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CIRCULAR COLOURING AND GRAPH HOMOMORPHISM

XUDING ZHU

For any pair of integers p, q such that (p, q) = 1 and p ^ 2q, the graph Gq
p has vertices

{0,1,.. . ,p— 1} and edges \ij : q ^ \i — j \ ^ p —?}• These graphs play the same role
in the study of circular chromatic number as that played by the complete graphs in
the study of chromatic number. The graphs G£ share many properties of the complete
graphs. However, there are also striking differences between the graphs G£ and the
complete graphs. We shall prove in this paper that for many pairs of integers p, q,
one may delete most of the edges of G£ so that the resulting graph still has circular
chromatic number p/q. To be precise, we shall prove that for any number r > 2, there
exists a rational number p/q (where (p, q) = 1) which is less than r but arbitrarily
close to r, such that Gg contains a subgraph H with Xc(H) = Xc[Gyj = p/q and

\E{H)\ = o( J E(Gl)\j. This is in sharp contrast to the fact that the complete
graphs are edge critical, that is, the deletion of any edge will decrease its chromatic
number and its circular chromatic number.

1. INTRODUCTION

All graphs considered in this paper are finite and simple. Suppose G and H are
graphs. A hornomorphism from G to H is a mapping / from V(G) to V(H) such that
f{x)f(y) £ E{H) whenever xy G E(G). Homomorphisms of graphs are studied as a
generalisation of graph colourings. Indeed, a vertex colouring of a graph G with n-
colours is equivalent to a homomorphism from G to Kn. We write G •< H if there exists
a homomorphism from G to H. Then •< defines a partial order on the set of all finite
graphs, which we denote by (T,<). Two graphs G and H are hom-equivalent, written
as G ~ H, if G < H and H <G. Obviously ~ defines an equivalence relation on the set
T. We shall denote by [G] the equivalence class of Tl~ that contains the graph G.

The structure of the partial order (J"/~, ;<) has been extensively studied, [3, 6,
8, 10, 11]. For example, there are many density results concerning this partial order
[6, 8, 10, 11], and it is known that (.F/~, <) forms a distributive lattice [3], et cetera.
The study of the chromatic number of graphs can also be viewed as an investigation of
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84 X. Zhu [2]

the structure of this partial order {T/~, •<). We shall denote by Zg the set of complete
graphs, that is, Zg = {Ki, K2, •••,}• Then Zg forms an infinite increasing chain in
(•^V~. ^)i which maybe viewed as a representation of the natural numbers. Any graph
G 6 T admits a homomorphism to some member of the set ZQ. The chromatic number
x{G) is the minimum n such that G •< Knt that is, the least element of the set ZQ which
is "above" G in the order •< (as we use Kn to represent the integer n). In this sense, we
may view the set Zg as a. scale that measures a dimension of graphs.

Just as the set of natural numbers is extended to the set of positive rationals, we
can "extend" the set Zg into a larger set. For those fractions p/q with (p, q) = 1 and
p ^ 2g, we construct the graph G£, which has vertices {0 ,1 , . . . ,p — 1} and edges {ij : q ^
\i-j\ ^P-q}- We shall denote by Qg the set {G« : (p,q) = 1 and p ^ 2q}u{Kx}. Note
that Gp = Kp, and hence Qg is indeed an extension of ZQ. Moreover, the set Qg is also
linearly ordered. It was shown in [2, 9] that if p'/q' ^ 2 and p/q ^ 2, then p'/q' < p/q
if and only if Gq

v< -< G£. Thus the set Qg together with the order < may be viewed as a
representation of those rationals r ^ 2 or r = 1. The circular chromatic number Xc(G)
of a graph is the infimum of the ratios p/q for which G •< Gq

p. It was shown in [9] that
the infimum in this definition is always attained, and hence the infimum can be replaced
by minimum. Therefore Xc(G) is the least member of Qg which is above G in the order
•< (as we use G£ to represent the rational p/q).

If the set Zg is considered as a scale that measures a dimension of graphs, then
the set Qg is a refinement of that scale, just as the set of rational numbers provides a
finer scale than that of integers that measures the length of an object. In this sense, the
chromatic number x(G) of a graph G may be regarded as an approximation of its circular
chromatic number Xc{G). The circular chromatic number of a graph was introduced by
Vince [9] in 1988 under the name "the star chromatic number". The concept has enjoyed
considerable attention [1, 2, 4, 7, 9, 12, 13, 14, 15, 16].

