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INTEGRAL GRADIENT ESTIMATES ON A CLOSED SURFACE
YUXIANG LI, RONGZE SUN

ABSTRACT. Let (%, g) be a closed Riemann surface, and let u be a weak solution to the
equation
_Agu = M,

where g is a signed Radon measure. We aim to establish LP estimates for the gradient of
u that are independent of the choice of the metric g. This is particularly relevant when
the complex structure approaches the boundary of the moduli space. To this end, we
consider the metric ¢ = e?“¢ as a metric of bounded integral curvature. This metric
satisfies a so-called quadratic area bound condition, which allows us to derive gradient
estimates for ¢’ in local conformal coordinates. From these estimates, we obtain the
desired estimates for the gradient of w.

Mathematics Subject Classification: 53C21

1. INTRODUCTION

Let fr be a sequence of conformal immersions from the 2-dimensional disk D into R"
satisfying [, |Ax[* < 4w — 7 for some 7 > 0, where A denotes the second fundamental
form. Define the induced metric by gx = fi(grn) = €**geue. The celebrated Hélein
convergence theorem asserts that if the areas of fy(D) are bounded, then ||ug|lr~(p,)

2

remains bounded and f;, converges to a W*2-conformal immersion, or u; — —oo and f;
collapses to a single point. Hélein’s theorem plays a crucial role in variational problems
involving the Willmore functional. However, we can not directly get a meaningful limit
in the collapsing case. When collapse occurs, one typically finds suitable translations y
and scalings \j, and studies the convergence of A\i(fr —yx). However, the areas potentially
tend to infinity, so we need a gradient estimate to ensure that the areas remain locally
bounded.

In [7], the authors employed the gradient estimate |V,G(z,y)| < % to derive gradient
bounds for solutions to equations of the form —Aju = f on closed surfaces. However,
the constant C' depends on the metric g, rendering this approach unsuitable for sequences
whose induced conformal classes diverge in moduli space.

In [8], the first author utilized the conformal invariance of the Willmore energy to es-
tablish gradient estimates under the assumption that fi(D) extends to a closed immersed
surface satisfying ||Al|z2 < C. Several years later, in [10], the authors showed that such
gradient estimates also hold under the density condition

Area(fr(D) N B (y))

2

<C

wr

for sufficiently small r and all y € fi(D). By Simon’s monotonicity inequality([15]), the
extension assumption implies this density condition.

In [9],the authors proved an intrinsic version of these estimates. In this paper, we apply
the method in [9] to provide gradient estimates for solutions to the equation

(11) _Agu = [

where 1 is a signed Radon measure.
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Here, we say that u is a solution to (1.1) if u € L'(X, g) and

(1.2) —/uﬁgwd‘/gz/wdu
b)) by

holds for any ¢ € D(X), where D(X) denotes the set of compactly supported smooth
functions on ¥. It follows easily from Brezis-Merle’s result (see Theorem 2.1 in section
2) and Weyl’s lemma ( cf. [11, Theorem 2.3.1]) that u € W? for any p € [1,2). Since
fz ulAgpdV, is independent of g when the conformal class is fixed, actually the definition
of equation (1.1) depends only on the conformal class of g.

Equations of this type arise naturally and frequently. For instance, if f € L*(%,g),
then fV, can be regarded as a signed Radon measure. More importantly, the Green’s
function may be viewed as a solution to such an equation.

In fact, (1.2) is equivalent to

—2\/—1/u8890:/gpd,u,
) b

i.e. the current —2v/—100u is represented by the Radon measure p. From this perspective,
it is natural to expect an estimate of u that is independent of g.

To state our estimates, we introduce the following notation. We set € to be the set of
conformal embeddings from D into ¥ and define

By(u) = sup{[|Vuo plluwqm,) ¢ € €},

where V denotes the standard gradient operator in the Euclidean space.
When the complex structure approaches the boundary of the moduli space, it becomes
necessary to consider estimates on collars. For 0 < a < %log 2, we let €, be the set of

conformal embeddings from D \ D, into ¥ and define
Eap(u) = sup{[|Vo ol b + @ € Cat-

By convention, we set Dy = {0} and define F, ,(u) = 0 when €, = 0.
Our main result is the following:

Theorem 1.1. Let ¥ be a closed Riemann surface of genus g and u be a solution to (1.1).
Then for any p € [1,2) and 0 < a < Llog2,

Ey(u) < Clp, 9)|ul(X), Eup < Cla,p, g)|pl(X).

Remark 1.2. Such a result does not hold locally. For example, on a disk, for the harmonic
functions uj, = kx' we have ||Vuy|| — +oo uniformly.

