of local-scale dispersion, regardless of medium heterogeneity (Lester et al. 2023).

2.2. Implications for hydraulic conductivity modelling

These kinematic constraints are illustrated in figure 1(c), which shows typical streamlines
for isotropic Darcy flow generated by a strongly heterogeneous (al%1 x =4) hydraulic
conductivity field. Although the streamlines are highly tortuous due to heterogeneity of
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Figure 1. (a) Isosurfaces of the typical normalised heterogeneous log-conductivity field f(x) =1n K (x)/ alfl K
used to model isotropic k(x) I and anisotropic K (x) conductivity tensors and (b) associated potential field ¢ (x)
for anisotropic Darcy flow driven by a uniform mean potential gradient. Note coloured surfaces are isopotential
surfaces ¢ =const. Associated streamlines for heterogeneous Darcy flow with (c) isotropic conductivity field
(6 =01n (5.1)) and (d) anisotropic conductivity field (6 =1 in (5.1)) with log-conductivity variance ‘7131 k=4
and parameters N =4, N; =2in (5.2).

the medium, they do not exhibit asymptotic transverse dispersion. In § 5.1 the transverse
dispersivity of this flow is numerically computed to be effectively zero.

These kinematic constraints persist even if the scalar field k(x) is statistically
anisotropic (i.e. has different correlation structures in different principal directions), as
the corresponding Darcy flow is still locally isotropic and H(x) = 0. We remark on the
application of these results to the so-called ‘helicity paradox’ (Cirpka et al. 2015) that
occurs when a statistically anisotropic but locally isotropic conductivity field is upscaled
from the Darcy scale to the block field scale, resulting in an anisotropic block-scale
conductivity field (Bear 1972). This spuriously adds degrees of freedom to the Lagrangian
kinematics and permits block-scale chaotic advection where none should exist based on the
fully resolved Darcy-scale flow. While beyond the scope of this paper, our results highlight
the need for upscaling methods that obey the appropriate kinematic constraints.

These results provide insights into the connection between transverse macro-dispersion
in steady Darcy flow and anisotropy of the hydraulic conductivity tensor K(x).
Unfortunately, the prevalence (or otherwise) of transverse macro-dispersion in field studies
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is an open question. While recent analyses (Zech et al. 2019) of field experiments
of solute transport (Sudicky, Cherry & Frind 1983; Rajaram & Gelhar 1991; Hess,
Wolf & Celia 1992) over a range of geological media clearly establish that longitudinal
macro-dispersivity is significantly greater than pore-scale dispersivity, indicating the
presence of large-scale conductivity heterogeneities at the Darcy scale, similar data are
inconclusive with respect to transverse dispersivity. Hence, the prevalence of transverse
macro-dispersion in groundwater flows in heterogeneous aquifers is currently unknown.

Although several numerical studies (Jankovi¢ et al. 2009; Beaudoin & de Dreuzy
2013; Dartois et al. 2018) have found that isotropic Darcy flow can generate purely
advective transverse dispersion, these observations arise in systems with either non-
smooth conductivity fields or impermeable inclusions, or from numerical schemes
that violate the kinematic constraints associated with (2.7). Similar to how integration
schemes that are not symplectic violate Hamiltonian constraints (i.e. invariance of the
Hamiltonian), numerical schemes that are not explicitly designed to do so also violate the
constraints associated with (2.7). Lester et al. (2023) show that numerical schemes that
implicitly enforce these constraints yield zero transverse dispersivity.

Conversely, anisotropic conductivity fields K (x) generate non-zero helicity density

Hx)=(K-Vp)-(Vx K- -Vgp)#£0, (2.8)

and non-zero total helicity H # 0. Hence, the streamlines of anisotropic Darcy flow are
no longer constrained to the streamsurfaces of i1 (x), ¥2(x), but rather freely wander
through the medium (Lester et al. 2023), giving rise to persistent transverse dispersion.
This behaviour is shown in figure 1(d), where the streamlines associated with strongly
heterogeneous (ali x =4) anisotropic Darcy flow spread transversely throughout the flow
domain as they are advected longitudinally. In § 5.1 the transverse dispersion coefficient
Dr of this flow is quantitatively shown to be non-zero.

Note that non-zero helicity density H(x) % 0 alone is not sufficient to ensure non-zero
transverse dispersivity. Yoshida (2009) shows that only 3-D velocity fields given by the
complete Clebsch parameterisation

N=2
vX) =Y a(X)VBi(x) + Vo(x), (2.9)
i=1
where «; (x), Bi (x), ¢(x) are smooth continuous scalar fields, have non-zero total helicity
H and so admit chaotic advection. Conversely, the classical Clebsch parameterisation

v(x) =01 (x)VBi1(x)+ Vop(x) xef2, (2.10)

has been found to be incomplete (Yoshida 2009), meaning that some 3-D vector fields
cannot be represented by (2.10). Yoshida & Morrison (2017) classify flows conforming to
(2.10) as epi-2-D flows which are topologically two-dimensional with non-zero helicity
density H(x) =V - (Vay x VB1) #0 but are helicity free, with H = 0. Conversely,
realistic heterogeneous conductivity models yield 3-D velocity fields of the form (2.9)
that admit chaotic advection and transverse dispersion.

To summarise, if transverse macro-dispersion is non-zero in heterogeneous aquifers
in the advection-dominated limit, that is, in the absence of local-scale dispersion, then
hydraulic conductivity models of heterogeneous porous media must be anisotropic to
be consistent. Although the prevalence of transverse macro-dispersion in field studies
is inconclusive, we note that many aquifers have an anisotropic geological structure and
many groundwater models utilise anisotropic hydraulic conductivity fields to predict solute
transport in groundwater applications. As non-zero transverse macro-dispersion requires
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(@) (b)

Initial ® ©
n=2 n=3

Figure 2. (a) Braid diagram depicting stretching of material elements (red) around fluid particle streamlines
(black) numbered n =1 to n =3 from left to right in a 3-dof flow. For a steady 3-D flow braiding evolves
in the longitudinal x; coordinate, and for an unsteady 2-D flow braiding evolves with respect to time . The
pathline crossing events are characterised by the respective braid generators o and o, ! which act to stretch
the material element due to the topology of the braiding motions. (b) Stretching of material elements (brown)
due to braiding motions (adapted from Thiffeault 2022) of streamlines (red circles) corresponding to the braid
diagram in (@) that evolves with the longitudinal direction x; or time ¢.

H #0, this raises the potential for chaotic advection, which is inevitable in nonlinear
continuous systems with arbitrary coefficients and three degrees of freedom (dof = 3)
(Speetjens et al. 2021). In the following section we firmly establish that transverse
macro-dispersion and chaotic advection are intimately linked in Darcy flow.

3. Streamline braiding and chaos
3.1. Background

The link between dispersion and chaotic mixing can be explored via consideration of
streamline braiding. As 1-D streamlines are invariants of steady 3-D flow, braiding of
streamlines stirs fluid elements in a complex manner, as illustrated in figure 2. This
concept has been used to quantify stirring in another 3-dof system — unsteady 2-D flow —
where non-trivial braiding of 1-D pathlines can also stretch and fold the fluid continuum.
For unsteady 2-D flow, braid group theory (Handel & Thurston 1985; Boyland, Aref &
Stremler 2000; Moussafir 2006) has been developed to quantify the topological entropy
hpraiq of the pathline braiding motions, closely related to the Lyapunov exponent Ao
(Thiffeault 2005). In § 3.2 we show that steady 3-D Darcy flow is topologically equivalent
to 2-D unsteady flow, hence this mathematical framework applies to these flows.

The topological equivalence between stagnation-free steady 3-D flow and unsteady 2-D
flow has been established since the earliest studies of chaotic advection (Aref 1984; Bajer
1994), with particular focus on steady 3-D duct flows (Lester et al. 2018b; Speetjens et al.
2021). Steady heterogeneous 3-D Darcy flow driven by a unidirectional mean pressure
gradient shares many similarities with stagnation-free steady 3-D duct flows in that both
flows are topologically equivalent to unsteady 2-D flow and chaotic advection arises due
to transverse perturbations away from a fully integrable state. However, a fundamental
difference between these flows is that heterogeneous Darcy flow is typically random and
aperiodic, meaning the tools and techniques of Hamiltonian chaos for temporally periodic
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Figure 3. (a) Propagation of 1-D streamlines (black) in a steady unidirectional 3-D flow with mean flow in the
longitudinal (x1) direction. (b) Schematic of braiding of streamlines (black circles) labelled n — 1, n, n 4+ 1 in
the transverse xo — x3 plane via clockwise (black) o;,, anti-clockwise (blue) o, 1 praid generators.

2-D systems (Poincaré sections, analysis of periodic points, resolution of hyperbolic
manifolds and Kolmogorov—Arnold—Moser islands) (Ottino 1989) do not apply to
these flows. While tools such as Lagrangian coherent structures (LCS) (Haller 2015)
are well suited to uncover the advection structure of aperiodic flows, in this study we
focus on braid group theory (or topological fluid mechanics) (Boyland et al. 2000) as this
approach, as shall be shown, provides a vital quantitative link between chaotic advection
and transverse dispersion that is central to this study.

Braid group theory is used to quantify stirring in unsteady 2-D flows (Boyland
et al. 2000) via a well-developed mathematical framework (Artin 1947; Moussafir
2006; Thiffeault 2022) that efficiently encodes fluid stirring via a symbolic braiding
representation of the topology of pathlines in space—time. This encoding can be used to
compute the topological complexity of their braiding motions, and the Neilson—Thurston
classification theorem (Handel & Thurston 1985) characterises braids as periodic,
reducible or pseudo-Anosov types, the latter of which is interpreted as an indicator of
chaotic dynamics (Boyland et al. 2000). Due to topological equivalence, this framework
can also be applied to streamline braiding in steady 3-D Darcy flow.

For steady unidirectional 3-D flow, streamline braiding is encoded via a sequence of
braid generators o' (Artin 1947). Figure 3(a) shows propagation in the x; direction of
a set of streamlines of a steady unidirectional 3-D flow that undergo random ‘crossing’
motions with respect to the transverse x3 coordinate. As shown in figure 3(b), these
crossing motions can be characterised in terms of the braid generators o, and o{l, which
respectively characterise clockwise and counter-clockwise crossing of streamlines n and
n + 1 in the transverse (xz, x3) plane. Note streamlines are labelled (..., n —1,n,n+
1,...) with respect to their relative position in the x» coordinate, so these labels are
updated after each crossing event. An ordered sequence of braid generators forms the braid
word b = a,;flcr,;tl ..., which is determined by the sequence of streamline crossings in the
x1 direction. Hence, b completely characterises the topological braiding motions of the
streamlines. As shown in figure 2(b), these braiding motions act to stretch and fold fluid
elements (brown), leading to exponential stretching if they are of pseudo-Anosov type.

The rate of stretching generated by a braid word b is given by its topological braid

entropy hpqaiq- In general, the topological entropy hof a dynamical system measures the
rate of loss of information of the system about its initial conditions. For fluid flows h is
closely related to the largest infinite-time Lyapunov exponent Ao and forms an upper
bound for As (Thiffeault 2010). In practice, the topological entropy of a flow can be
interpreted as the asymptotic exponential growth rate of the length /(¢) of a material line
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(Newhouse & Pignataro 1993) as

fi= tim 2 8O (3.1)
t—oo t 1(0)
For ergodic flows such as purely hyperbolic steady 3-D flow (which has a single positive
Lyapunov exponent and does not admit non-hyperbolic features such as elliptic or
parabolic LCS (Haller 2015), the upper bound given by the topological entropy is exact
(Yomdin 1987; Newhouse 1988; Newhouse & Pignataro 1993; Matsuoka & Hiraide 2015;
Catalan 2019), i.e.

h=eo. (3.2)

Conversely, many studies dating over half a century (Cocke 1969; Girimaji & Pope 1990;
Hinch 1999; Kalda 2000; Duplat, Innocenti & Villermaux 2010; Villermaux 2019) propose
that as fluid elements undergo stretching, the relative length p = §/(¢)/8§1(0) of infinites-
imal line elements is distributed log normally with log mean Aoot and log variance &}t.
In § 5.2 and Appendix C we confirm that an ab initio derivation of fluid stretching in steady
3-D flows yields the same result if the velocity distribution does not yield anomalous
transport. For this scenario a reasonable conclusion (Hinch 1999; Duplat et al. 2010;

Villermaux 2019) is that the growth rate of a material line of length /() = fé O 5 (X, )dX
(where X is the Lagrangian coordinate along the line) is given by the ensemble average of
p, which, via (3.1), yields

.. o2

h=Ac + 5 3.3)
as the variance of In p contributes to the growth of /nl(t). However, the discrepancy
between (3.3) and (3.2) has recently been explained by Lester & Dentz (2025), who show
that in the asymptotic limit, temporal sampling of the finite-time Lyapunov exponent
;l(X ,t) (which converges to ;loo as 0,/+/t) dominates over the ensemble average
represented by (3.3), yielding (3.2). In §4 we show that heterogeneous Darcy flow with
random stationary conductivity K (x) is ergodic and purely hyperbolic.

The dimensionless topological entropy & = he /{v1) (with velocity correlation length ¢)
may be approximated by considering the topological braid entropy %p,4iq of the braid word
b comprising a set of Nj braiding motions of N, streamlines of the flow (Thiffeault
2010). The braid entropy hpiq characterises the asymptotic growth of the number of
distinguishable orbits of the braid (Thiffeault 2022). For steady 3-D flow this may be
interpreted as the number of distinct linkages that a material line makes if it is fully
contracted until it forms a loop £ g that tightly contacts these streamlines, where the metric
|€g| measures the number of linkages of the loop ¢f. For example, the evolving brown
material element shown in figure 2(b) can be approximated as a number of straight linkages
that either connect to or touch the red stirring rods. Under the initial configuration, the
element can be approximated as one linkage (|£g| = 1) connecting the n =2 and n =3
rods, but after the braid generator o1, there are two linkages (|¢g|=2) connecting the
n=1ton=2ton=3rods, and finally after oy0, I there are three linkages (|| = 3)
connecting rods n=1ton=2,n=2ton=3 and then n =3 to n =2. The topological
entropy hppqig of a braid word b is then

1. |bFeg

Rbraig = lim —1 ,
braid kinolok 0og |ZE|

3.4)
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where b*¢r indicates the braid b has operated k times on the loop £z. Although
non-trivial, various methods (Moussafir 2006; Hall & Yurttag 2009; Thiffeault 2022) are
available to rigorously compute /g from a given braid word b. As the braid entropy
hpraiq only considers the complexity of streamline braiding, it forms a lower bound for #,
however, for many systems it converges to 4 with increasing number of streamlines N,
and braiding motions N, as

hbraid ~ A

lim lim = h=Ax. 3.5)

Np—o0o Np—oo t

Hence, for heterogeneous Darcy flow both the topological entropy /4 and dimensionless
Lyapunov exponent Ay, = ool /{v1) may be accurately estimated from the braid entropy
hpraia of a sufficiently resolved set of streamlines (large N,) recorded over a sufficient
observation time (large Np).