The graphs Gq
p share many properties of the complete graphs Kn. We say a graph

G is vertex critical if for any vertex x of G, we have Xc{G - x) < Xc{G). We say a graph
G is edge critical if for any edge e of G, we have Xc{G — e) < Xc(G). It was shown in
[2, 9] that for any pair of integers p, q with p ^ 2q and (p, q) = 1, the graph Gq

p is
vertex critical. It follows that the graphs Cj,, just like the complete graphs, have the
least number of vertices among all the graphs G with Xc(G) = p/q. However, there are
also striking differences between the graphs Gp1 and the complete graphs. It was noted in
[12] that for some pairs of integers (p, q), the graphs G£ are not edge critical, while the
complete graphs are obviously edge critical. We shall explore this observation further in
this paper. We shall determine exactly which graphs Gq

v are edge critical, and we shall
estimate the number of edges that can be deleted from a graph Gq

p so that the resulting
graph still has the same circular chromatic number. Surprisingly, we shall prove that for
many pairs of integers (p, q), we can delete most of the edges of Gq

p without decreasing
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its circular chromatic number. To be precise, we shall prove the following theorems:

THEOREM 1 . 1 . Suppose p ^ 2q and (p, q) = 1. Tie graph Gq
p is edge critical if

and only if either q = 1 or p = 2q + 1.

THEOREM 1 . 2 . For any number r > 2, there is a sequence of rational numbers

pi/qi (where (pi,qi) = 1) such that the following is true:

• Pi/qi < r and Jim Pi/q{ = r;
t-*oo

• each of the graphs Gf. contains a subgraph Ht with Xc(Hi) = Xc(G*) =

Pi/qi and \E(Hi)\ =

2. T H E CONSTRUCTION

We note that if q = 1 then Gq
p = Kp is obviously edge critical. If p = 2q + 1, then

Gj, = Cp is an odd cycle, which is also obviously edge critical. This proves one direction
of Theorem 1.1. The rest of this paper is devoted to the proof the other direction of
Theorem 1.1 and the proof of Theorem 1.2. We shall first present a systematic way of
constructing, for any pair of integers p ^ 2q and (p, q) = 1, a subgraph M(p,q) of G9,
which has the same circular chromatic number as Gq. Once the construction is finished,
the proofs of Theorems 1.1 and 1.2 are just a comparison of the number of edges of Gq

p

and M(p,q). The method presented here is a generalisation of the method used in [5]
and [15] to construct planar graphs with circular chromatic number r for any rational
2 ^ r ^ 4. In case q = 1, then the graph M(p, q) = Gp = Kp. In the following we only
need to consider the case that p/q is not an integer.

For the remaining part of this section, we assume that p/q > 2 is a fixed rational
number and that (p, q) = 1. Let m — \p/q\- Thus p/q is strictly between m and m + 1.
To construct the graph M(p, q), we need to construct two auxiliary sequences of numbers:
the Farey sequence and the alpha sequence, which are determined by the number p/q.

Let p', q' be the unique positive integers such that p' <p, q' < q and pq' - qp' = 1.
It is straightforward to verify that p'/q' < p/q and that p'/q' is the largest fraction with
the property that p'/q' < p/q and p' ^ p. Similarly, we let p", q" be positive integers such
that p" < p', q" < q1 and p'q" - p"q' - 1. Then p"/q" is the largest fraction with the
property that p"/q" < p'/q' and p" ^ p1. Repeating this process of finding smaller and
smaller fractions, we shall stop at the fraction m/1 in a finite number of steps. Thus we
obtain a unique sequence of fractions

m = p o < p 1 < P 2 < < P n = P
1 <?o Q\ 92 Qn Q'

We call the sequence (Pi/qt : i = 0 , 1 , . . . , n) the Farey sequence of p/q.

For convenience, we let p_i — - 1 and g_i = 0. As Pi<fc-i — Pi-ift = 1 and pi_ig,_2 -

Pi-2qi-i = 1, it follows that Pi-i(<ft + ^-2) = Qi-i(Pi +Pt-2) for i ^ 1. As pi_i,ft_i are
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co-prime,
Pi + Pi-2 9i + 9i-2

at = =
Pi-i <7i-i

is an integer (for i ^ 1), which is greater than 1, and hence is at least 2. We call
(ai,a2,..., an) the alpha sequence oip/q, which is obviously uniquely determined by p/q.
The process of deducing the alpha sequence from the rational p/q can also be reversed. In
other words, given the integer m, each sequence (ai,a2,... ,an) with a* ̂  2 determines
a rational p/q between m and m + l. Indeed, given the alpha sequence (a\,a2, • • •, ctn),
the fractions Pi/ft can be easily determined by solving the difference equations
(*) Pi = aiPi-i - Pi-2, qi = a.9i-i - <?t-2,

with the initial condition that (p_!,g_i) = (—1,0) and (po,9o) — (jn, !)•

Having determined the alpha sequence

{a-i,a2,... ,an)

and the Farey sequence

W _ P o P i £ 2 P n _ P
1 <?o 9i 92 Qn q

of p/q, we can start the construction of the graph M{p,q).