Remark 1.3. Applying the Collar Theorem, from Theorem 1.1 we obtain a new proof of
Theorem 0.1 in [16].

The proof of Theorem 1.1 is geometric in nature. Choose a smooth metric g with
[ |Ky|dV, < C and set ¢ = e*g. If we assume |u|(X) = 1, then ¢’ is a metric with
bounded integral curvature in the sense of Alexandrov (we refer to Section 2 for the
definition). By a result in [5], ¢’ has quadratic area bound which, together with a blow-up
argument, yields the desired estimate.

As a corollary, we obtain an estimate on a constant curvature surface involving the
metric.

Corollary 1.4. Let (X, g) be a closed surface with K, =0 or —1, and u be a solution of
(1.1). Then there exists a constant C depending only on the genus, such that

(13) / o [ValdYy < Orlul(5),
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For p € (1,2), our method does not provide a uniform estimate—the constant C' de-
pends on certain geometric data: when K, = 0,

p—1

p=2 7r? E
1.4 5 - S 2);
(1) Il < C0) (gemmr) | )
and when K, = —1,
X(®)?
1. » e b
(15) IVsullincsg) < Ol 5 lil(E),

where Inj is the injectivity radius.

2. PRELIMINARIES

In this section, we list some geometric and analytic results that will be used later.

2.1. Brezis-Merle’s estimates. The following theorem, established by Brezis and Merle [3],
plays a crucial role in this paper.

Proposition 2.1 (Brezis-Merle). Given a signed Radon measure p supported in D C R?
with 0 < |p|(R?) < 400, let

1

Iu(x) = =5~ . log |z — y|du(y).

Then I, € WhU(R2) for any q € [1,2) and weakly solves the equation:

loc

(2.1) —Al, = p.
Moreover, we have
(22) it [ 9L < C@Iu@Y). Vour
D, (z)
and
(4m—e) [ Ll .
(2.3) / e WE) dy < CR>, VR>0 and €€ (0,4m).
Dgr

Corollary 2.2. Let u be a signed Radon measure on D with |u|(D) < 7. Suppose that u
solves (1.1) weakly on D and ||ul|11(py < v. Then for any p < “Z there exists § = B(7,p,7)

such that
/ ePlUl gy < s.
D

1
2

The proof of this corollary can be found in [5].

2.2. BIC metrics. We begin with the following definition.

Definition 2.3. Let (3, go) be a smooth Riemann surface without boundary. Let M(X, go)
denote the set of measurable tensor g = e€*“go with uw € L;,.(X) such that there exists a
signed Radon measure p satisfying

[ odu= [ (oK —udnp)avy, voeDE)

We call pu the Gauss curvature measure of g, and denote it by K.
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Given g € M(%, g9), we define

(24)  dyx(z,y) =inf {/ e'dsg, : 7 is a piecewise smooth curve from z to y in E}
gl
where v is parametrized by its gp-arclength. As mentioned in the introduction, it follows
from the equation in the above definition that u € W,bP(X) for any p € [1,2).Therefore,
dyx is a well-defined distance function whenever d,(x,y) is finite for any z and y. In this
case, we say ¢ is a metric of bounded integral curvature in the sense of Alexandrov. For
other equivalent definitions, see [17].

If |K,|({z}) < 27 for any x € X, d,, is finite (see [5, 12, 13, 14] for more details).

The following estimate proved in [5] is essential for the results developed in the next
section.

Theorem 2.4. Let (X, go) be a closed surface and g = e*gy € M(XZ, go) with |K,|(X) <
+oo. Assume dgy; is finite in ¥ x X. Then

ArealBa(@) g, Lg-(z)

2.5
(2.5) TR? 2w

3. THE GRADIENT ESTIMATE

We begin by proving a gradient estimate on the two-dimensional disk. As mentioned in
the introduction, the examples u;, = kz' show that no gradient estimates can hold when
k is sufficiently large. Therefore, such examples must be excluded.

Definition 3.1. We say g = €*“geue € M(D) has quadratic area bound with constant A,
if for any x and r , we have
Area(BP(x,d,))
r?
Here, by BP(x,d,) we mean the disk is defined with respect to the metric df,whz’ch is dg
restricted to D (see the remark below).

Remark 3.2. Suppose 0y CC Qy and g € M(Qs). Then we also have g € M(€). Let
dy and dy denote the distances induced by g on Qy and s, respectively. Note that dy(z,y)
may be strictly less than di(x,y). However, for any x,y € Qy with di(x,y) < r, we have

dZ(xay) S dl(xvy) < T,

< A.

which implies y € B,.(x,dy) , and thus
B’r(‘ra dl) C B’r(‘ra d?)