3.2. Topology of steady heterogeneous 3-D Darcy flow

The topology of steady 3-D flows v(x) = [v1(x), v2(x), v3(x)] with one unidirectional
(axial) velocity component (e.g. v1(x) > 0) can be equated (Bajer 1994) to that of unsteady
2-D flow via the rescaling v'(x) = v(x)/vi(x), t = x1, such that the x| coordinate acts as
an analogue for time ¢, hence the advection equation transforms as

]T

d T
—[x1, x2, x3] =[v1, v2, V3

v, x2, x3) v3(t, x2, x3) "
dr '

d T

7 ar bl = [vl(t’, x2, x3)" v1(t', x2, x3)

(3.6)
This transformation brings several advantages with respect to analysis of the advective
mixing properties of the flow, as axially periodic 3-D flows such as duct flows (Speetjens
et al. 2021) can be couched as temporally periodic 2-D flows, hence the tools and
techniques of Hamiltonian chaos (Aref 1984; Ottino 1989) can be used to study mixing
in these systems. Although the analogous 2-D flow in (3.6) is no longer divergence free,
the dynamics of this flow is still Hamiltonian in the stroboscopic frame (Bajer 1994). For
aperiodic 3-D duct flows, conversion to aperiodic transient 2-D flows via (3.6) facilitates
the use of tools such as LCS (Haller 2015) to uncover the mixing dynamics of these
flows. Indeed, this transformation has been used to study a wide class of both periodic
and aperiodic steady 3-D duct flows (Speetjens et al. 2006).

For strongly heterogeneous 3-D Darcy flows the transformation (3.6) breaks down
when vi(x) is zero (Bajer 1994) due to flow reversal in the vicinity of low
permeability structures. However, these flows are still fundamentally unidirectional as the
potential field ¢ (x) is strictly monotonic decreasing along streamlines V¢ (x) - v(x) =
—Vop(x)xK(x)-Vp(x) <0 due to the positive definite nature of K(x) (Bear 1972).
This leads to the intrinsic coordinate basis & = (x1, x2, ¢), where xi, x» are arbitrary
coordinates which are both orthogonal to ¢, and the intrinsic velocity representation
ve(8) =[vy, (), vy, (§), vs(§)] with vy (§) > 0. Thus, the intrinsic velocity field vg (&)
may be rescaled as

le(E) sz(g)
vp(§) " v (§)
This velocity field is topologically equivalent to that of unsteady 2-D flow, and the
isopotential surfaces of steady 3-D Darcy flow (figure 1b) are analogous to isochrones
of unsteady 2-D flow. This means that steady 3-D Darcy flow always has an embedded
Hamiltonian structure (and associated Lagrangian kinematics) as explained in §4.3 of
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(a) PR (b)

X1

Figure 4. (a) Schematic of streamline (or pathline) braiding in a unidirectional steady 3-D flow (or unsteady
2-D flow). The set of four thick coloured streamlines (or pathlines) braid with each other as they evolve with
the mean flow direction x3 (or time ¢). This topological braiding motion stirs the fluid continuum (grey planes)
and the length of the black rectangular material boundary grows exponentially with the number of braiding
motions. Adapted from Thiffeault & Finn (2006). This schematic also depicts streamline braiding in steady 3-
D anisotropic Darcy flow with intrinsic coordinates & = (1, x2, ¢), where the grey planes depict isopotential
surfaces. (b) Absence of braiding in isotropic Darcy flow in intrinsic coordinates & = (x1, x2, ¢). As the
velocity field is everywhere orthogonal to level sets of ¢ denoted by grey planes, streamlines in this coordinate
system (which are simply straight lines) do not move laterally or undergo braiding.

Speetjens et al. (2021), and so maintains a fundamental connection with the generation of
chaotic advection in stagnation-free steady 3-D flows in general.

As such, streamlines in steady 3-D Darcy flow are topologically equivalent to pathlines
of unsteady 2-D flow and the mathematical framework developed for pathline braiding can
be directly applied to steady 3-D Darcy flow. As per figure 4(b), the representation (3.7)
also shows directly that isotropic Darcy flow cannot generate streamline braiding, where
(x1, x2) = (Y1, ¥p) and (3.7) simplifies to vé (§) = (0, 0, 1) because the velocity field is
everywhere orthogonal to the level sets of ¢, i.e. v x V¢ = 0. These streamlines do not
move relative to each other in the isopotential surfaces ¢ = const., let alone undergo non-
trivial braiding motions. In Cartesian coordinates (figure 1c), the helicity-free condition
constrains non-braiding yet tortuous streamlines to streamsurfaces j(x) = const.,
Yo (x) = const. Conversely, anisotropic Darcy flow admits non-zero transverse velocity
components vy, (§), vy,(§) and so streamlines can undergo the braiding motions as
shown in figures 4(a) and 1(d). Although transverse motion of streamlines in the
(x1, x2) directions does not necessarily generate non-trivial braiding, below we show that
non-trivial braiding is inherent to steady random 3-D flows.

3.3. Linking dispersion and chaos in streamline braiding flows

Lester, Metcalfe & Trefry (2024) recently examined the link between chaotic advection
and transverse dispersion in randomly braiding flows via a simple 1-D streamline model.
As per figure 3(a), this model consists of a set of N, streamlines in R3? space that
repeat periodically in the transverse x» direction and propagate due to mean flow in the
longitudinal x; direction. These streamlines have the same x3-coordinate (x3 =0) and
uniform spacing Axp; = £ in the xp-direction, corresponding to the velocity correlation
length scale £. At integer multiples of longitudinal distance A /N, one pair (n, n + 1) of
neighbouring streamlines randomly exchange position in the xo — x3 plane via clockwise
or counter-clockwise rotations, as labelled by the respective braid generators o,, o, L
Figure 5(a) shows the braid diagram for a typical braid word b consisting of N, =20
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Figure 5. (@) Braid diagram for 1-D streamline depicting evolution of x; coordinate of N, =20 streamlines
over Np =20 random braid actions in the longitudinal x; direction, leading to non-trivial braiding and
dispersion of streamlines. (b) Linear growth of topological braid entropy /g (black points) with Nj, in
agreement with (3.13) (green dashed line). Growth of transverse variance oxzz (Np) (blue line) with Np, in
agreement with (3.11) (red line). Inset: Brownian motion of pathlines with increasing Nj.

streamlines and N, = 20 braid generators. For an array of N, streamlines, the distance
Ap /N, corresponds to a braid frequency f per streamline of

»_ (v1)
=—. 3.8
f=4 (38)
The streamline braiding motions are defined by a braid word b comprising Np
braid generators b = o,ﬁlof,jgl .. .a,ijL which is constructed by randomly choosing each
generator from the set {01, o 1, cee s ON,, algpl}. Note that, due to periodicity, the n = N,

pathline can braid with the n =1 pathline via the oy, and cr];pl braid generators as an

annular braid (Finn & Thiffeault 2007). Hence, streamlines undertake an unbounded
random walk along the x; coordinate as they propagate longitudinally (figure 5b, inset),
while deforming the interstitial fluid as per figure 2. The topological braid entropy /pqid
of these motions is efficiently computed via the braidlab package (Thiffeault & Budisi¢
2013-2021). Figure 5(b) shows linear growth of topological braid entropy hp.iq and
transverse variance axzz of this system with Np.

Lester et al. (2024) show that the topological braid entropy /p,4iq and transverse variance
oxzz of this system grow linearly with Nj, and in the limit of large N, and N, the scaled

mean topological braid entropy (hpqiq) for 103 realisations of this simple 1-D streamline
model converges to the random braid entropy (A, ) as
im  Gim 2 (hpad) — 25 h = (1) = 0.8529 (3.9)
im lim — id) —> —h= =0. . .
Np—o00 Ny—>o00 Np braid (v1) 7
The random braid entropy (4,) is a fundamental quantity in that it characterises the
topological entropy of random braids in limit of large N}, and Nj. From (3.9), the random
braid entropy is related to the dimensionless Lyapunov exponent A, and topological
entropy & as

4

/l :h:—
(o,] AL

(o) = f{do), (3.10)
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where f = f £/{vy1) is the dimensionless braiding frequency that characterises the
frequency of braiding events for a single streamline. As (4,) is a universal constant, f is
necessary and sufficient to completely characterise streamline braiding in random braiding
flows. For streamlines with mean spacing ¢, f characterises the average longitudinal
distance Ay between braiding events in steady 3-D flow. Together, (1,) and f quantify
the topological entropy & of the 1-D streamline model shown in figure 3(a).

These quantities can also be connected to the advective transverse dispersion coefficient

D7 driving the growth of crxzz shown in figure 5(b). As two of the N, streamlines make

random jumps in the x; direction of +¢ with each braiding event, the spatial variance crxz2

of streamlines grows linearly with N, as

N
05, (1) = 03, (0) +20° 2 = 0, (0) 42D, 3.11)
p

where the variance growth per braid event is 2¢%/N p as each event moves two of the N,
streamlines by €. As Ny = N, (v1)t/AL, then

€% (vy)
Dr = , 3.12
T A, (3.12)

which, as shown in figure 5(b), agrees well with model observations. Defining the
advective transverse Péclet number as Per = D7 /({v1)£) then yields Per = 1/f. Hence,
for the 1-D streamline model the dimensionless Lyapunov exponent Ay, and topological
entropy & are linearly related to the transverse dispersion coefficient Dt as

(do)
f{ds)- (3.13)

/l =h: =
*© Per

This linear relationship arises as the 1-D streamline model generates transverse dispersion
and chaotic advection in equal measure.

Two different 2-D extensions of this 1-D streamline model were also considered by
Lester et al. (2024); one involving a 2-D streamline array analogous to the 1-D array in
figure 5(a), and another involving 3-D streamlines that undertake independent random
walks constructed by making a jump of fixed magnitude by random orientation in
the x» — x3 plane at regular intervals in the x; coordinate. For both of these models
the appropriately scaled topological braid entropy hp,4iq Was also found to converge to
the random braid entropy (A, ), leading to a simple relationship between the Lyapunov
exponent Ay, of the flow and the transverse Péclet number Per as

4\
hzaoo:fl/du(,):(%) A), d=1,2, (3.14)

which generalises (3.13) to d = 1 or d =2 dimensional streamline arrays. The persistence
of this relationship across these diverse models suggests that they all belong to the same
universality class (Odor 2004) associated with streamline braiding. This establishes that
chaotic advection and transverse dispersion are intimately linked in heterogeneous Darcy
flow because they are both driven by non-trivial streamline braiding. Equation (3.14) also
points to development of methods to estimate Ay, from transverse dispersivity data for
specific systems; however, further research is required to extend this link to non-ideal
systems.
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3.4. Fluid deformation in heterogeneous Darcy flow

In addition to streamline braiding, it is also instructive to consider ab initio evolution
of fluid deformation in heterogeneous Darcy flow from a kinematic perspective. This
can be quantified by considering deformation as a random process. Le Borgne et al.
(2008a,b) established that for steady flow in random media, the velocity magnitude v
decorrelates with distance s along streamlines and is described by a spatial Markov
process with respect to spatial correlation length £. These studies were applied to (multi-
log Gaussian) hydraulic conductivity fields with a well-defined minimum correlation
length scale, similar to those considered in §5. It has also been shown (Lester er al.
2022) that the velocity gradient in steady Darcy flow is also spatially Markovian, hence
fluid deformation is characterised by sampling the dimensionless velocity gradient tensor
et: X)=Vox@: X)) ¢ /{v1) equidistantly with distance s along streamlines. Rotation
into the Protean coordinate frame x’ (Lester ef al. 2018a) renders the velocity gradient
tensor €'(¢; X) upper triangular (see Appendix B for details) and the fluid deformation
gradient tensor F’(¢; X) which evolves as

- Eitt_; Y e Fex, Fox=1, (3.15)

is likewise. The diagonal elements F}, represent principal stretches and the off-diagonal

components Fl; (non-zero for j > i) represent shear deformations. Hence, the hyperbolic
stretches that govern the Lyapunov exponents are given by the diagonal components €/,
and are not conflated with shear deformations given by the off-diagonal components ;.

From (3.15), the diagonal elements of F’'(¢; X) grow exponentially as
t
Fji(t; X) = exp [/O dr’e;;(1'; X)], i=1,23. (3.16)

For i =1, this yields

, v vy v(t; X)
F(t; X) =exp dt'— [ =exp dv'— | = , (3.17)
0 as v(0; X) v v(O; X)

where s is the distance along the streamline labelled by X and v(¢; X) =ds/d¢. From
(3.17), fluid stretching in the streamwise direction simply fluctuates with the local velocity
as F{,(t) =v(t)/v(0), hence (€},(r)) =0. As ), /. =0 for divergence-free flow flows,
the Lyapunov exponent is then

Ao = (€y) = —(€43), (3.18)

where (-) denotes spatial averaging along streamlines. Hence, F,, ~ exp(deot) and Fj; ~
exp(—Asot), and so chaotic advection in steady 3-D flow is characterised by the single
Lyapunov exponent Aeo.