We shall construct a sequence of graphs G{ such that Xc(Gi) = Pi/qi- Then M(p, q) =
Gn. Before constructing the graphs Gi, we shall recursively construct ordered graphs
Fi, Hi, that is, the vertices of F{ and H{ are linearly ordered. Let fc = |Fj| and hi = \Hi\,
then the vertices of Fi will be denoted by (xi>i,Xit2,---,Xiji) in that order, and the
vertices of Hi will be denoted by (2/i,i, 3/i,2, • • •, Vi.hi) m t n a t order. For an edge e = (x, y)
of an ordered graph, we define the order length of e, denoted by £(e), to be the positive
difference between the positions of x and y.

DEFINITION 2 . 1 . Suppose X and Y are disjoint ordered graphs whose vertex
orderings are (xi,x2, • • •, xs) and {yi,y2, • • •,yt), respectively. When we say hook X to
Y, it means to add the following edges between X and Y:

x\yt, xiyt-i,..., Xiyt-m+2, xsyx, xsy2, xsy3,..., xsym-X.

The result of hooking a sequence Xit X2,.. .,Xp of ordered graphs is regarded as another
ordered graph, the order of the vertices being: those of X\ in order, followed by those of
X2 in order, and so on.

For an integer t, we let Qt be the ( m - l)th power of the path of length t - 1,
that is, Qt has vertex set {i>i, ^2, • • •, vt} in which two vertices vt and Vj are adjacent if
\i — j \ ^ m — 1. The graph Qt is considered as an ordered graph in the following, where
the order of the vertices is (vi, v2,..., vt).
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First of all, we let Fi be a singleton, let Hi = Qmai, and let F2 = Qm(ai-i)-

For i ~£ 1, to construct the graph Hi+\, we take aj+i copies of Fi, denoted by

F>, Ff,..., F°i+l, and ai+1 - 1 copies of Hu denoted by H}, Hf,..., H?i+1~\ If i is

odd, then for j = 1,2,..., a j +i - 1, we hook Fj and F / + 1 to H\. If i is even, then for
j = 1,2, ...,ai+i - 1, we hook H{ to F/ and F / + 1 . The resulting graph is Hi+l. The
graph Fi+2 is constructed in the same way as the graph i/j+i, but with one less copy of
Fi and Hi, that is, .Fj+2 is constructed from aj+i — 1 copies of Fi and (*i+i — 2 copies of
Hi, by appropriately hooking them together.

Finally when i is even, we let d be the graph obtained by hooking Hi to Fi\ when
i is odd, we let Gi be the graph obtained by hooking Fi to /fj.

This finishes the construction of the graphs Gi. The graph M(p,q) is equal to Gn.
We note that when m = 2, the graphs constructed here are the same as constructed by
Moser in [5].

3. T H E CIRCULAR CHROMATIC NUMBER

In this section, we shall prove that M(p, q) = Gn is a subgraph of Gq
p and that

Xc(M(p,q)) =p/q.

First we count the number of vertices of Gj.

LEMMA 3 . 1 . The graph Gi has pt vertices.

PROOF: From the construction of Gi, we know that G< has gt = fi + hi vertices.
From the construction of Fi,Hi, we know that

/i = 1, h = mai - mi hx-max,

and for i ^ 2,
hi = aifi-i + (at -

for i ^ 3,

fi = (tti_, - l)/i-2 + (Oi

Simple algebraic calculation shows that

Hence

9i — ongi-i - flj-2-

Since gi = Pi,gi — P2, and gt,Pi satisfy the same difference equation, we conclude that

\G,\ = gi = Pi. •

Next we shall show that M(p, q) is a subgraph of Gq
p. For this purpose, we shall

prove by induction that for each i ^ n, the graph Gi is a subgraph of G£.
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Before proving this, we need some preliminary results about the relation between
the Farey sequence and the alpha sequence. We observed before that the Farey sequence
is uniquely determined by the alpha sequence. The numbers pi and ft are obtained by
solving the following difference equations:

(*) Pi = i-i - Pi-2, ft = O!jft_i - ft_2,

with the initial condition that (p_i,q_r) = (—1,0) and (po,<7o) = ("*, !)•

By repeatedly applying the equation (*), we may express Pi (respectively ft) in terms
of pj and pj-\ (respectively qj and <?;-i) for any 0 ̂  j ^ i — 2. Lemma 3.2 below gives
the explicit expressions.

For 1 ^ r < s < n, we let

Ar,3 = det

1 a r + 1

0
0

LEMMA 3 . 2 . For 0 < j ^ i - 2, we have

{**) Pi = PjAj+i,i - Pj_iAj+2,i, ft = 9,Aj+ M - 9i_1Aj+2,i

PROOF: It suffices to prove the first equality. We shall prove it by induction on i.
When i — j + 2, by applying (*) twice, we obtain (**). Suppose i ^ j + 3, and that (**)
is true for any i' < i. Then by cofactor expansion,

= "iPt-1 - Pi-2 — Pi-

The second equality uses the induction hypothesis.