Therefore, Theorem 2.4 implies that any topological disk domain of ¥ has quadratic area
bound.

Having the above in mind, in the rest of this section we will simply write B,(x,d,) in place
of BP(x,d,) when there is no risk of confusions.

First, we show Theorem 1.3 in [9] still holds if we only assume that g € M(D).

Lemma 3.3. Let g = €*“geye. € M(D) has quadratic area bound with constant A. Then
for any p € [1,2), there exist positive constants C' and €, such that if |K,(D)| < €, then

||vu||LP(D%) < C.

Proof. Assume the result does not hold, then there exists a sequence g, = €?“*go,. €
M(D) such that || K, ||(D) — 0, while ||Vug||Lr(p,) = +00.
2
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Let v, = I]ng be as in Proposition 2.1. By Proposition 2.1,
sup rp_2/ |VugP — 0.
D, (z)CD D, (x)

Set wy, = uj, — vg, which is harmonic on D. Then ||Vwg||cop,) — +00.
2
Define

2
Pr = sup (g — [z])|Vwg|(z).
CCED%

There exists z, € Dz, such that p, = (2 — |z)) | Vwr| (k). Set re = 1/|Vwg ().

Since 5 1
Pk = (g - §)||Vwk||CO(D%) — +o0,
we have
Tk 1

= — —0,
% — lzul  px
which implies that Dg,, (zx) C D% for any fixed R > 0, when £ is sufficiently large.
Define wy (z) = wi (g + rrx) — wi(zx). We claim that for large k

sup |Vwg|(z) < 2.
r€Dp

Indeed, for large k£ and any = € Dg, ) + rpx € D%,

2 2
(g — |2k ) [Vwg| (z) > (g — |z + re2|) [V (vx + 7)),
which gives
Vuwy(zy + rix)| 2 |z 2 |z
Vuw;|(x :rVwac—l—rx:’ < 3 < 3 < 2,

for k large enough.

By the standard elliptic estimate, we may pass to some subsequence and assume that
wj, smoothly converges to a harmonic function w on every bounded domain of R?, such
that w(0) = 0, |Vw|(0) = 1, |Vw| < 2. By Liouville’s theorem for harmonic functions, Vw
is constant, therefore w = az'+bz? with a®+b* = 1. By rotation, we may assume w = .

Next, we define
v(2) = vp(rez + x) — ek, up(x) = v (x) + wi(z),

where ¢, is chosen such that f I vy, = 0. Then for any = € Dg, we have

/ |w;|p:r;;2/ VP — 0.
D(z) Dy (zp+rie)

By the Poincaré inequality (cf. [1, Theorem 5.4.3]) and Proposition 2.1, we may assume v},
weakly converges to 0 in I/Vlz’f(RQ). By Corollary 2.2 and the Lebesgue-Vitali Convergence
Theorem(cf. [2, Theorem 4.5.4]), for any ¢ € [1,4+00) and R > 0,

(3.1) / e — ™' |9 — 0, / |2 — 2| = 0.
Dpr Dpg
Next, we compute the area bound of the metric go := ehlgeuc. Let T'(0) be the constant,
such that

T(0)
Length((cos 0,sin 0)t|,co.r0), 90) = R, i.e. / "0 — R.
0
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It is easy to verify that

_ log(1+ Rcosf)
B cos 6

T(0) e €700 — Reosh 41

Let a > 0 be sufficiently small and define
T

Q(R) = {(r,0) : 7 € (0,T(0)), ¢ (—g +a,5—a)}
Then

T_a  T(6)
Area(2R),g0) = / / e* oS0 drdf

—5+a JO

5—a

/ (627" cos 97“ 627‘ cosf )
- o 2
—Tia 2cosf  4cos?0 /|,

_ /ga ((Rcos@+1)2T(8) (RCOSG+1)2—1>d9

T(6)
do

L 2cosf 4 cos? 6
379 /1 1 z3—a
= RZ/ (— log(1 + Rcosf) — —) d0+/ RT(6)d6
—5+ta 2 4 —5+a

270 T(9) —
+/2 T) - &
1.4 2cos®

2

s

— R2/2 (% log(1 + Rcosf) — i) df + O(Rlog R).

s
5 ta

Therefore,
Area(Q2(R), go) _
R—lg-loo T R2 o

Since Q(R) C Bg(0,d,,), it follows that
lim Area(BR(ov dgoa gO))

R—+00 TR?