In Appendix C we show that (3.16) leads to an ab initio continuous time random walk
(CTRW) for the relative stretch p =68[(X, t)/5{(X, 0) of infinitesimal fluid line elements
along streamlines as

Le
1npn+1:1npl’l+ n’
Un
12 3.1
1=+ T =t +—, (3.19)
Un
Sn+1=Sp + £,
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where v, and 1, respectively are the streamline velocity magnitude and advection time
between s, and 5,41 and €, is the relevant Protean velocity gradient component 5&2- The
distribution ¥ (7) of waiting times t is related to the Lagrangian velocity distribution

ps(v) as

Eps(L
V()= #, (3.20)

and ps(v) =vp.(v)/(v)e (Dentz et al. 2016), where p.(v) is the Eulerian velocity
distribution and (-), represents an Eulerian average. For heterogeneous Darcy flow
the Lagrangian velocity distribution may be heavy-tailed in the small velocity limit
(Berkowitz et al. 2006), i.e. ps(v) A1 B > 1 for v <« (v) depending on the distribution
of hydraulic conductivity (Hakoun, Comolli & Dentz 2019). Thus, the waiting time
distribution scales as (Dentz et al. 2016)
Yo —1-8
)R ———— for t/(t 1, 3.21

V() ~ e ,3)| /{t) > (3.21)
where I" is the Gamma function and the gth-order moments (t9) of v (t) are finite for
g < |B]. Hence, normal transport arises if 8 > 2, as the mean and variance of ¥ (7)
are bounded, but anomalous transport arises for 1 < 8 <2 as the variance of ¥ (7) is
unbounded. For 8 > 1, the advection time f, may be related to the number of increments
n as

Un V)e

=Yt ~n(t) =ne<i>= (”6 — (3.22)

where 1. =¢/(v), is the mean transition time. Similarly, the mean of /np also grows
linearly in time as (/np) = (€,)t = Axot. The rate of growth of the variance crl%l p serves
as an important input parameter for lamellar mixing theories (Le Borgne, Dentz &
Villermaux 2015; Villermaux 2019) that predict evolution of the concentration probability
distribution function (PDF) for advective—diffusive solute transport from fluid stretching
behaviour. Rebenshtok ef al. (2014) and Dentz et al. (2015) show that in the asymptotic
limit the coupled CTRW (3.19) generates gth-order absolute central moments p, for g > f
which scale as

t1T4=F for 1 <p <2,

=1 _ ay ~
Hq(®) = lim ([In p — Acot|") {tq/z for > 2, (3.23)

hence anomalous transport (8 < 2) in heterogeneous 3-D Darcy flow can also generate
anomalous stretching dynamics. In Appendix C we show for the case B > 2, pj,,(In p)
converges to a normal distribution with mean and variance

lim (In p) = Aot~ lim o,%w =02, (3.24)

where a} = a / 7. and o is the variance of pc (€). For the anomalous stretching case

(1<B8<2), the variance aln 0 growth ranges from normal to ballistic as (Dentz et al. 2015)
lim o 2 WO,BF(,B‘FI)g.,s
500 lnp 6 — 5,8——}— ,32 .

Under such anomalous stretching the equality (3.2) between /& and A, persists as temporal

averaging along streamlines still dominates (Lester & Dentz 2025), but convergence
of (3.1) slows as B | 1 and physical processes such as mixing and dispersion may be
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impacted in this limit. In § 5, we find that the flows considered herein all exhibit normal
transport. However, anomalous stretching dynamics form an important kinematic regime
that warrants future investigation.

4. Mechanisms of chaotic advection

In this section we consider the mechanisms that generate chaotic advection in steady 3-D
Darcy flows ranging from periodic to random Darcy flows, and flows with smooth, finite
K (x) to those with impermeable inclusions, non-smooth conductivity fields or stagnation
points.

4.1. Chaotic advection in periodic Darcy flow

We first examine steady 3-D Darcy flows with a smooth, finite, heterogeneous and
anisotropic hydraulic conductivity field K (x) that is P-periodic in the direction of the
mean potential gradient g = —(Ve)/||(V)||, i.e.

Kx)=K((x+nPg), n=12,.... 4.1)

The transform (3.6) ensures this flow has the same dynamics as a divergence-free
temporally periodic flow (Bajer 1994; Speetjens et al. 2021), in that the advection
equations can be cast as a time-periodic Hamiltonian system (often referred to as a 1(1/2)
degree of freedom Hamiltonian system). As such, the established tools and techniques of
Hamiltonian chaos (Ottino 1989; Katok & Hasselblatt 1995) can be used to understand
the mechanisms leading to chaotic mixing in these flows, including construction of a
stroboscopic map known as a Poincaré section of the flow, which is generated by recording
the position of streamlines in the flow in the plane normal to g at integer multiples of P.
From the Brouwer fixed point theorem (Brouwer 1911), there must exist period-k points
xr (with k=1, 2, ...) in the Poincaré section, such that streamlines at x; are advected
downstream to x ,, + k P g. These dynamics and features are exactly the same as those that
arise in steady 3-D duct flows (Bajer 1994; Speetjens et al. 2021).

Each periodic point x; belongs to a corresponding periodic orbit (streamline). As per
Hamiltonian dynamical systems theory (Katok & Hasselblatt 1995), a periodic point may
be classified as either a hyperbolic saddle point x g if the local fluid deformation over the
k-period involves fluid stretching and contraction that is exponential in time, or an elliptic
point x g if the local fluid deformation involves rotation only. The number of hyperbolic
(ny) and elliptic (ng) points is governed by the Poincaré—Hopf theorem, which may be
expressed as

ng—npg=2(1-g), 4.2)

where g is the topological genus of the Poincaré section (which may be 0, 1 or 2 depending
upon its periodicity). Elliptic points are associated with non-chaotic (non-mixing) regions
of the flow known as Kolmogorov—Arnold—Moser (KAM) islands, where the local
Lyapunov exponent is zero. For hyperbolic points, the directions of the exponentially
stretching and contracting are respectively associated with hyperbolic unstable and stable
manifolds emanating from x. If these manifolds intersect transversely (which arises in
all but highly symmetric systems (Haller & Poje 1998)), then a heteroclinic tangle results,
leading to chaotic advection (Ottino 1989; Katok & Hasselblatt 1995) in these regions,
with positive Lyapunov exponent.

The transition from globally non-chaotic to globally chaotic dynamics in Hamiltonian
systems is well established, with three predominant ‘routes to chaos’ identified (period
doubling, quasi-periodicity and intermittency) as system parameters are altered. In the
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case of steady 3-D Darcy flows, these parameters are the degree of heterogeneity (o*l%l x)
or anisotropy (8§ in §5) of the conductivity field K as either homogeneous or isotropic
fields do not generate chaos. Under the period-doubling route, the increase of such control
parameters leads to bifurcation of elliptic points into two elliptic and one hyperbolic
point (thus maintaining (4.2)), and the stable and unstable manifolds associated with
this hyperbolic point connect smoothly. However, with a further increase of the control
parameters, these manifolds then intersect transversely, leading to a heteroclinic tangle,
the hallmark of chaotic dynamics in Hamiltonian systems. This transition is associated
with the formation of a chaotic ‘sea’ surrounding the two KAM ‘islands’ associated
with the elliptic points. This process continues, with further bifurcation of elliptic
points and growing chaotic regions associated with hyperbolic points until the domain
is essentially filled with a chaotic sea and the KAM islands surrounding elliptic points are
vanishingly small. In § 5 we demonstrate this route to chaos with increasing conductivity
heterogeneity, including identification of periodic points and associated structures (KAM
islands, hyperbolic manifolds).

4.2. Chaotic advection in random Darcy flow

For random Darcy flow, this picture is altered somewhat as there do not exist persistent
features such as hyperbolic and elliptic periodic points, KAM islands and hyperbolic
manifolds to elucidate the mixing dynamics of the flow. Instead, finite-time analogues
of these features — elliptic, hyperbolic and parabolic LCS (Haller 2015) — serve to
organise fluid motion and uncover the Lagrangian dynamics of the flow over finite time
scales. One major difference for random flows is that all particle trajectories are now
ergodic (Liu, Muzzio & Peskin 1994; Poje, Haller & Mezi¢ 1999; Kang et al. 2008),
meaning that statistics gathered over long times are equivalent to ensemble statistics as
trajectories sample the entire phase space of the flow. This means that e.g. KAM islands
cannot persist and all trajectories are chaotic, rather than a topologically distinct (in
the Lagrangian frame) set of mixing and non-mixing regions. Hence, while elliptic and
hyperbolic regions of the flow can be identified over finite periods, in the infinite time
limit random flows are globally chaotic, and the finite-time Lyapunov exponent (FTLE)
of each 3-D streamline converges to the unique global Lyapunov exponent of the flow
(due to ergodicity). As the flow control parameter is increased from zero to finite values,
the flow transitions form integrable (regular) dynamics to fully chaotic, and the Lyapunov
exponent steadily increases from zero to finite values. A similar picture emerges if the flow
is analysed via the braiding analogue of the FTLE, finite-time braiding exponent (FTBE)
(Budisi¢ & Thiffeault 2015). Similar to the FTLE, for periodic flows the FTBE is zero
inside KAM islands as the streamlines only undergo trivial braiding, and the FTBE is
positive in chaotic regions due to non-trivial braiding with positive topological entropy.
Conversely, for random chaotic Darcy flows the FTBE is positive everywhere at long
times as all streamlines undergo non-trivial braiding due to ergodicity. As such, we make
the conjecture that, similar to other aperiodic Hamiltonian systems (Liu et al. 1994; Poje
et al. 1999), if an aperiodic Darcy flow exhibits chaotic trajectories, it must be globally
chaotic due to ergodicity of streamlines. This conjecture has important implications for
interpreting the results in § 5.

4.3. Chaotic advection from non-finite or non-smooth hydraulic conductivity

Although beyond the scope of this study, it is useful to briefly discuss the generation
of chaos in steady Darcy flows with stagnation points or non-smooth hydraulic
conductivity. For steady 3-D Darcy flow with non-finite conductivity fields (associated
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with impermeable inclusions) or boundary conditions or flow sources and sinks that
generate stagnation points, chaotic advection can also arise in the absence of anisotropy
of the hydraulic conductivity field. For these flows, as vy | 0 at stagnation points x ,
the rescaling (3.7) breaks down (Bajer 1994), leading to chaotic advection via a similar
mechanism to that of pore-scale flow (Lester ef al. 2013). Here, exponential stretching of
fluid elements local to saddle-type stagnation points (Surana, Grunberg & Haller 2006) (an
analogue of hyperbolic periodic points) form stable and unstable hyperbolic manifolds in
the flow. Under symmetry breaking, these hyperbolic manifolds form a heteroclinic tangle,
the hallmark of chaos in continuous dynamical systems (Ottino 1989; Katok & Hasselblatt
1995). For steady Darcy flows with isotropic but non-smooth heterogeneous conductivity
fields K, the velocity gradient, vorticity and helicity are undefined over discontinuities in
VK, leading to ‘leakage’ of streamlines from coherent streamsurfaces and the potential
for chaos (Lester et al. 2023). This mechanism is not well understood and it is currently
unclear whether such discontinuities in V K are physically realistic, or a consequence of
the breakdown of the Darcy approximation at small scales.

5. Chaotic advection in heterogeneous Darcy flow
5.1. Onset of chaotic advection with anisotropy

The results in § 3 uncover a deep link between chaotic advection and transverse dispersion
in heterogeneous Darcy flow, and show how anomalous transport generates anomalous
stretching dynamics. To examine the onset of chaotic advection with medium anisotropy,
we first consider Darcy flow in the simplest possible conductivity field that admits non-
zero helicity

K (x) =ko(x)I + 8[ks(x) — ko(x)]e) @ e1, (GRY)

where ko(x) #ks(x) and 6 € [0, 1] quantifies anisotropy of the conductivity tensor.
Although this flow has been previously considered (Lester et al. 2024) in the context
of quantifying the link between stirring and dispersion, here, we focus on the onset
of chaotic dynamics with §. Note that, while similar conductivity tensor fields such as
K (x) =ko(x)(I + 8e; ® e1) have non-zero helicity density H (x) # 0, the resulting flows
are shown (Appendix A) to be epi-two-dimensional (Yoshida & Morrison 2017) and hence
non-chaotic (Arnol’d 1965; Holm & Kimura 1991). _

Darcy flow over the conductivity field (5.1) is driven by a unit potential gradient V¢ =
{—1,0, 0} in a triply periodic unit cube (3-torus T3) 2:x €[0, 1] x [0, 1] x [0, 1], and
the scalar log-conductivity fields f(x) =Ink(x) for the independent fields ko(x), ks(x)
are given by

.y An.ik 2 (1 + x!
f(x) an;%mCOS[M(M Xn,yk)]

cos [27j (x2 + xn,ijk)] cos (2mk(x3 + X;f,ijk))’ (5.2)

with N =4 and so the velocity correlation length scale is £ = 1/(2N). Here, N; =2 is the
number of realisations in each mode, and A, ; and erz'?ijk with m =1, 2, 3 are uniformly
distributed random variables in [0, 1]. The coefficient X,k is chosen such that the log
variance of the conductivity field is || f2||o = ‘713; x = 4. A typical scalar field f(x) with
these parameters is shown in figure 1(a). Note fields with N =1 do not generate a chaotic
dynamics due to symmetry of the velocity field.
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To solve the divergence-free condition V - v =0 over §2, ¢ is decomposed into a mean
and fluctuation as

P (x) =(x) + P(x), (5.3)
where ¢ = —x;. From (2.2), qg(x) is governed by
V. (K-Vé(x)—V-(K-&)=0. (5.4)

Methods to solve (5.4) and perform streamline tracking are detailed in Appendix D, and
typical potential fields and streamlines are shown in figure 1. For each value of &, a
realisation of K (x) is generated, (5.4) is solved and 10° 3-D streamlines are computed
for distance 10*¢, along with the transverse dispersion coefficient D7, Protean velocity
gradient tensor €’ and Lyapunov exponent Ao, = (€5,), as described in Appendix C.

Typical streamfunctions ¥1(x), ¥ (x) for the helicity-free flow § =0 given by (2.7)
(see Appendix D) for solution details) are shown in figure 6(a). Streamlines (green) are
confined to the intersections of the level sets of yr; and v, and their global behaviour is
shown in figure 1(c). Despite their significant tortuosity, these confined streamlines do not
exhibit persistent dispersion or non-trivial braiding. Conversely, for § > 0 the associated
streamlines (red) in figure 6(a) are unconfined and so exhibit streamline braiding and
transverse dispersion, see also figure 1(d) for § = 1.