By letting j = 0 in (**), and by using the initial condition, we have

(* * *) Pi = mAi,i + A2,i, ft = Aiti.

LEMMA 3 . 3 . For 0 ^ j ^ i — 2, p;ft = piqj - AJ+2,i.

P R O O F : By applying Lemma 3.2, we have
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LEMMA 3 . 4 . For any 2 < t ^ i, A(,, < At-\,i- •

We omit the proof, which is an easy induction, by noting that a, ^ 2.

Let the vertices of Gq
p\ be {0,1,...,pt- 1}. We shall define a 1-1 mapping c from

V(G{) to V(G«;) as follows:

We know that the vertex set of Gi is the union of the vertex set of F{ and the
vertex set of Hi, while the vertices of Ft are (2^1,3:^2,... , Zi,/,) and the vertices of if,-
are (yit\, y»,2, • • • ,2/.,/^)- We shall rename the vertices of Gt by letting Vj = xtj for j =
1,2,. . . , fu and let u,- = yid-fi for j = £ + 1, ft + 2 , . . . , ft + fn(= pt).

Let C{VJ) = jqi (mod Pi). As Pi and ft are coprime, we know that c is a 1-1
mapping. Now we shall show that for any edge (VJ,VJ>) of Gt, (C(VJ),C(VJI)) is an edge of
G"p\, that is, 9 i ^ \C{VJ) - C(VJ>)\ ^ p { - ft.

First we determine the order length of all edges of Gi- Recall that the order length
£(e) of an edge e = (x, y) is the positive difference of the positions of x and y in the above
ordering of the vertices of Gi, that is, if e = (vt, VJ) then £(e) = \i — j \ .

LEMMA 3 . 5 . Let L = {p}•, - s : 0 ^ j ^ i, 1 ^ s ^ m - 1}. Then for any edge e
ofd, we have e{e) e L.

PROOF: This is easily proved by induction. Each edge of Hi or F^ has order length
m - s = po - s for some 1 ^ s ^ m - 1. Suppose the order length of edges in Hj and
Fj are elements of L. When copies of Fj and Hj are hooked together to form //j+i or
Fj+2, then the order length of the edges in the copies of Fj and Hj are unchanged. For
those edges e of the hooks, it is easy to verify that either £(e) 6 {1,2 , . . . , m — 1} or
V.(e) S {pj - l,pj — 2,...,pj — m+l}. This completes the proof of Lemma 3.5. D

LEMMA 3 . 6 . For each i ^ n, the graph d is a subgraph ofGf..

PROOF: It suffices to show that the mapping c defined above is edge preserving,
that is, for any edge (x, y) of Gt, ft ^ c(x) - c(j/)| ^ p{ - ft.

Suppose e = (x, y) is an edge of Gi of order length £(e). Then by the definition, we
have c(x) - c(y)\ = £(e)ft (mod pi). By Lemma 3.5, £(e) e L.

By Lemma 3.3, for any 0 ^ j• ^ i — 2, we have

PjQt = PiQj

By Lemma 3.4, (* * *) and the definition of Ar)J, and by noting that p0 = m, go = 1, we
have

2 ^ a; = Aiti ^ Ai+2,i < A2,j -Pi- mft.

This implies that for any 0 ^ j < i - 2 and 1 ^ s ^ m - 1,

ft =Pi~ (m - l)ft - A2,i ^Pi- sft - AJ+2,i ^ Pi - sft - 2 < pi - ft.
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Now if £(e) = pj - s where 0 ^ j ^ i — 2 and 1 ^ s < m - 1, then by Lemma 3.3, we
have

c(x) - c(y)| = (pj - s)qi = p{- sq{ - Aj+2ii (mod p{),

and so <?, ^ \c(x) - c(y)\ ^ pt — qit as required.

If £{e) = p;_i - s for some 1 < s < m — 1, then since Pift-i — Pi-ift = 1 by the
definition of the Farey sequence, we also have

Qi ^ Z{e)qi (mod p<) ^ p{ - qt.

If l{e) — pi- s for some 1 ^ s < m - 1, then trivially we have

9i ^ £(e)qi (mod Pi) ^ p{ - q{.

D
As M(p,q) = Gn, it follows that M(p, q) is a subgraph of Gq

v. Next we shall prove

that XC{M{P, q)\ — p/q. This is achieved by showing recursively that for each i, Xc{Gi) =

Vilii-

As Gi is a subgraph of G£", it follows that Xc{Gi) ^ Pi/qi- Thus it suffices to show
that Xc{Gi) ~Z Pi/qi- First we need a few lemmas.