Figure 6(b) shows that the mean helicity magnitude (|7{|) increases from H(x) =0
everywhere for § =0 to a plateau (|H|) & 4.74 at § =0.9, then suddenly increases to
(IH|) ~7.16 at § = 1. This sharp increase as § 1 1 is attributed to the loss of correlation
between the K1 and K7 = K33 fields. The linear growth of (|H|) for § « 1 is explained
by decomposing the potential field ¢ as ¢ (x) = ¢g(x) + 5 ¢s(x). To leading order v(x) is
then

v(x) = v(x) + 8v5(x), = —ko Vo — 8[koVps — kse1(é1 - Vo)l + O8>, (5.5)

where vo(x) is helicity free and the helical perturbation vg(x) is generated by the
difference ko — ks, as is shown by inserting (5.5) into H(x) =v - (V x v) and truncating
to order § to give

H(x) =68[koV¢ - (é1 x V(ks —ko)(V¢p - 1))

+ (ks — ko) (Vo - &1 ® 1+ (Vko x V)| + O(5?). (5.6)
Figure 6(c) shows Dt increases exponentially with § as
D 1
L o 24343 x 107002149 1), (5.7
(vi)  Per

which is consistent with (2.7) as Dy =0 for § =0 (Lester et al. 2023), indicating finite
transverse dispersion arises for weak perturbations away from heterogeneous isotropic
Darcy flow. Figure 6(d) shows that A, also increases exponentially with § as

Ao 2 0.00381 (72830 — 1), (5.8)

and is also non-zero for small § > 0, indicating that chaotic advection occurs for weak
perturbations away from isotropic Darcy flow. For § =0 the streamfunction formulation
(2.7) enforces zero Lyapunov exponent (Lester et al. 2022). Figure 6(d) also shows that
insertion of the fitted exponential (5.8) for D7 into a similar relationship to (3.14)

Dt

Aoo =2 | ——,
> ()¢

5.9
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Figure 6. (a) Perturbation of § =0.1 streamlines (red) from § =0 (zero helicity) streamlines (green) and
associated | streamsurface (blue) for the conductivity field given in (5.1). Similar perturbation of § = 0.1
streamlines away from the v, streamsurfaces (not shown) also occurs. (b) Growth of mean absolute helicity
(IH]|) with §, inset shows |H| fields for § = 0.9, 1 (adapted from Lester et al. 2024). (¢) Growth of transverse
dispersion coefficient D7 /(v1)£ with § from simulations (red points) and fitted exponential (5.7) (red curve).
(d) Growth of Lyapunov exponent A, with perturbation parameter 6 from simulations (black points) and fitted
exponential (5.8) (blue curve). Also shown (red dotted curve) is the dimensionless Lyapunov exponent Aso
predicted from fitted exponential in (b) and (3.14). (¢), (d) Adapted from (Lester et al. 2024).

yields excellent agreement with the measured Lyapunov exponent in (5.7). The different
proportionality between Ay, and Dr to (3.14) is expected as the domain £2 is finite and
so does not belong to a universality class (Odor 2004). These results indicate that chaotic
advection is inherent to anisotropic heterogeneous Darcy flow. If the conjecture raised
in §4.2 is true, this statement also holds for weakly anisotropic random heterogeneous
conductivity fields.

5.2. Onset of chaotic advection with medium heterogeneity

To examine the impact of medium heterogeneity upon anisotropic Darcy flow, we consider
flow generated by the anisotropic diagonal conductivity tensor K(x) in (2.4), where
the scalar conductivity fields K;; are generated in the same manner as kg, ks but with
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Uan_l

Figure 7. (Top row) Poincaré sections and (bottom row) FTLE fields with superposed Poincaré sections
(colours used to distinguish different streamlines) of steady 3-D anisotropic Darcy flow ranging from weakly
(al%l K= 2=%) to moderately (al%l x = 1) heterogeneous conductivity fields. Blue and red points respectively

denote elliptic (x g) and hyperbolic (x i) points. Note for more heterogeneous conductivity fields Uz%, x = 2 (not
shown), the KAM islands shrink to infinitesimal size, indicating essentially globally chaotic dynamics.

N; = 4. The heterogeneity of these fields Kj; is varied from weakly (ovl?1 x < 1) to strongly

(al%l x > 1) heterogeneous over the range of log variances Ul%; K= Q710278 . 27U

(1/2,1,2,3,4). For each value of ‘71%1 k- a realisation of K (x) is generated and (5.4) is

solved, and streamlines, D7 and Ay are computed in the same manner as described in
5.1.

' Figure 7 shows both contour plots of the FTLE A(z, X) and Poincaré sections and

low-order (k =1, 2, 3) periodic points for the cases al%l K= 24 21 1, where the log

variance ol%l x acts as a control parameter that governs perturbation from the non-chaotic

(integrable) state corresponding to homogeneous anisotropic Darcy flow with o’l?1 x =0.
The FTLE field is computed using the LCS Tool package (Onu, Huhn & Haller 2015
for the analogous 2-D unsteady flow via the transform (3.6)), where the FTLE field is
computed over one period of the flow ¢ € [0, 1] as

At; X) = 1ln(fmax(t X), (5.10)

for X € xo x x3 =[0, 1] x [0, 1] where oy,4x(¢; X) is the largest eigenvalue of the Cauchy—
Green tensor C(t; X)=F(t; X)' - F(t; X). The Poincaré sections indicate that even
for very weak heterogeneity (013; K= 274, the Lagrangian topology is rich, consisting
of a large number of elliptic and hyperbolic points, with a greater number density
than that suggested by the correlation length ¢. For such weak heterogeneity, the
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Figure 8. (@) Variation of normalised mean longitudinal velocity (v;) /vy (red points) with log variance a,ﬁ I'%
and linear fit (5.14), (grey dashed line) in anisotropic Darcy flow. (Inset) Variation of small velocity scaling
index 8 with Uli %+ (b) The PDFs of normalised velocity magnitude p,(v/(v)) as a function of log variance
‘71%; ¢ and fitted log-normal distribution (black lines). (¢) Variation of dimensionless Lyapunov exponent Ao
(red dots) with log variance O’li x and nonlinear fit (5.19), (grey dashed line). (d) Variation of dimensionless
stretching variance a% with log variance a,%l x and nonlinear fit (5.16), (grey dashed line). (Inset) Variation of
Protean velocity gradient variance 03 with log variance aﬁl x and linear fit (5.15), (grey dashed line).

Lagrangian dynamics are close to integrable, with stable and unstable manifolds (not
shown) associated with hyperbolic points intersecting almost tangentially, corresponding
to weakly chaotic dynamics, as reflected by the small Lyapunov exponent reported in
figure 8(c). The integrable nature of this weakly heterogeneous flow is also established
by considering the non-zero diagonal components Kj;;(x) of K (x) in the limit Gl%z x>0,
such that K;;(x) = exp(onk fii(x)) = 1 + ok fii(x), hence

K@)~ I +ong f(x),  ¢x)~x1+onxd(x), (.11
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where f(x) = Z?:l fii(x)é; ® é;, and the potential fluctuation ¢ and velocity field satisfy
V26 + Vi) -&1=0, v@x) =—é —oux[fu®)e+Vd]+O0(og). (512)

Hence, to leading order, the perturbative flow is solely driven by f11(x) and the helicity
density scales with ‘71%1 x s

H(x) =0l e1(Vo x Vi) + O(oj k), (5.13)

so this flow is integrable in the limit 051 x — 0, and the perturbation that scales with ol%l K
in (5.12) is heterogeneous and anisotropic. Hence, this perturbation represents a non-
integrable perturbation away from a fully integrable state, and so shares the same basic
features as non-integrable perturbation of integrable Hamiltonian systems. With increasing
medium heterogeneity, (01?1 K= 271, the chaotic dynamics strengthen, with clearly visible
stochastic layers (chaotic regions) between distinct KAM islands apparent in figure 7(b),
but no bifurcation of low-order periodic points are apparent. As 0131 x grows to 1, evidence
of period-doubling bifurcations in low-order periodic points become apparent as KAM
islands break up into smaller islands. Other surviving integrable regions shrink further,
before transitioning to essentially globally chaotic dynamics at 01%1 x =2 (not shown).
These dynamics are also reflected by the FTLE distributions, which show some weakly
negative regions that correspond to KAM islands as the analogous 2-D flow (3.6) is not
divergence free but it is Hamiltonian (Bajer 1994). For weak (01%1 K= 2~%) to moderate
(‘7131 K= 2~1) medium heterogeneity, the basic structure of the FTLE field is invariant
up to a scaling factor, reflecting influence of the hydraulic conductivity field upon the
fluid stretching dynamics. This behaviour, including the transition from an integrable
state to global chaos under a non-integrable perturbation (in this case an anisotropic
and heterogeneous perturbation) is entirely consistent with the embedded Hamiltonian
structure of steady 3-D Darcy flow (Speetjens et al. 2021) discussed in § 3.2.

Figure 8(a) shows that the scaled mean longitudinal velocity (v;)/v; (where vy, is the
velocity for a homogeneous medium with the same mean permeability) increases linearly
with log variance 51%1 x as expected for small and moderate values of crl%lk (Renard & De
Marsily 1997)

LD ohks (5.14)

Uh

with 1 & 0.29178 and coefficient of determination R? = 0.999. Figure 8(b) shows that the
Eulerian velocity PDF p, (v) roughly follows a log-normal distribution for all but strongly
heterogeneous flows, and converges toward a delta function in the homogeneous limit
ol%l x — 0. For ‘71%1 x = 1, the velocity PDF scales as a power law in the small velocity limit
as py(v) x vP~1, and the inset in figure 8(a) shows that the index 8 > 2 and approaches
B | 2 in the strongly heterogeneous regime, leading to normal transport for all Ul% k=1
The persistence of normal transport in the strongly heterogeneous regime is attributed to
the low probability of all three K;; in (2.4) being simultaneously small. We also note that
different random models such as Gamma-distributed conductivity fields have a greater
propensity to generate anomalous transport (Hakoun et al. 2019).

Figure 8(c) shows that Ao, may converge to a constant value with increasing log
variance ‘71%1 k- and is well fitted by the simple nonlinear function (5.19) as described
below. Although the numerical methods used do not allow flows in more heterogeneous
media to be computed, asymptotic convergence of A, with increasing Ul%z x 1s argued on
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physical grounds. We consider the limit ‘71%1 x —> 0c and partition K over §2 into infinitely
permeable 2 (tr K(x) — o0) and impermeable £2¢ (tr K (x) — 0) subdomains. As £2 is
the 3-torus T? with topological genus g = 3, the boundary 32,0 between the subdomains
is also topologically complex and thus admits saddle-type stagnation points xy on d£2x00
as per the Poincaré—Hopf theorem. As discussed in § 4.3, these saddle points generate
chaotic advection via the same mechanism as for pore-scale Stokes flow (Lester et al.
2013). Due to the linearity of Darcy flow, the rescaled fluid velocity field v/(v;) and
associated saddle points and Lyapunov exponent are all invariant in the limit 01%1 K —> 0.

As shown in the inset of figure 8(d), the velocity gradient variance 062 (from data
presented in § 5.3) grows linearly with conductivity log variance as

062 %azol%ﬂ(, (5.15)
where o = 1.1656 with R? = 0.999, and o*/% grows exponentially with 0131 x as
o2 ~ a3 (¢4 — 1), (5.16)

where a3 = 2.2429 and aq4 = 0.8415 with R% =0.999. These results show that, although
the Lyapunov exponent A, converges toward the upper bound /n2 with increasing medium
heterogeneity, the corresponding variance o/% increases due to growth of the second
moment (t2). For the case of anomalous transport (1 < 8 <2), this variance grows
super-linearly as aﬁl P 137P Lester et al. (20184).

In addition to direct computation of A, the topological braid entropy /p.iq of the
streamlines is computed directly via the E-tec routine (Roberts et al. 2019), which is
limited to moderately heterogeneous (0.1 < 01%1 x < 2) systems due to lack of convergence

for ‘71%1 x <0.1 and flow reversal for ‘71%1 x > 1. In principle, streamlines for the strongly
heterogeneous cases could be placed in the intrinsic coordinates & = (x1, x2, ¢), however,
determination of xp, xz is difficult as the non-zero helicity density H(x) 7 0 means that
mutual Lie derivatives of the flow do not vanish and so there does not exist an intrinsic
holonomic basis (Schutz 1980) (a coherent orthogonal coordinate system) for (x1, x2).
Figure 9(a) shows that A, and hp,4iq agree to within 5 %, verifying (3.2).

In the weakly heterogeneous regime (al%l x < 1), Aoo varies almost linearly with log
variance as

Ao a6 (0pg )™, (5.17)

with a6 =0.154, a5 =1.129 and R?> =0.995, suggesting that chaotic advection arises
in weakly heterogeneous anisotropic conductivity fields. Figure 9(b) shows that in the
strongly heterogeneous regime, Ao scales linearly with ol%l x as

(v1
Adoo— A @7 07 ks (5.18)

Uh

with a7 ~ 0.198 and R =0.999. Dividing by (5.14) yields
“701%«

Aoo &

~ 1%k (5.19)
I +aiop .

which, as shown in figure 8(c), provides an excellent fit of A, as a function of ‘71%1 x across
the entire regime. Note that (5.19) is compatible with (5.17) in the weakly heterogeneous
limit 0131 x << 1 under the approximation a5~ 1 as ag ~ a7/(1 + 1) =0.1538. Equation
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Figure 9. (a,b) Lyapunov exponents and (c,d) dispersion coefficients in (a,c) weakly (al%l xk <1) and
(b,d) strongly (0131 x = 1) heterogeneous porous media with anisotropic conductivity given by (2.4). Red points
in (a,b) indicate Lyapunov exponents computed from the Protean frame (Lester et al. 2018a), black points
indicate topological entropy computed using E-tec (Roberts et al. 2019). Dashed lines in (a,c) and (b,d)
respectively indicate power law (5.17), (5.21), and linear (5.18), (5.22), fits to the Lyapunov exponents and
dispersion coefficients in the weakly and strongly heterogeneous regimes.

(5.19) also implies that A, converges in the strongly heterogeneous limit

m Ao~ 2L =0.677. (5.20)

2 o
Ofpg—>00 1

This value is close to the upper bound 2 = In2 & 0.693 for steady 3-D flow (Dinh & Sibony
2008), indicating strong chaotic mixing arises in strongly heterogeneous anisotropic Darcy
flow.

Figure 9(c) shows that the transverse dispersion coefficient scales nonlinearly in the
weakly heterogeneous regime as

2.01
~(opg) " (5.21)
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and figure 9(d) shows that transverse dispersion coefficient scales linearly in the strongly
heterogeneous regime as

D
L x0.023402, (5.22)
vl

with R? =1.000 in both cases. In the weakly heterogeneous regime, the scalings of Dr
(5.21) and A (5.17) with Ol%z x agree with the relationship (3.14) linking dispersion and
chaotic advection in random flows. However, as expected this relationship does not persist
in the strongly heterogeneous regime due to the onset of flow reversal. Similar to the
findings in § 5.1, these results indicate that chaotic advection is inherent to heterogeneous
anisotropic Darcy flow. If the conjecture raised in § 4.2 is true, this statement also holds
for weakly heterogeneous random anisotropic conductivity fields.

5.3. Velocity gradient statistics

In addition to the Lyapunov exponent, the Protean velocity gradient €’ provides important
information regarding the deformation structure of heterogeneous Darcy flow. For all
computed flows €’ is sampled along 10° streamlines at fixed spatial increment £ for a
distance of 10*¢. Figures 10(a,c) and 10(b,d) respectively show the PDFs of the principal
stretches €; and shears elfj for strongly heterogeneous (‘71%1 x =4) Darcy flow for (a,b)
fully anisotropic (6 =1) and (c,b) isotropic (§ =0) conductivity fields (5.1). For all
flows computed the divergence error | Zf’: €5l < 107 and the streamwise mean stretch
(el (D) < 10~ is also close to zero. For all flows the distributions of both €/, and elfj
for j >1i,i=1:3 are broad and exhibit a sharp cutoff due to the finite nature of 2.
In all cases, the standard deviation is large e > l(elfi)l, however, the large number of

independent observations (107) reduces the standard error to Oci/ /N~ 1073, yielding
accurate estimates of the principal stretches.

Figure 10(a,c) shows that the PDF of €], is significantly broader for the isotropic case.
This is attributed to the fact that in anisotropic media the local permeability varies with
the local velocity orientation, leading to a narrower velocity distribution as the flow has
a greater flexibility to minimise dissipation. The off-diagonal shears elfj in figure 10(b,d)

are all similarly distributed except the longitudinal shears €,, €], of the anisotropic flow
are more broadly distributed as these streamlines are not confined to streamsurfaces and
hence have higher curvature. The Protean transverse shear €, in the isotropic case is zero
as this is related to the helicity density as H(x) = v; &« e;. r =V €y (Lester et al. 2018a).

For isotropic flow, the Lyapunov exponent is effectively zero (| (elfl.)l < 10~%), whereas
for anisotropic flow it is slightly larger than the theoretical upper bound A =In2,
((€]1). (€)y), (€53)) = (0.0001, 0.7148, —0.7149). The broad nature of the velocity gradient
PDFs leads to a relatively large stretching variance, a/% /Ao ~ 102 as shown in figure 8(d).
This magnitude is consistent with the finding (discussed in §3.1) that the ensemble
average (3.3) h = Ao, + 0'2/2 is not correct, as this would not yield the agreement between
hpraia and A, observed in figure 9(a) The broad distribution of all components of €’ has
significant impacts upon the range of fluid processes hosted in these flows, as shall be
explored further in § 6.

6. Implications of chaotic advection
The apparent ubiquity (based on the conjecture in §4.2) of chaotic advection in
heterogeneous and anisotropic Darcy flow has significant implications for the many fluidic
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Figure 10. The PDFs of (a.c) diagonal ¢; and (b,d) off-diagonal velocity gradient components ¢; for
(a,b) heterogeneous anisotropic Darcy flow (5.1) with 01%1 x =4, =1 and (c,d) isotropic Darcy flow (5.1)
with 02, =4,8 =0.

processes hosted in porous media, including transport and mixing of diffusive species
such as solutes, colloids, reactive species and microorganisms. We briefly review these
implications throughout this section. For these processes, the impact of chaotic dynamics
scales with the Péclet number as /Pe (Aref et al. 2017), which can be large as Pe ranges
from 10~! to 107 in Darcy flows (Bear 1972; Delgado 2007).

Chaotic advection leads to qualitative changes in solute mixing and transport. Le Borgne
et al. (2013) use a lamellar mixing model (Duplat & Villermaux 2008) to show that in non-
chaotic steady 2-D Darcy flow, the rate of mixing of diffusive solutes is governed by the
rate of fluid deformation imparted by the medium heterogeneity. For 2-D (Dentz et al.
2016) and 3-D (Lester et al. 2021) isotropic Darcy flow, the rate of elongation p(t) =
[(¢)/1(0) of fluid elements grows algebraically as (o(z)) ~¢", where the index r = u + v
varies from sublinear < 1 to ballistic stretching 1 < r < 2, depending upon the medium
heterogeneity; u, v respectively characterise the mean and variance of the fluid stretching
process. The lamellar mixing model (Le Borgne et al. 2013) predicts that the concentration
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variance within the solute plume decays with time as
(C2> 1 '¢ t—2M+2U+Df+2’ (61)
where Dy is the fractal dimension of material lines elongated by the flow. The

lamellar mixing model also applies to turbulent and chaotic flows (Villermaux &
Duplat 2003; Meunier & Villermaux 2010), yielding exponential decay of concentration

variance as
2 1/4
(c?) (6—°:) el /3, (6.2)

Hence, mixing of diffusive solutes is rapidly accelerated by chaotic advection. Similarly,

the peak concentration ¢, (f) of a Gaussian plume which is inversely proportional
to the dilution index E(¢) =exp[H(¢)] (Kitanidis 1994) where H(¢) is the scalar

entropy
c(x,t) c(x, 1)
H(t)=— dx ) 6.3
® /v © ”[ © } (3

decays algebraically in non-chaotic heterogeneous porous media flow as (Dentz et al. 2018)

1 —r
Cm(t)O( m()(t , (64)

with 1 <r <2 (Dentz et al. 2016), whereas for chaotic flows these quantities evolve
exponentially as

1
1) o —— oxexp(—Axot). 6.5
cm (1) EQ) Xp(—Aoot) (6.5)
Hence, chaotic advection accelerates the rate of solute mixing from algebraic to

exponential.

Chaotic advection also significantly enhances transverse dispersion. In the purely
advective limit Pe — oo, transverse macro-dispersion coefficient Dr  is zero in non-
chaotic Darcy flow, whereas for chaotic flow Dr N/l%o as per (3.14). For diffusive
solutes, D in non-chaotic Darcy flow is proportional to the transverse effective dispersion
coefficient Dt j, as (Lester et al. 2023)

D7 = D7 ,(m), (6.6)

where Dr , accounts for pore-scale dispersion and m characterises fluctuations in
streamlines due to heterogeneities in the conductivity field. A simple model of stretching-
mediated dispersion around streamlines in chaotic Darcy flow that yields conservative
dispersion estimates (see Appendix F for details) yields significantly larger transverse
dispersion coefficient than (6.6)

Dy = Do+ Dy, G Aocld) 6.7)

200ty

where 7,4 is the period of stretching events.

Conversely, chaotic mixing suppresses longitudinal dispersion. Although results are
not available for heterogeneous Darcy flow, studies of the impact of chaotic mixing
on hold-up dispersion (Jones & Young 1994; Lester et al. 2018b) act as a guide for
strongly heterogeneous media. For purely advective solutes, chaotic advection suppresses
longitudinal variance from az(t) ~ 12 (Taylor 1953) for non-chaotic flows to og(t) ~

12 / (Int)® (Lester et al. 2010) due to increased sampling of advective velocities.
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The impact of chaotic advection upon chemical reactions and biological activity is
profound and multifaceted (Neufeld & Hernandez-Garcia 2009). For the simple case of
fast binary reactions with Damkohler number Da — oo, the effective reaction kinetics
are governed by solute mixing (Borgne, Ginn & Dentz 2014; Valocchi et al. 2019),
hence the impacts outlined above for solute mixing directly translate to the rate and
extent of these reactions. For simple binary reactions with finite Da, this acceleration
becomes less pronounced with decreasing Da as the advective dynamics play less of
a controlling role. Chaotic advection also has a profound impact upon more complex
chemical, biological and geological reaction systems hosted in porous materials such as
autocatalytic reactions, oscillatory reactions, bistable and competitive systems. Although
these reaction systems converge toward a stable or stationary chemical state under well-
mixed conditions, under incomplete mixing conditions — often found in porous materials
(Wright, Richter & Bolster 2017) — transport of reactants can continually drive these
systems away from local equilibrium (Neufeld & Hernandez-Garcia 2009). Hence, the
accelerated transport characteristics inherent to chaotic advection can fundamentally alter
the dynamics of these systems (Tél et al. 2005). Furthermore, the transport structures
(LCS) generated by these flows lead to qualitatively different macroscopic behaviour
including, e.g. singularly enhanced reactions and altered stability of competitive species
(Kérolyi et al. 2000).

7. Conclusions

The prevalence of chaotic advection in heterogeneous Darcy flow is a key consideration
as these kinematics profoundly impact the myriad fluid-borne processes in porous media,
ranging from solute mixing and transport to colloidal transport, chemical reactions and
biological activity (Aref et al. 2017). In this study we directly address the question of the
existence of chaotic advection for steady 3-D Darcy flow with smooth, finite hydraulic
conductivity fields and find that chaotic advection is ubiquitous for all conductivity
fields which are heterogeneous and anisotropic. We find that due to the absence of
stagnation points in unbounded steady 3-D Darcy flow, all such flows have an embedded
Hamiltonian structure (Ottino 1989), and so share many features with similar flows in
the literature (Speetjens et al. 2021), including the transition to chaos from an integrable
state.

We establish that realistic models of Darcy-scale heterogeneous porous media
that admit transverse macro-dispersion in the large Péclet number limit, i.e. purely
advective conditions should possess anisotropic hydraulic conductivity tensor fields K (x).
A recently uncovered quantitative relationship (3.14) (Lester et al. 2024) between the
purely advective transverse dispersion coefficient D7 and Lyapunov exponent Ao in
random unidirectional 3-dof flows also extends to steady 3-D Darcy flow. This establishes
that transverse dispersion and chaotic advection in steady 3-D heterogeneous and
anisotropic Darcy flow are intimately linked as both phenomena result from non-trivial
streamline braiding, hence chaotic advection is inherent to these flows, subject to the
conjecture regarding ergodicity of random flows discussed in § 4.2.

The onset of chaotic advection in steady 3-D Darcy flow is considered via numerical
simulations of flow in two classes of hydraulic conductivity fields; heterogeneous fields
with variable anisotropy, and anisotropic fields with variable heterogeneity. We find that
chaotic advection arises even for the weakest perturbations away from both isotropic
heterogeneous media and anisotropic homogeneous media, establishing that chaotic
advection is inherent to anisotropic heterogeneous media. Simple relationships are found
for how Dr and Ay scale with medium anisotropy parameter § and conductivity
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log variance ‘713; x» and excellent agreement is found with the theoretical model (3.14)

linking D7 and Ay in randomly braiding 3-dof flows. In the limit of large al%l x» the
Lyapunov exponent of anisotropic media converges to Ao & 0.6772, which is close
to the theoretical upper bound Ao max =In2~0.6931 for 3-dof continuous systems,
suggesting that anisotropic and highly heterogeneous Darcy flow is a strong mixing
flow.

These results firmly establish the ubiquity of chaotic advection in steady 3-D anisotropic
heterogeneous Darcy flow. We show that these kinematics have profound implications
for understanding, quantifying and predicting a wide range of processes at the Darcy
scale. The main finding of this study points to several future research directions. Further
investigation of the quantitative link (3.14) between Dr and A is required, as D7 has
been measured for a wide range of porous materials (Zech et al. 2019), whereas Ao has
only been measured in a small number of studies (Kree & Villermaux 2017; Souzy et al.
2020; Heyman et al. 2020, 2021) at the pore scale. Development of methods to characterise
chaotic mixing at the field scale are required, as well as further investigation of the chaotic
dynamics generated by geologically relevant conductivity fields, and fields that generate
anomalous transport.

The results in figures 6(c) and 9(d) show that the dimensionless macro-dispersion
coefficient Dy ,,/((v)€) ~ 107! in heterogeneous and anisotropic systems, which
corresponds to transverse macro-dispersivity ar,, = D1, /(v) ~ £ 107!, As the
correlation length scale ¢ ranges from order metres to kilometres in heterogeneous
aquifers (Bear 1972), this is significantly greater than the pore-scale dispersivity a7
that is typically order millimetres (Gelhar 1986). These results also show that, consistent
with field observations (Zech et al. 2019), the ratio of transverse to longitudinal to
macro-dispersivity or , /%L m = D1 .m/DL m can vary significantly (from order 1-10~4
Zech et al. 2019), as longitudinal dispersivity o , is controlled primarily by medium
heterogeneity (Dentz et al. 2004), whereas transverse dispersivity is controlled by both
medium heterogeneity and anisotropy. For highly anisotropic media «r_,, can be of similar
magnitude to ay, ,,, whereas for isotropic media a7, ~ ar, , and so is significantly smaller
than oy, ;.