Lemma 3.7 below was proved in [4] and also implicitly used in [9, 12]. Suppose
k ^ 2d are integers and (k,d) = 1. We call a homomorphism of G to the graph G\ a
(k, d)-colouring of G.

Given a (k, d)-colouring c of a graph G, we define a directed graph DC(G) on the
vertex set of G by putting a directed edge from x to y if and only if (x, y) is an edge of
G and that c(x) - c(y) = d (mod k).

LEMMA 3 . 7 . For any graph G, Xc{G) = k/d if and only ifG is (k, d)-colourable,
and for any (k, d)-colouring c ofG, the directed graph DC(G) contains a directed cycle. D

A simple calculation shows that the length of the directed cycle in DC(G) is a multiple
of k, and hence is at least k.

COROLLARY 3 . 1 . For any graph G, if Xc{G) - k/d where (k,d) = 1, then G
has a cycle of length at ieast k. In particular k ^ V(G)\. D

Suppose Xc(Gi) = Pi/qi, and that A is an (pi,qi)-colouring of G{. It follows from
Lemma 3.7 that there is a directed cycle of D&(Gi) of length at least pt. Since \Gi\ = pit

we conclude that there is a Hamiltonian cycle, say Q = (ci,C2,... jCp^Ci), of Gi such
that A(cj) - A(CJ_I) = qi (mod pt).

We say a Hamiltonian cycle Q = (c\,C2,...,Ct,c\) of the graph G is a good Hamil-
tonian cycle (with respect to p/q) if for any edge (cfc, cs) of G we have k - s ^ m, m + 1.
Similarly a Hamiltonian path P = (ci, c-i,..., ct) of a graph G is a good Hamiltonian path
if for any edge (ck, Q ) of G, we have k — £ ^m,m+l.
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Now we shall show that if Xc{Gi) = Pi/qt, then the Hamiltonian cycle induced by
any (p;, (^-colouring of Gj is a good Hamiltonian cycle.

LEMMA 3 . 8 . Suppose Xc(Gi) = Vilii &nd that A is an (p{,qj-colouring ofGi.
Let Q = (ci, c2,. • •, Cp,., ci) be a Hamiltonian cycle ofGi such that A(CJ) - A(c;_i) = g,
(mod p ^ . Then Q is a good Hamiltonian cycle ofGi.

P R O O F : Assume to the contrary that there is an edge (c^, cs) of Gj such that \k — s\ =
m o r m + 1 , Then A(cjt) — A(cs) = mqi (mod p*) or (m + 1)<7J (mod p,-). However,
Pi - qi < mqi < Pi and (rn + 1)^ (mod Pi) < qit because m < Pi/qi < m + 1. This is
contrary to the assumption that A is a (p^, (^-colouring of G*. D

LEMMA 3 . 9 . Ifiis odd (respectively even), then for any good Hamiltonian path
P of Hi (respectively Fj), the first (m - 1) vertices of P (as a set) are the first (m-l)
vertices of Hi (respectively Fi), and the last (m — 1) vertices of P (as a set) are the last
(rn — 1) vertices of Hi (respectively Fi). Here we may reverse the order of all the vertices
of P, if needed.

P R O O F : First we consider the graphs Hi and F2. Each of them is of the form Qt

for some positive integer t. We shall simply prove that for any positive integer t, the
graph Qt has a unique good Hamiltonian path, up to an isomorphism. When m = 2,
then Qt is simply a path, and there is nothing to be proved. When t ^ rn, then Qt is a
complete graph, and there is also nothing to be proved. Assume now that t ^ m + 1 and
m ^ 3. Suppose the vertices of Qt are 1,2, . . . , t, where (x, y) is an edge if and only if
\x - y\ ^ m - 1. Let P = (xi,x2, • • • ,xt) be a good Hamiltonian path of Qt. Then for
any edge (xi,Xj) of Qt, we have \i — j \ ^ m,m + 1. This, in particular, implies that for
any i ^ t — m, the pair (xi, Xi+m) is not an edge of Qt. In other words, for any i ^ t — m,
\xi - xm+i\ ^ m.

We shall assume that Xi < xm+i. The case that xi > xm+i can be treated similarly.
(In that case, we need to reverse the order of all the vertices of P.) Since \xi -xm+i\ ^ m,
we h a v e xi ^ x m + i - m . B e c a u s e x 2 ^ x x + rn — 1 a n d x m + 2 ^ x m + l - m + 1 ( a s
{xux2) and (xm+\,xm+2) are edges of Qt), we conclude that x2 ^ xm+2 +m-2. Since
| z 2 - z m + 2 | ^ m, we conclude that x2 < xm+2-m. Repeating this argument, we can prove
that Xi ^ xi+m - m for alii ^ t - m. This implies that {xltx2,... ,xm} = { 1 , 2 , . . . , m } ,

for otherwise there would exist an x ^ m and an i ^ 1 such that Xj+m = a; and hence
1 ^ Xi $C Xi+m — m = x — m ^ O , an obvious contradiction.