In the context of solute mixing and transport, further investigation and quantitative
prediction of concentration PDF, transverse and longitudinal dispersion of diffusive
solutes is required. Furthermore, the impact of chaotic mixing upon chemical reactions and
biological activity in Darcy flow is an open area. The recognition that chaotic dynamics
are inherent to porous media flow across all scales opens the door to the development of
a broad class of upscaling methods that explicitly honour these kinematics and new class
of tuneable engineered porous materials that exploit these phenomena. The ubiquity of
macroscopic chaotic advection has profound implications for the myriad processes hosted
in heterogeneous porous media, and calls for a fundamental re-evaluation of transport and
reaction methods in macroscopic porous systems.
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Appendix A. Proof of zero total helicity H
We show that the total helicity H of conductivity fields of the form
K(x) =K (x) + K>(x),
=ko(x)I + S ko(x) &1 @ e1, (AD)
are zero (where 6 ¢€[0, 1] controls the anisotropy of K(x)) by expressing the
corresponding velocity field as
v(x)=—-Ki(x)- V¢ — Ka(x)- V¢,
=01 (x) + v2(x), (A2)

and thus the helicity density is

Hx)=v1(x) - [V x v1(x)] + v2(x) - [V x v2(x)]

+v1(x) - [V X v2(0)] +v2(x) - [V x v1(x)], (A3)
where the quantities on the top row of the RHS are zero. Expressing v2(x) = f(x)ej, then
(A3) simplifies to

Hx)=f(x) e[V xvi@)]+vi(x)- [V x (f(x)e))]

12 LGV xv1(x)] +o1(x) - [V f(x) x €] (A4)
1+ (VX [fx)vi(x)])
=V Vx[fx)vi(x)D.

Using the divergence theorem and continuity of f(x) and v;(x) over the periodic
boundary 02, the total helicity is zero

e
e

H=/ H(x)dx:?g n-(x1Vx[fx)v(x)])=0. (AS)
2 a2

Appendix B. Fluid deformation in Protean coordinates

Fluid deformation is characterised by the deformation gradient tensor F(¢; X) with
Lagrangian coordinate X, which evolves according to (3.15). The Lyapunov exponent and
fluid stretching statistics are gathered by sampling € along streamlines. The moving and
rotating Protean coordinate frame provides several advantages as detailed in (Lester et al.
2018a) and briefly summarised as follows. The Protean coordinate frame x’ is related to
the Eulerian frame x as

x'()= Q@) - [x —xo(t; X)), (B1)

where x¢(¢; X) is the position of a fluid tracer particle at time ¢ with initial position X,
and Q(?) is a time-dependent orthogonal rotation matrix. The Protean velocity gradient
tensor €’(7; X) is related to the Lagrangian velocity gradient tensor €(¢) as

€ X)=0T(1-et: X)- Q)+ Q' (1) Q). (B2)

The rotational matrix Q(r) aligns the x| coordinate with the local velocity direction such
that &) = v/v, and for steady flow the Protean coordinate system is a streamline coordinate
system. The rotation Q(f) comprises two subrotations as Q(t) = Q,(¢) - Q(t), where
the first rotation Q(¢) aligns x| with v/v and so renders the €}, and €}, elements of
the Protean velocity gradient tensor €'(z; X) to be zero (Lester et al. 2018a). The second
rotation Q,(¢) about the axis x’ in the streamwise direction is chosen such that the
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remaining lower triangular element €, is also zero (Lester et al. 2018a), rendering the
Protean velocity gradient tensor upper triangular

/ / /
€11 €12 €13
/_ / /
€ = 0 €, &; | (B3)
/
0 0 €5

Hence, fluid deformation in the heterogeneous Darcy flows is characterised by
computation of the Protean velocity gradient tensor along the streamlines of these flows.

Appendix C. Fluid stretching in 3-D Darcy flow

The 1-D CTRW (3.19) for evolution of p(¢; X) is derived by considering evolution of the
infinitesimal line element 81(r; X) = F'(¢; X) - 81(0; X), the length of which evolves as

81(t; X) = ||I81(t; X) || = /31(0; X) - C(t; X) - 81(0; X), (C)

where C(t: X)=F(t; X)" - F(t; X) is the symmetric Cauchy—Green tensor. Hence
p(t; X) grows with the largest eigenvalue v(t; X) of C(¢; X) as

p(t; X) =yv(t; X). (C2)

As detailed in §3.4, the Fj, component characterises exponential stretching of fluid
elements, and so converges to p (Lester et al. 2018a) in the asymptotic limit as

1 1 R
tl_l)ngo ;ln,o(t, X) —tl_l)Igo Zlnv(t, X) _tl_l)rgO ;lanz(t, X). (C3)
From (3.15), Fz/2 evolves with streamline distance s as

| e X
lez’s(s, X) = eXp (/(; Wdé‘ , (C4)

where v(s; X) = |[v(x(s; X))| =ds/dt is the local streamline velocity and x (s; X) is the
position of a tracer particle along a streamline with initial position X at s =0, t =0.
As fluid velocity and velocity gradient are both spatially Markovian along streamlines
(Le Borgne et al. 2008a; Lester et al. 2022), s may be discretised with respect to the
spatial velocity correlation length £ as s, =nf, withn =0, 1, .. ., as per (3.19). Similarly,
the advection time f,, and length stretch p,, = Fz/z, +(sn; X) at position s, along a streamline
evolves as per (3.19), with v, = v(sy; X), €, = Eéz (sy; X). Thus the CTRW (3.19) captures
the line stretching dynamics in steady heterogeneous 3-D Darcy flow.

C.1. Fluid stretching under normal transport

Following (Dentz et al. 2016), from the CTRW (3.19), the Fourier—Laplace transform
Pe.i(k, A) of the PDF p, ;(¢, t) where A is the Laplace variable for ¢ and k is the Fourier
variable for ¢ is given by

~

1 -9 ) 1
A 1=9k D

Peilk, 1) = (C5)
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where v/ (k, A) is given by

o0

Wk, )= 1,@(/1) + f dr exp(—At)[cos(|klet) — 1]y (¢), (C6)
0

and 1}(/1) is the Laplace transform of i/ (7), with 7 the temporal increment defined in the
CTRW (3.19). The moments of ¢ are defined in terms of p; ;(k, 1) by

87 per(k, d)

(=)
mj = (—1) VS, o’ (C7)
Hence
1 2P (k, A)
mi =0, my;=-— = id 5 , (C8)
A=y @] 9k k=0
and the small k-expansion of (C6) is
T 1
Uk, 1) =) — / dr exp(—/lt)zkzoeztzl//(t) +..., (C9)
0
and additional small A-expansion
~ 1
Uk, )=1— Ekzof(rz) +.... (C10)
The small A-expansion of V() is
A 1 2 2
v =1-(r)1+ E(T A%, (C11)
thus, we obtain to leading order
oc (e (C12)
mo ¢ = ,
Y
the inverse Laplace transform of which gives
2
. ) (t7) 2
ll_lfloloalnp_ae T)t:o/lt. (C13)

Appendix D. Numerical solvers and streamline tracking

The potential fluctuation equation (5.4) for Darcy flow is solved to precision 10716 on a
uniform structured 256° grid using a high resolution eighth-order compact finite difference
scheme (Lele 1992). To generate high resolution results and preserve the Lagrangian
kinematics of the flow, we use a similar numerical approach to that used in (Lester
et al. 2019). Specifically, we perform a triply periodic fifth-order spline interpolation of
the primitive variables q~5(x), K (x) from their grid values and reconstruct the potential
field ¢ (x) according to (5.3). The velocity field is then computed analytically from these
fields as v(x) = —K(x) - V¢ (x), ensuring that the velocity field is triply periodic and
C4 continuous and the velocity gradient is accurately resolved for computation of fluid
deformation in the Protean frame. This approach also implicitly enforces the helicity-free
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constraint 4 (x) = 0 for the case of isotropic conductivity tensor K (x) = k(x)I for 6 =0.
For the 256 mesh the local relative divergence error

V()]

d = , D1
)= Ve (D

of the interpolated velocity field v(x) is order 10~* and the velocity gradient is accurate
to order 1073,

Streamline tracking is then computed by solving the advection equation from the initial
Lagrangian coordinate X as

i—f:v(x(t;X)), x(0; X) =X, (D2)
via a fifth-order Cash—Karp Runge—Kutta scheme to precision 10~'%. The periodic
boundaries allow advection of fluid streamlines over many multiples of the solution
domain £2, facilitating study of the Lagrangian kinematics over arbitrary distances.
Although the corresponding velocity field is periodic in space, when the flow is chaotic the
streamlines are aperiodic and eventually sample all of the conductivity field in an ergodic
manner.

While accurate, this streamline tracking method (along with all numerical schemes
which do not explicitly enforce kinematic constraints) has been shown (Lester et al.
2023) to introduce spurious transverse dispersion for the isotropic zero helicity density
flow & =0 due to numerical streamlines not following their analytic counterparts. To
circumvent this problem for the helicity-free case § =0, we instead solve the invariant
streamfunctions 1 (x), ¥2(x) for the velocity field v(x) = V1 (x) x Vi (x) via the
following governing equations (Lester er al. 2022) to precision 107!® using the same
finite-difference method as described above:

VAP (x) = V£ (x) - Vi1 (x) = S1 (Y1, ¥2), (D3)
V2o (x) — V£ (x) - Vo (x) = 211, ¥2), (D4)
where f =Ink and
_ (B x Y2) - (Vi1 x Vi) Sy — (B x Y1) - (VY1 x Vi)
VY1 x V| IV x V|

S1 , (D5)

and
B=(Vy-V)Vin) = (Vi - V)Vi). (D6)

Similar to the Darcy equation, continuous streamfunctions v (x), ¥ (x) are reconstructed
from grid data using triply periodic splines and the velocity field is computed analytically
from these streamfunctions. As shown in (Lester et al. 2022), this method yields the same
velocity field (to within numerical error) as that given by direct solution of the Darcy
equation.

Each family of streamfunctions ; comprises a foliation of non-intersecting
streamsurfaces ; = const. that span the flow domain and constrain the Lagrangian
kinematics of the flow. This flow structure is non-chaotic as the advection equation (D2)
simplifies to

ds

E:v(s; Vi1(X), ¥2(X), s(r=0; X)=0, (D7)
where s is the distance travelled along a streamline of a tracer particle with initial
position X. The velocity magnitude v(s; ¥1(X), ¥2(X)) at the intersection of the
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streamsurfaces ¥1(x) = ¥1(X), ¥2(x) = Y2(X) only varies with s. Equation (D7) is
integrable in that ¥1, Y, represent two invariants of the flow in the 3-D domain, resulting
in only one degree of freedom (distance) for streamlines of the flow to explore. For helicity-
free flow, we perform streamline tracking via numerical integration of (D7) to precision
10~3. This approach ensures numerical streamlines follow their analytic counterparts and
so enforces zero transverse dispersion and prevents the non-trivial braiding of streamlines
that lead to chaotic advection.

Appendix E. Calculation of transverse dispersion coefficient

For both the variable anisotropy and variable heterogeneity Darcy flows, transverse
dispersion coefficient is determined by tracking N, = 10° streamlines over 10° traverses of
the periodic domain £2 seeded from random locations within §2. From these streamlines,
the transverse variances are computed as

Np

o) =~ Z<x2,<t>—<xz>(r>> (x2) () = sz,a) (E1)
P i P =1

o5 =~ Z(xg,(z>—<x3>(t>) (x2) () = -~ szm (E2)

P i P
For the anisotropic Darcy flow with variable heterogeneity, the transverse variances
exhibit slow growth and periodic oscillations in figure 11 for weak conductivity variance
‘71%1 x <K 1 as the streamlines of the flow are nearly periodic. With increasing heterogeneity
o,%l - these orbits lose periodicity and ergodically explore the flow domain, resulting in
stronger growth of the transverse variances. The transverse dispersivities are related to the
asymptotic variance growth as

1 . daxz2 1 dong
D2 = 2 tl_lglo dr D33 = 2 tl—lglo dr -~ (E3)

To estimate this asymptotic growth we fit a linear function to the asymptotic variance data
over two periods of the flow, as shown in figure 11. Note that the variance data in figure 11
has been truncated to 20 correlation lengths for illustrative purposes. The total transverse
dispersion coefficient D is then computed as the average of the x, x3 dispersivities.

Appendix F. Estimate of diffusive transverse dispersion coefficient

To generate a conservative estimate of diffusive transverse dispersion coefficient Dy under
the action of chaotic advection, we consider a simple model for fluid deformation around
at streamline at Lagrangian position X oriented in the v/v = &} direction of the Protean
frame. Evolution of the local fluid deformation gradient tensor along the streamline is
modelled via a ‘stretch and relax’ process over period #; as

Fo(r) = {F()()(l‘) for 0 <t <1y, (F1)

Foo(tg —1t) for tg <t <2y,

gnd Foo(t) = exp(/loot)é/z ®e, + exp(—/LX')t) &y ® ég characterises the transverse stretgh—
ing and contraction process. The deformation gradient tensor F(Xg, t) on a streamline
with Lagrangian coordinate X is then modelled as a series of sequential ’stretch and
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Figure 11. Evolution of transverse scalar variances JXZZ (1) (a,c), 033 (t) (b,d) with dimensionless travel time
t(v1)/¢ in linear (a,b) and logarithmic (c,d) scales for heterogeneous anisotropic Darcy flow for various values
of log variance ‘713; - Fitted linear trend (dashed lines) at late times is used to estimate transverse dispersivities
Dy, D33.

relax’ processes with uniformly distributed random orientation 6 € [0, 27 ] as
F(X,1)=[R©) - Fo®)- RO "]+ ... -[RO) - FoQt)-ROD'].  (F2)

where R(0) is the rotation matrix around é/] and n=[t/(2t;)]. This simple model
generates a conservative estimate of dispersion as it does not capture persistent exponential
stretching of fluid elements. However, such stretching in the absence of folding leads to
erroneous predictions of transverse dispersion that grow exponentially in time. In practice,
folding suppresses transverse dispersion to be sub-exponential, however, incorporation of
such second-order deformation measures is beyond the scope of this model.

A solute packet centred about a streamline with Eulerian coordinate x¢(¢) = x (X, t)
with initial concentration c(x, 0) =48(x — xg) evolves with a Gaussian concentration
profile

c(x,t)=

1
=5 (x = xo()) - ey - xo(t»), (F3)
1018 A35-37
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where the covariance matrix X' (t) evolves as (Dentz et al. 2018)

t

3(1)=2Dr ,F'(Xo,1) - (/ F'(Xo,t)"" - F'(Xo, z’)‘ﬂiﬂ)- F'(Xo,1)", (F4)
0

which from (F2) simplifies to

n
X (2ntq) =2Dr,, Y R(0n)- Ao+ R, (F5)
i=1
where
1— e—Z/Alootd ez;loofd -1
Ap= A—é/z®€’/2+ A—é/2®€’/2. (F6)
/loo /lOO
Hence, for large 7, the covariance matrix converges to X (1) =2D7 pn(A) where
1 2w
(A) = —/ [R(©)- A - R(6)"]do, (F7)
2 0
and so
inh(2As0,
5(1) = 2Dy @ Aocld) (F8)

Hence, macroscopic transverse dispersion around streamlines is exponentially amplified
by periodic stretching. In conjunction with advective dispersion of streamlines, this yields
(6.7). Note that similar to (6.6), this model is only valid for || X' (¢)|| < £.

REFERENCES

ALONSO-MATILLA, R., CHAKRABARTI, B. & SAINTILLAN, D. 2019 Transport and dispersion of active
particles in periodic porous media. Phys. Rev. Fluids 4 (4), 043101.

ANNA, P.D., JIMENEZ-MARTINEZ, J., TABUTEAU, H., TURUBAN, R., LE BORGNE, T., DERRIEN, M.
& MEHEUST, Y. 2013 Mixing and reaction kinetics in porous media: an experimental pore scale
quantification. Environ. Sci. Technol. 48 (1), 508-516.

AQUINO, T., LE BORGNE, T. & HEYMAN, J. 2023 Fluid—solid reaction in porous media as a chaotic restart
process. Phys. Rev. Lett. 130, 264001.