Suppose re, = TO + 1. Then i ^ m + 1, by the previous paragraph. Since Xj_m <
i i — m = 1, we conclude that Xj_m = 1. If i — TO > 1, then 2 ^ Xi_m_i 4 f i and hence
\xi - i i _ m _ i | ^ TO - 1 and Xj_m_iXi is an edge of Qt, contrary to the assumption that P
is a good Hamiltonian path. Therefore we have xx = 1 and xm+l = m + 1.

Now we shall prove by induction that for all 1 ^ i ^ min{m, t — m), we have Xi = i
and xi+m — i + m. When i — 1, this has been proved in the previous paragraph. Assume
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that for any 1 ^ j < i, we have Xj = j and i ; + m = j + m. Let i + m = xk. By
the previous discussion and the induction hypotheses, we know that k ^ i + m. Since
Xk-rn ^ Xjt — m = i, we conclude that £*_„, = i, because xk-m 7̂  j for any j < i by
the induction hypotheses. If k > i + m, then i < Xk-m-i $J m (by using the induction
hypotheses). This implies that {xk-m-\, %k) is an edge of Qtt contrary to the assumption
that P is a good Hamiltonian path. Therefore we must have Xi — i and Xi+m — i + m,
for all i ^ min{m, t — rri). If t ^ 2m, then we have x, = i for all 1 ^ i ^ i. If t = m + j
for some 1 < j < m, then x< = i except possibly where j + 1 ^ i ^ m. But each
vertex labelled j +1,..., m is adjacent to every vertex of Qt except itself, so an arbitrary
permutation of these vertices gives an automorphism of Qt.

This finishes the proof that any good Hamiltonian path of Hi (respectively F2) has
the same first (m — 1) vertices and the same (m — 1) last vertices as Hi (respectively
F2).

Assume that the lemma is true for i. We shall show that it is true for i + 1. First
we consider the case that i is even. The graph ifj+i is obtained by approriately hooking
copies of Hi to copies of F{ (see the construction in Section 2).

Since the first and the last vertex of each copy of Hi (in Hi+i) form a 2-vertex cut of
Hi+i, we conclude that any good Hamiltonian path of Hi+X is the concatenation of good
Hamiltonian paths of the copies of Fi and H^. Therefore the first (m - 1) vertices of any
good Hamiltonian path of Hi+i are the first (m — 1) vertices of a good Hamiltonian path
of the first copy of Fj. By the induction hypothesis, these (m - 1) vertices are the first
(m — 1) vertices of the first copy of Fi, which by definition are the first (m — 1) vertices
of Hi+X. Similarly the last (m — 1) vertices of any good Hamiltonian path of Hi+i are
the last (m — 1) vertices of Hi+\.

The case that i is odd can be treated similarly, and is omitted. D

LEMMA 3 . 1 0 . Suppose Xc(Gi) = Pi/qi for some i. Let A be any (pi, q^-colouring
of Gi. Hi is odd, then the colours of the first and last vertices of F{ uniquely determine
the colours of the first and last (m — 1) vertices of Hi. Conversely, the colours of the
first and last (m — 1) vertices of Hi uniquely determine the colours of the first and last
vertices of Fi. Hi is even, then the colours of the first and last vertices of Hi uniquely
determine the colours of the first and last (m — 1) vertices of Fi. Conversely, the colours
of the first and last (m — 1) vertices of Fi uniquely determine the colours of the first and
last vertices of Fi.

P R O O F : We only consider the case that i is odd. Let A be a (pi, (^-colouring of GV
By Lemma 3.8, there is a good Hamiltonian cycle Q = (c\, C2,.. •, Cpj; Ci) of Gi such that
A(cj) - A(Cj_0 = qi (mod p{).

The graph d is obtained by hooking Fi to Ht. The first and the last vertex of Ft

form a 2-vertex cut of Gi. Therefore the good Hamiltonian cycle Q is the union of a
good Hamiltonian path P of Hi and a good Hamiltonian path P' of Fi. By Lemma 3.9,
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the first (m — 1) vertices of P are the first (m — 1) vertices of ff,, and the last (m — 1)
vertices of P are the last (m - 1) vertices of Hi. As the first and the last vertex of F<
form a 2-vertex cut of Gi, the first and last vertex of P' must be the first and last vertex
of F;, respectively. Therefore the colours of the first and last vertex of F,- are uniquely
determined by the colours of the first and last (m - 1) vertices of Hi, and that the first
and last (m — 1) vertices of Hi are uniquely determined by the colours of the first and
last vertices of F,-. D

To prove that Xc{Gi) > Vilii (and hence Xc(Gi) = Pi/qi), we need another gadget.
If i ^ 2 is even, let T, be the graph obtained by hooking F ^ to Ft. If i > 2 is odd, let
Ti be the graph obtained by hooking F* to F,_i.