AREF, H. 1984 Stirring by chaotic advection. J. Fluid Mech. 143, 1-21.

AREF, H. 2017 Frontiers of chaotic advection. Rev. Mod. Phys. 89 (2), 025007.

ARNOL’D, V.I. 1965 Sur la topologie des écoulments stationnaires des fluids parfaits. Comptes Rendus Acad.
Sci. Paris 261, 312-314.

ARTIN, E. 1947 Theory of braids. Ann. Maths 48, 101-126.

BAJER, K. 1994 Hamiltonian formulation of the equations of streamlines in three-dimensional steady flows.
Chaos Solitons Fract. 4 (6), 895-911.

BEAR, J. 1972 Dynamics of fluids in porous media. In Dover Classics of Science and Mathematics, vol. 1, pp.
1-617. Dover.

BEAUDOIN, A. & DE DREUZY, J.-R. 2013 Numerical assessment of 3-D macrodispersion in heterogeneous
porous media. Water Resour. Res. 49 (5), 2489-2496.

BERKOWITZ, B., CORTIS, A., DENTZ, M. & SCHER, H. 2006 Modeling non-Fickian transport in geological
formations as a continuous time random walk. Rev. Geophys. 44 (2), RG2003.

BUELIIC, B. & BLUNT, M.J. 2006 Pore-scale modeling and continuous time random walk analysis of
dispersion in porous media. Water Resour. Res. 42, W01202.

BUELIIC, B. & BLUNT, M.J. 2007 Pore-scale modeling of transverse dispersion in porous media. Water
Resour. Res. 43 (12), W12S11.

BooON, M., BUELJIC, B., N1U, B. & KREVOR, S. 2016 Observations of 3-D transverse dispersion and dilution
in natural consolidated rock by X-ray tomography. Adv. Water Resour. 96, 266-281.

BOOZER, A.H. 2005 Physics of magnetically confined plasmas. Rev. Mod. Phys. 76, 1071-1141.

1018 A35-38


https://doi.org/10.1017/jfm.2025.10551

https://doi.org/10.1017/jfm.2025.10551 Published online by Cambridge University Press

Journal of Fluid Mechanics

BOYLAND, P.L., AREF, H. & STREMLER, M.A. 2000 Topological fluid mechanics of stirring. J. Fluid Mech.
403, 277-304.

BRENNER, H. & EDWARDS, D. 1993 Macrotransport Processes. Butterworth—-Heinemann.

BROUWER, L.E.J. 1911 Uber abbildung von mannigfaltigkeiten. Math. Ann. 71 (1), 97-115.

BuUDISIC, M. & THIFFEAULT, J.-L. 2015 Finite-time braiding exponents. Chaos: Interdisciplinary
J. Nonlinear Sci. 25 (8), 087407.

CATALAN, T. 2019 A link between topological entropy and Lyapunov exponents. Ergod. Theor. Dyn. Syst.
39 (3), 620-637.

CERBELLI, S., GIONA, M., GORODETSKYI, O. & ANDERSON, P.D. 2017 Singular eigenvalue limit of
advection-diffusion operators and properties of the strange eigenfunctions in globally chaotic flows. Eur.
Phys. J. Special Topics 226 (10), 2247-2262.

CHAUDHURI, A. & SEKHAR, M. 2005 Analytical solutions for macrodispersion in a 3D heterogeneous porous
medium with random hydraulic conductivity and dispersivity. Transp. Porous Med. 58 (3), 217-241.

CHIOGNA, G., ROLLE, M., BELLIN, A. & CIRPKA, O.A. 2014 Helicity and flow topology in three-
dimensional anisotropic porous media. Adv. Water Resour. 73, 134—143.

CHO, M.S., SOLANO, F., THOMSON, N.R., TREFRY, M.G., LESTER, D.R. & METCALFE, G. 2019 Field
trials of chaotic advection to enhance reagent delivery. Groundwater Monitoring Remediation 39 (3),
23-39.

CIRPKA, O.A., CHIOGNA, G., ROLLE, M. & BELLIN, A. 2015 Transverse mixing in three-dimensional
nonstationary anisotropic heterogeneous porous media. Water Resour. Res. 51 (1), 241-260.

COCKE, W.J. 1969 Turbulent hydrodynamic line stretching: consequences of isotropy. Phys. Fluids 12 (12),
2488-2492.

CUSHMAN, J.H. 2013 The Physics of Fluids in Hierarchical Porous Media: Angstroms to Miles, vol. 10.
Springer Science & Business Media.

DAGAN, G. 1987 Theory of solute transport by groundwater. Annu. Rev. Fluid Mech. 19 (1), 183-213.

DAGAN, G. 1989 Flow and Transport in Porous Formations. Springer.

DARTOIS, A., BEAUDOIN, A. & HUBERSON, S. 2018 Impact of local diffusion on macroscopic dispersion in
three-dimensional porous media. Comptes Rendus Mécanique 346 (2), 89-97.

DELGADO, J.M.P.Q. 2007 Longitudinal and transverse dispersion in porous media. Chem. Engng Res. Des.
85 (9), 1245-1252.

DENTZ, M., DE BARROS, F.P.J., LE BORGNE, T. & LESTER, D.R. 2018 Evolution of solute blobs in
heterogeneous porous media. J. Fluid Mech. 853, 621-646.

DENTZ, M., CORTIS, A., SCHER, H. & BERKOWITZ, B. 2004 Time behavior of solute transport in
heterogeneous media: transition from anomalous to normal transport. Adv. Water Resour. 27 (2), 155-173.

DENTZ, M., CREPPY, A., DOUARCHE, C., CLEMENT, E. & AURADOU, H. 2022 Dispersion of motile bacteria
in a porous medium. J. Fluid Mech. 946, A33.

DENTZ, M., HIDALGO, J.J. & LESTER, D. 2023 Mixing in porous media: concepts and approaches across
scales. Transp. Porous Med. 146 (1), 5-53.

DENTZ, M., LE BORGNE, T., LESTER, D.R. & DE BARROS, F.P.J. 2015 Scaling forms of particle densities
for Lévy walks and strong anomalous diffusion. Phys. Rev. E 92, 032128.

DENTZ, M., LESTER, D.R., LE BORGNE, T. & DE BARROS, F.P.J. 2016 Coupled continuous-time random
walks for fluid stretching in two-dimensional heterogeneous media. Phys. Rev. E 94, 061102.

DiNH, T.-C. & SIBONY, N. 2008 Upper bound for the topological entropy of a meromorphic correspondence.
Isr. J. Math. 163 (1), 29-44.

DUPLAT, J., INNOCENTI, C. & VILLERMAUX, E. 2010 A nonsequential turbulent mixing process.
Phys. Fluids 22 (3), 035104.

DUPLAT, J. & VILLERMAUX, E. 2008 Mixing by random stirring in confined mixtures. J. Fluid Mech.
617, 51-86.

FEREDAY, D.R. & HAYNES, P.H. 2004 Scalar decay in two-dimensional chaotic advection and Batchelor-
regime turbulence. Phys. Fluids 16 (12), 4359—-4370.

FINN, M.D. & THIFFEAULT, J.-L. 2007 Topological entropy of braids on the torus. SIAM J. Appl. Dyn. Syst.
6 (1), 79-98.

GELHAR, L.W. 1986 Stochastic subsurface hydrology from theory to applications. Water Resour. Res. 22 (95),
1355-145S.

GELHAR, L.W. & AXNESS, C.L. 1983 Three-dimensional stochastic analysis of macrodispersion in aquifers.
Water Resour. Res. 19 (1), 161-180.

GIRIMAJL, S.S. & POPE, S.B. 1990 Material-element deformation in isotropic turbulence. J. Fluid Mech.
220, 427-458.

HAKOUN, V., COMOLLI, A. & DENTZ, M. 2019 Upscaling and prediction of Lagrangian velocity dynamics
in heterogeneous porous media. Water Resour. Res. 55 (5), 3976-3996.

1018 A35-39


https://doi.org/10.1017/jfm.2025.10551

https://doi.org/10.1017/jfm.2025.10551 Published online by Cambridge University Press

D.R. Lester, G. Metcalfe, M. Trefry and M. Dentz

HALL, T. & YURTTAS, S.0. 2009 On the topological entropy of families of braids. Topol. Applics. 156 (8),
1554-1564.

HALLER, G. 2015 Lagrangian coherent structures. Annu. Rev. Fluid Mech. 47 (2015), 137-162.

HALLER, G. & POJE, A.C. 1998 Finite time transport in aperiodic flows. Physica D: Nonlinear Phenom.
119 (3-4), 352-380.

HALLER, G. & SAPsIs, T. 2008 Where do inertial particles go in fluid flows? Physica D: Nonlinear Phenom.
237 (5), 573-583.

HANDEL, M. & THURSTON, W.P. 1985 New proofs of some results of Nielsen. Adv. Math. 56 (2), 173-191.

HEss, K.M., WOLF, S.H. & CELIA, M.A. 1992 Large-scale natural gradient tracer test in sand and gravel,
Cape Cod, Massachusetts: 3. Hydraulic conductivity variability and calculated macrodispersivities. Water
Resour. Res. 28 (8), 2011-2027.

HEYMAN, J., LESTER, D.R. & LE BORGNE, T. 2021 Scalar signatures of chaotic mixing in porous media.
Phys. Rev. Lett. 126, 034505.

HEYMAN, J., LESTER, D.R., TURUBAN, R., MEHEUST, Y. & LE BORGNE, T. 2020 Stretching and folding
sustain microscale chemical gradients in porous media. Proc. Natl Acad. Sci. USA 117 (24), 13359-13365.

HINCH, E.J. 1999 Mixing: Turbulence and Chaos — An Introduction. Springer US.

HoBBSs, D.M. & MUZzzI0, F.J. 1997 The Kenics static mixer: a three-dimensional chaotic flow. Chem. Engng
J. 67 (3), 153-166.

HoLM, D.D. & KIMURA, Y. 1991 Zero-helicity Lagrangian kinematics of three-dimensional advection.
Phys. Fluids A: Fluid Dyn. 3 (5), 1033-1038.

JANKOVIC, 1., STEWARD, D.R., BARNES, R. J. & DAGAN, G. 2009 Is transverse macrodispersivity in three-
dimensional groundwater transport equal to zero? A counterexample. Water Resour. Res. 45 (8), W08415.

JONES, S.W. & YOUNG, W.R. 1994 Shear dispersion and anomalous diffusion by chaotic advection. J. Fluid
Mech. 280, 149-172.

KALDA, J. 2000 Simple model of intermittent passive scalar turbulence. Phys. Rev. Lett. 84, 471-474.

KANG, T.G., SINGH, M.K., KwON, T.H. & ANDERSON, P.D. 2008 Chaotic mixing using periodic and
aperiodic sequences of mixing protocols in a micromixer. Microfluid Nanofluid 4 (6), 589-599.

KAROLYL, G., PENTEK, A., SCHEURING, 1., TEL, T. & TOROCZKAI, Z. 2000 Chaotic flow: the physics of
species coexistence. Proc. Natl Acad. Sci. 97 (25), 13661-13665.

KATOK, A. & HASSELBLATT, B. 1995 Introduction to the Modern Theory of Dynamical Systems.
Encyclopedia of Mathematics and its Applications 1. Cambridge University Press.

KITANIDIS, P.K. 1994 The concept of the dilution index. Water Resour. Res. 30, 2011-2026.

KREE, M. & VILLERMAUX, E. 2017 Scalar mixtures in porous media. Phys. Rev. Fluids 2, 104502.

LE BORGNE, T., DENTZ, M. & CARRERA, J. 2008a Lagrangian statistical model for transport in highly
heterogeneous velocity fields. Phys. Rev. Lett. 101, 090601.

LE BORGNE, T., DENTZ, M. & CARRERA, J. 2008b Spatial Markov processes for modeling Lagrangian
particle dynamics in heterogeneous porous media. Phys. Rev. E 78, 026308.

LE BORGNE, T., DENTZ, M. & VILLERMAUX, E. 2013 Stretching, coalescence, and mixing in porous media.
Phys. Rev. Lett. 110, 204501.

LE BORGNE, T., DENTZ, M. & VILLERMAUX, E. 2015 The lamellar description of mixing in porous media.
J. Fluid Mech. 770, 458-498.

BORGNE, T.L., GINN, T.R. & DENTZ, M. 2014 Impact of fluid deformation on mixing-induced chemical
reactions in heterogeneous flows. Geophys. Res. Lett. 41 (22), 7898-7906.

LELE, S.K. 1992 Compact finite difference schemes with spectral-like resolution. J. Comput. Phys. 103, 16—42.

LESTER, D.R., TREFRY, M.G. & METCALFE, G. 2016a Chaotic advection at the pore scale: mechanisms,
upscaling and implications for macroscopic transport. Adv. Water Resour. 97, 175-192.

LESTER, D.R., BANDOPADHYAY, A., DENTZ, M. & LE BORGNE, T. 2019 Hydrodynamic dispersion and
lamb surfaces in Darcy flow. Transp. Porous Med. 130 (3), 903-922.

LESTER, D.R. & DENTZ, M. 2025 Line stretching in random flows. arXiv:2504.17982.

LESTER, D.R., DENTZ, M., BANDOPADHYAY, A. & LE BORGNE, T. 2022 Fluid deformation in isotropic
Darcy flow. J. Fluid Mech. 945, A18.

LESTER, D.R., DENTZ, M., BANDOPADHYAY, A. & LE BORGNE, T. 2021 The Lagrangian kinematics of
three-dimensional Darcy flow. J. Fluid Mech. 918, A27.

LESTER, D.R., DENTZ, M., LE BORGNE, T. & DE BARROS, F.P.J. 2018a Fluid deformation in random steady
three-dimensional flow. J. Fluid Mech. 855, 770-803.

LESTER, D.R., DENTZ, M. & LE BORGNE, T. 20165 Chaotic mixing in three-dimensional porous media.
J. Fluid Mech. 803, 144-174.

LESTER, D.R., DENTZ, M., SINGH, P. & BANDOPADHYAY, A. 2023 Under what conditions does transverse
macrodispersion exist in groundwater flow? Water Resour. Res. 59 (3), e2022WR033059.