THEOREM 3 . 1 . For each i ^ 2, Xc(Gi) = Pi/qt and Xc{Ti) > pj- i /f t- i . Moreover,

Xc(Gi) = Pi A/i-

PROOF: First we prove that Xc{Gi) = Pi/qi- By Lemma 3.6, it suffices to show that
Xc(Gi) > P\/q\- It is easy to verify that x(Gi) = m + 1. Hence Xc{Gi) > m. Suppose
Xc(Gi) = k/d > m, then k < JV(GX)| = pi by Corollary 3.1. Therefore k/d > pi/gj,
because it follows from the construction of the Farey sequence that any fraction a/b
strictly between m = po/qo and P\/q\ must have numerator a > p\.

Next we show that Xc(Ti) > Pi/q\- Again it is easy to verify that xC^) = m + 1.
Suppose Xc(T2) = fc/d > m. As JV(T2)| < pi (because |V(F2)| < ^(HOJ), we know that
k < pi. Therefore k/d > p\/q\, because by the construction of the Farey sequence, any
fraction a/b strictly between m and p\/q\ has numerator a > p\ (note that k/d ^ PI/Q\)-

Now assume that i ^ 2, Xc(7i) > Pi-i/<?«-i ajid that Xc(Gj_i) = Pi-i/ft_i. We shall
prove that Xc(Gi) = Pi/qt.

Assume to the contrary that Xc(^i) = k/d < Pi/qi and (k, d) = 1. Then k ^ Pi and
hence fc/d ^ pj_i/ft_i, because by the construction of the Farey sequence, any fraction
a/b strictly between pj_1/gi_1 and Pi/qi has numerator a > pi. Since Xc(G,-i) = Pi—l/ft—i
and that Gj_! is a subgraph of G{, it follows that Xc(Gi) =Pi_i/<7i_i.

Let A be a (pi_i, 9i_i)-colouring of Gi. The graph G, is obtained by hooking Hi and
Fi together, and Hi is constructed from di copies of Fj_i and a* — 1 copies of #i_i . The
union of the first copy of Hj_i the first copy of F{_t induces a Gi_i. The union of the
first copy of //j_i and the second copy of Fj_i also induces a Gi_i.

Assume first that i is odd. By using the induction hypotheses that Xc(G<_i) =
p i - i / ^ - i , and by applying Lemma 3.10 to each of the two copies of G,-!, we conclude
that the last (m — 1) vertices of the first copy of Fj_i are coloured the same way as the
last (m - 1) vertices of the second copy of Fj_i. Similarly, the first and last vertices of
the first copy of //j_i are coloured the same way as the first and last vertices of the second
copy of i/i-i- Repeating the same argument, we conclude that the last (m — 1) vertices
of the first copy Fj_i are coloured the same way as the last (m — 1) vertices of the last
copy of Fj_! of Hi.
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This implies that the restriction of A to the union of Ft and the first copy of F,_i in Hi
is indeed a (pi-i, gi-ij-colouring of Tiy contrary to our assumption that Xc{T%) > Pi_i/<fc_i.
The case that i is even can be treated similarly.

Finally, assuming that i ^ 2, Xi(Gt) = Pi/qi and that Xc{T{) > Pj_i/gj_i, we shall

prove that Xc(TJ+i) > Pi/qi-

Assume to the contrary that Xc(7i+i) = k/d ^ Pi/qi- Since |F i + 1 | < \H{\, hence

|Ti +i | < \Gi\ = pi. It follows from Corollary 3.1 that k < pt. As p^i/q^i is the

largest fraction with the property that PJ_I < p; and pi_i/<?j_i ^ Pi/qu we conclude that

Xc(Ti+i) ^pi-i/qi-i.

We consider two cases:

C A S E 1. at = 2. In this case Fi+i = F<_i, and hence Ti+X = 7}. By the induction

hypothesis, xc(T-) >pi_i /g i_1 .

C A S E 2. at > 2. In this case Fi+i consists of a — l copies of Fj_! and a j - 2 copies of //;_i.
The union of any copy of Fj_t and the consecutive copy of Ht_i induces a copy of Gj_i.
Therefore we must have Xc(Ti+i) — Pi-\/qi-i- Using the same argument as before (see
the proof of the fact that Xc{Gi) = Pi/qi), we conclude that for any (pi-^Qi-iJ-colouring
A of Ti+i, the restriction of A to the union of Fi and the first copy of Fi_t in Fi+l is
indeed a (pi_i,gi_1)-colouring of T{, contrary to our assumption that Xc(Ti) > pi_1/gi_1.
This completes the proof of Theorem 3.1.