1018 A35-40


https://arxiv.org/abs/2504.17982
https://doi.org/10.1017/jfm.2025.10551

https://doi.org/10.1017/jfm.2025.10551 Published online by Cambridge University Press

Journal of Fluid Mechanics

LESTER, D.R., KUAN, B. & METCALFE, G. 2018b Simultaneous optimisation of residence time, heat and
mass transfer in laminar duct flows. Chem. Engng Sci. 191, 511-524.

LESTER, D.R., METCALFE, G. & TREFRY, M.G. 2013 Is chaotic advection inherent to porous media flow?
Phys. Rev. Lett. 111, 174101.

LESTER, D.R., METCALFE, G. & TREFRY, M.G. 2014 Anomalous transport and chaotic advection in
homogeneous porous media. Phys. Rev. E 90, 063012.

LESTER, D.R., METCALFE, G. & TREFRY, M.G. 2024 Braiding flows link stirring and dispersion,
arXiv:2412.05407.

LESTER, D.R., RUDMAN, M., METCALFE, G., TREFRY, M.G., ORD, A. & HOBBS, B. 2010 Scalar dispersion
in a periodically reoriented potential flow: acceleration via Lagrangian chaos. Phys. Rev. E 81, 046319.
Liu, M., Muzzio, F.J. & PESKIN, R.L. 1994 Quantification of mixing in aperiodic chaotic flows. Chaos

Solitons Fract. 4 (6), 869—-893.

Liu, Y., X1a0, H., AQuUIiNO, T., DENTZ, M. & WANG, M. 2024 Scaling laws and mechanisms of
hydrodynamic dispersion in porous media. J. Fluid Mech. 1001, R2.

MATSUOKA, C. & HIRAIDE, K. 2015 Computation of entropy and Lyapunov exponent by a shift transform.
Chaos: Interdisciplinary J. Nonlinear Sci. 25 (10), 103110.

MAYS, D.C. & NEUPAUER, R.M. 2012 Plume spreading in groundwater by stretching and folding. Water
Resour. Res. 48 (7), W07501.

METCALFE, G., LESTER, D., ORD, A., KULKARNI, P., TREFRY, M., HOBBS, B.E., REGENAUR-LIEB, K.
& MORRIS, J. 2010 A partially open porous media flow with chaotic advection: towards a model of coupled
fields. Phil. Trans. R. Soc. A: Math. Phys. Engng Sci. 368 (1910), 217-230.

METCALFE, G., LESTER, D. & TREFRY, M. 2023 A primer on the dynamical systems approach to transport
in porous media. Transp. Porous Med. 146 (1), 55-84.

METCALFE, G., RUDMAN, M., BRYDON, A., GRAHAM, L.J.W. & HAMILTON, R. 2006 Composing chaos:
an experimental and numerical study of an open duct mixing flow. AIChE J. 52 (1), 9-28.

MEUNIER, P. & VILLERMAUX, E. 2010 The diffusive strip method for scalar mixing in two dimensions.
J Fluid Mech. 662, 134-172.

MOFFATT, H.K. 1969 The degree of knottedness of tangled vortex lines. J. Fluid Mech. 1, 117-129.

MOFFATT, H.K. & TSINOBER, A. 1992 Helicity in laminar and turbulent flow. Annu. Rev. Fluid Mech.
24 (1), 281-312.

MOREAU, J.J. 1961 Constantes d’un ilot tourbillonnaire en fluide parfait barotrope. Comptes Rendus Acad. Sci.
Paris 252, 2810-2812.

MOUSSAFIR, J.-O. 2006 On computing the entropy of braids. Funct. Anal. Other Maths 1 (1), 37-46.

NEUFELD, Z. & HERNANDEZ-GARCIA, E. 2009 Chemical and Biological Processes in Fluid Flows:
A Dynamical Systems Approach. Imperial College Press.

NEUMAN, S.P. & ZHANG, Y.-K. 1990 A quasi-linear theory of non-Fickian and Fickian subsurface dispersion:
1. theoretical analysis with application to isotropic media. Water Resour. Res. 26 (5), 887-902.

NEWHOUSE, S. & PIGNATARO, T. 1993 On the estimation of topological entropy. J. Stat. Phys. 72 (5),
1331-1351.

NEWHOUSE, S.E. 1988 Entropy and volume. Ergod. Theory Dyn. Sys. 8, 283-299.

ODOR, G. 2004 Universality classes in nonequilibrium lattice systems. Rev. Mod. Phys. 76, 663-724.

ONU, K., HUHN, F. & HALLER, G. 2015 LCS tool: a computational platform for Lagrangian coherent
structures. J. Comput. Sci. 7, 26-36.

OTTINO, J.M. 1989 The Kinematics of Mixing: Stretching, Chaos, and Transport. Cambridge University Press.

OUELLETTE, N.T., O’MALLEY, P.J.J. & GOLLUB, J.P. 2008 Transport of finite-sized particles in chaotic
flow. Phys. Rev. Lett. 101 (17), 174504.

POJE, A.C., HALLER, G. & MEZIC, 1. 1999 The geometry and statistics of mixing in aperiodic flows. Phys.
Fluids 11 (10), 2963-2968.

PUYGUIRAUD, A., GOUZE, P. & DENTZ, M. 2021 Pore-scale mixing and the evolution of hydrodynamic
dispersion in porous media. Phys. Rev. Lett. 126, 164501.

RAJARAM, H. & GELHAR, L.W. 1991 Three-dimensional spatial moments analysis of the borden tracer test.
Water Resour. Res. 27 (6), 1239-1251.

REBENSHTOK, A., DENISOV, S., HANGGI, P. & BARKAI E. 2014 Non-normalizable densities in strong
anomalous diffusion: beyond the central limit theorem. Phys. Rev. Lett. 112, 110601.

RENARD, P. & DE MARSILY, G. 1997 Calculating equivalent permeability: a review. Adv. Water Resour.
20 (5-6), 253-278.

ROBERTS, E., SINDI, S., SMITH, S.A. & MITCHELL, K.A. 2019 Ensemble-based topological entropy
calculation (E-tec). Chaos: Interdisciplinary J. Nonlinear Sci. 29 (1), 013124.

ROLLE, M. & LE BORGNE, T. 2019 Mixing and reactive fronts in the subsurface. Rev. Mineral. Geochem.
85 (1), 111-142.

1018 A35-41


https://arxiv.org/abs/2412.05407
https://doi.org/10.1017/jfm.2025.10551

https://doi.org/10.1017/jfm.2025.10551 Published online by Cambridge University Press

D.R. Lester, G. Metcalfe, M. Trefry and M. Dentz

SAFFMAN, P.G. 1959 A theory of dispersion in a porous medium. J. Fluid Mech. 6 (3), 321-349.

SCHUTZ, B.F. 1980 Geometrical Methods of Mathematical Physics. Cambridge University Press.

Souzy, M., LHUISSIER, H., MEHEUST, Y., LE BORGNE, T. & METZGER, B. 2020 Velocity distributions,
dispersion and stretching in three-dimensional porous media. J. Fluid Mech. 891, A16.

SPEETIENS, M., METCALFE, G. & RUDMAN, M. 2006 Topological mixing study of non-Newtonian duct
flows. Phys. Fluids 18 (10), 103103.

SPEETIENS, M., METCALFE, G. & RUDMAN, M.2021 Lagrangian transport and chaotic advection in three-
dimensional laminar flows. Appl. Mech. Rev. 73 (3), 030801.

SQUIRES, T.M. & QUAKE, S.R. 2005 Microfluidics: fluid physics at the nanoliter scale. Rev. Mod. Phys.
77, 977-1026.

STONE, H.A., STROOCK, A.D. & AJDARI, A. 2004 Engineering flows in small devices: microfluidics toward
a lab-on-a-chip. Annu. Rev. Fluid Mech. 36, 381-411.

STROOCK, A.D., DERTINGER, S.K.W., AIDARI, A., MEZIC, 1., STONE, H.A. & WHITESIDES, G.M. 2002
Chaotic mixer for microchannels. Science 295 (5555), 647-651.

SUDICKY, E.A., CHERRY, J.A. & FRIND, E.O. 1983 Migration of contaminants in groundwater at a landfill:
a case study: 4. A natural-gradient dispersion test. J. Hydrol. 63 (1), 81-108.

SURANA, A., GRUNBERG, O. & HALLER, G. 2006 Exact theory of three-dimensional flow separation. Part 1.
Steady separation. J. Fluid Mech. 564, 57-103.

TAYLOR, G.I. 1953 Dispersion of soluble matter in solvent flowing slowly through a tube. Phil. Trans. R. Soc.
A: Math. Phys. Engng Sci. 219, 186-203.

TEL, T., KAROLYI, G., PENTEK, A., SCHEURING, 1., TOROCZKAI, Z., GREBOGI, C. & KADTKE, J. 2000
Chaotic advection, diffusion, and reactions in open flows. Chaos: Interdisciplinary J. Nonlinear Sci. 10 (1),
89-98.

TEL, T., DE MOURA, A., GREBOGI, C. & KAROLYI, G. 2005 Chemical and biological activity in open flows:
a dynamical system approach. Phys. Rep. 413 (2-3), 91-196.

THIFFEAULT, J.-L. 2005 Measuring topological chaos. Phys. Rev. Lett. 94, 084502.

THIFFEAULT, J.-L. 2010 Braids of entangled particle trajectories. Chaos: Interdisciplinary J. Nonlinear Sci.
20 (1), 017516.

THIFFEAULT, J.-L. 2022 Braids and Dynamics. Springer Cham.

THIFFEAULT, J.-L. & BUDISIC, M. 2013-2021 Braidlab: a software package for braids and loops,
version 3.2.5. arXiv:1410.0849 [math.GT]

THIFFEAULT, J.-L. & FINN, M.D. 2006 Topology, braids and mixing in fluids. Phil. Trans. R. Soc. A: Math.
Phys. Engng Sci. 364, 3251-3266.

TREFRY, M.G., LESTER, D.R., METCALFE, G. & WU, J. 2019 Temporal fluctuations and poroelasticity can
generate chaotic advection in natural groundwater systems. Water Resour. Res. 55 (4), 3347-3374.

TURUBAN, R., LESTER, D.R., HEYMAN, J., BORGNE, T.L. & MEHEUST, Y. 2019 Chaotic mixing in
crystalline granular media. J. Fluid Mech. 871, 562-594.

TURUBAN, R., LESTER, DR., LE BORGNE, T. & MEHEUST, Y. 2018 Space-group symmetries generate
chaotic fluid advection in crystalline granular media. Phys. Rev. Lett. 120 (2), 024501.

VALOCCHI, A.J., BOLSTER, D. & WERTH, C.J. 2019 Mixing-limited reactions in porous media. Transp.
Porous Med. 130 (1), 157-182.

VETEL, J., GARON, A. & PELLETIER, D. 2009 Lagrangian coherent structures in the human carotid artery
bifurcation. Exp. Fluids 46 (6), 1067-1079.

VILLERMAUX, E. 2012 Mixing by porous media. Comptes Rendus Mécanique 340 (11-12), 933-943.

VILLERMAUX, E. 2019 Mixing versus stirring. Annu. Rev. Fluid Mech. 51 (1), 245-273.

VILLERMAUX, E. & DUPLAT, J. 2003 Mixing as an aggregation process. Phys. Rev. Lett. 91, 184501.

WOLTIER, L. 1958 A theorem on force-free magnetic fields. Proc. Natl Acad. Sci. USA 44 (6), 489-491.

WRIGHT, E.E., RICHTER, D.H. & BOLSTER, D. 2017 Effects of incomplete mixing on reactive transport in
flows through heterogeneous porous media. Phys. Rev. Fluids 2 (11), 114501.

Wu, J., LESTER, D., TREFRY, M.G. & METCALFE, G. 2024 Lagrangian coherent structures control solute
dispersion in heterogeneous poroelastic media. Phys. Rev. Fluids 9, 044501.

Wu, J., LESTER, D.R., TREFRY, M.G. & METCALFE, G. 2020 When do complex transport dynamics arise
in natural groundwater systems? Water Resour. Res. 56 (2), e€2019WR025982.

YE, Y., CHIOGNA, G., CIRPKA, O.A., GRATHWOHL, P. & ROLLE, M. 2015 Experimental evidence of helical
flow in porous media. Phys. Rev. Lett. 115, 194502.

YOMDIN, Y. 1987 Volume growth and entropy. Israel J. Maths 57 (3), 285-300.

YOSHIDA, Z. 2009 Clebsch parameterization: basic properties and remarks on its applications. J. Math. Phys.
50 (11), 113101.

1018 A35-42


https://arxiv.org/abs/arXiv:1410.0849
https://doi.org/10.1017/jfm.2025.10551

https://doi.org/10.1017/jfm.2025.10551 Published online by Cambridge University Press

Journal of Fluid Mechanics

YOSHIDA, Z. & MORRISON, P.J. 2017 Epi-two-dimensional fluid flow: a new topological paradigm for
dimensionality. Phys. Rev. Lett. 119, 244501.

ZECH, A., ATTINGER, S., BELLIN, A., CVETKOVIC, V., DIETRICH, P., FIORI, A., TEUTSCH, G. &
DAGAN, G. 2019 A critical analysis of transverse dispersivity field data. Ground Water 57 (4), 632-639.

1018 A35-43


https://doi.org/10.1017/jfm.2025.10551

	1. Introduction
	2. Kinematics of porous media flows
	2.1. Background
	2.2. Implications for hydraulic conductivity modelling

	3. Streamline braiding and chaos
	3.1. Background
	3.2. Topology of steady heterogeneous 3-D Darcy flow
	3.3. Linking dispersion and chaos in streamline braiding flows
	3.4. Fluid deformation in heterogeneous Darcy flow

	4. Mechanisms of chaotic advection
	4.1. Chaotic advection in periodic Darcy flow
	4.2. Chaotic advection in random Darcy flow
	4.3. Chaotic advection from non-finite or non-smooth hydraulic conductivity

	5. Chaotic advection in heterogeneous Darcy flow
	5.1. Onset of chaotic advection with anisotropy
	5.2. Onset of chaotic advection with medium heterogeneity
	5.3. Velocity gradient statistics

	6. Implications of chaotic advection
	7. Conclusions
	Appendix A. Proof of zero total helicity H
	Appendix B. Fluid deformation in Protean coordinates
	Appendix C. Fluid stretching in 3-D Darcy flow
	C.1. Fluid stretching under normal transport

	Appendix D. Numerical solvers and streamline tracking
	Appendix E. Calculation of transverse dispersion coefficient
	Appendix F. Estimate of diffusive transverse dispersion coefficient
	References