D

4. COUNTING THE NUMBER OF EDGES

In this section, we shall prove Theorems 1.1 and 1.2, by counting the number edges

of M(p,q) for special values of p and q.

P R O O F OF THEOREM 1.1: It has been proved, at the beginning of Section 2, that if

<7 = l o r p = 2 g + l then Gq
p is edge critical. It remains to show that if q ̂  1 and p ^ 2q+1

then Gq
p is not edge critical. As M(p, q) is a subgraph of Gq

p with Xc(M(p, q)] = p/q,

it suffices to show that M(p,q) ^ Gq
p. This is obvious, because Gq

p is regular, but when

q ^ 1 and p / 2q + 1, M(p, q) is not regular. D

P R O O F OF THEOREM 1.2: First we consider the case that r is rational. Let 2 ^

m < r ^ m + l b e any rational number. Let (QI, 0:2,..., an) be the alpha sequence of r.

Note that when r = m + 1, then we let the alpha sequence be (1). This does not satisfy

the definition of alpha sequence, however, all the argument below are still valid.

For each i Js 1, let r* be the rational number corresponds to the alpha sequence

(ai, C*2J • •., an + 1,2,. . . , 2), whose first (n — 1) entries coincide with the first (n - 1)

entries of the alpha sequence of r, the nth entry is equal to 1 plus the nth entry of the

alpha sequence of r, and the last i entries are equal to 2. In particular, when r = m + 1,

then the alpha sequence of r{ has i + 1 entries, all equal to 2.
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Let

m/1 = po/qo < px/ql < < pn-2/qn-2 < pn-i/qn-i < Pn/qn = r

be the Farey sequence of r, and let

m/1 = Pa/Jo < P'l/V'l <•••< Pn/q'n < P'n+l/q'n+X < < Pn+i/q'n+i = Ti

be the Farey sequence of T\. Then p'j = pj and q'j = qj for j = 0 , 1 , . . . , n — 1. Moreover,
by applying (**), it is straightforward to verify that

Pn = (XnPn-l ~ Pn-2, Pn = (an + l)pn-l - pn-2

and that for j = 1,2,..., i, we have

Pn+j = (J + ! ) ( K + l)Pn-l - Pn-2) - JPn-l = {j + l)Pn + Pn-1

and similarly

q'n+j ~ (J + l)?n + 9n-l-

Therefore

_
1 ~ (1 + l)qn + gn_!

and hence lim Ti — r.
t—too

As we counted before, the number of vertices of M\p'n+i, q'n+ij is equal to the number

of vertices of G ?+', which is p'n+i. Now we shall count the number of edges of the graphs

In the graph G^?+i, each vertex has degree p'n+i - 2q'n+i + 1 = {i + l)(pn - 2qn) +

pn-x — 2qn-i + 1. Hence the number of edges is equal to

» - 2gB) + p n - l - 29n_1 +

which has order O((i + I)2) as i goes to infinity.

Let Fj and Hj be the graphs constructed as described in Section 2, by using the
alpha sequence of r{. Let a, b and c be the numbers of edges of the graphs Fn, Hn and
Fn+\ respectively. Then for j = 1,2,..., i, Fn+j has a edges if j is even, and has c edges
if j is odd. Let e_,- be the number of edges of Hn+j. Then e, = e,-_i + 2(a + 2m - 2)
when j is odd, and e, = ej_i + 2(c + 2m - 2) when j is even. The number of edges of
M(p'n+i, q'n+i) is equal to e; + a + 2m - 2 when i is even, and is equal to e* + c + 2m - 2
when i is odd. An explicit formula for this number can be found by solving the difference
equation above. However, we shall not bother to solve it, just to observe that e* — e,_i is
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bounded by a constant. Therefore the number of edges of M(p'n+i, q'n+i) has order O(i)
when i goes to infinity. Hence

This completes the proof of Theorem 1.2 for the case that r is rational. If r is irrational,
then we let Sj be rationals less than r but approaching r. For each of the rationals s*,
we construct the corresponding sequence of graphs as above, then we use the diagonal
method to choose one graph from each of these sequences of graphs. It is obvious that
the resulting sequence of graphs gives a proof of Theorem 1.2 in this case. D

When m ^ 3, we know that some more edges can be deleted from M(p, q) without

decreasing the circular chromatic number. However, we do not know if the order could

be reduced to be smaller than O ( wLE'(Gp) J. On the other hand, let H be a subgraph

of Gq
p with the least number of edges such that Xc{H) = p/i- We do not know any

non-trivial lower bound for the number of edges of H.
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