Let T1 = maxy <z, T(0). Fix ¢ > 2. By the first part of (3.1) and Hélder’s inequality,

2r T , 2r  pTh , 1 1 ’
/ / et (r0) w0 g qf = / / e (0 _ w03 r =4 drdh < Clle"s—e" || La(py,) — 0.
o Jo o Jo

= +00.

Passing to a subsequence, we have fOTl ek (0) — w9 dr converges to 0 for a.e. 6 € S'.
For small € > 0, by Egorov’s theorem there exists A C S' with Lebesgue measure less
than e such that fOTl e — e®|dr — 0 uniformly on S*\ A. Set g} = €2 ge,. and

QR,A) =QR)\ {(r,0):0 € A}.
By the Trace Embedding Theorem, for large k,
Length((cos 0,sin0)t|,co oy, 9x) < R+1, V0 € S"\ A,

SO
Q(R, A) C B, ,(0).
By the second part of (3.1), for small € > 0 and large k,

1
Area((R, A), g}) > - Area(Q(R), go).
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Therefore, for suitable R > 0,

Area(Bf%;;l(O),g;) B Area(B{g, 1y, (Th), 9r) S A
m(R+1)2 N T((R+ 1)ry)? ’

which contradicts the quadratic area bound condition for gy. O

Next, we remove the assumption that |K,|(D) < .

Theorem 3.4. Let g = €*“geye € M(D). Assume g has quadratic area bound with
constant A and |K,|(D) < A'. Then for any p € [1,2), there exists a constant C' =
C(A, N, p) such that

IVulliy) < C.

Proof. Suppose the conclusion fails, then there exists a sequence g, = €2“*g.,. with
1K, [(D) < A" and quadratic area bound with constant A such that

||Vuk||Lp(D%) — +00.

Let v, = Ing and wy = ux — vx. By Proposition 2.1,
rp_Z/ Vo[ < C, VD,(z) C D.
D (z)

Thus,
sup |Vwy| — +oc.
%
Passing to a subsequence if necessary, we may assume that |K,, | converges weakly to a
Radon measure p. Let g > 0 be as in 3.3 and set

S={zeD:u{x}) > %O}

Clearly, S is a finite set. For any z ¢ S, we can find r > 0, such that |K,, |(D,(x)) < € for
sufficiently large k. Then [|[Vug||Lo(p, () < C(r), which implies that ||[Vwy||Le(p, () <
C(r). By the standard elliptic estimate, after passing to a subsequence we may assume
that there exist constants ¢, (for instance, fix a point pg ¢ S and let ¢, = wg(po)) and a
harmonic function w, such that wy — ¢, — w smoothly on 2 for any Q CcC D\ S.
Choose 1y > 0 such that for any distinct p,p’ € S, D,,(p) N D,,(p') = 0. For any
& € Dyy/a(p), 0Dy 2(x) C Dyo(p) \ Dyyja(p). Applying the mean value property of har-
monic functions on 0D, /»(x), it turns out that wy — ¢y, are uniformly bounded on D, 4(p).
Therefore, |Vwy| are uniformly bounded on D, /4(p), hence |Vwy| are uniformly bounded
on D%, which leads to a contradiction. O

Proof of Theorem 1.1: Without loss of generality, we assume |u[(X) = 1. Choose a
smooth metric g with [, [Ky|dV, < C(g), where C(g) depends only on the genus g of 3.
Set ¢ = e*"g € M(X,g). Then

Kg/ = U — Kgd‘/g
Moreover, we have |K|,({z}) < 27 for any x, so dy is finite. By Theorem 2.4, both ¢’

and g have quadratic area bound with some constant A > 0.
For any ¢ € €, ¢ defines a local isothermal coordinate chart. In this chart, we write

90* (g> = 621)geum 90* (g/) = 62(quv)geuc-

By Theorem 3.4,
||VUHLp(D%) < C, HV(U +U>HLP(D%) <C
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which implies the first part of Theorem 1.1.

Next, we consider ¢ € €, and define v as above. For simplicity, let a = 27™ with m > 2
being a positive integer. Note that for any x € Dy2—; \ Doi-;(where 2 < j < m), we have
Dy-i(xz) C D\ D,. By a rescaling argument,

/ VP < C(279).
D,—j(x)

o—3

By a covering argument,

/ IVl < O,
Dy i\Dy—i-1

SO

VulPdr < C 2712,
/D Vul S @)

27 \D,_ 1 i=1

For the case a = 0, letting m — oo we get

Vulp < 0> (272,
/;21\{0} ;

4. ESTIMATES ON A SURFACE OF CONSTANT CURVATURE

In this section, we assume that K, = 0 or —1 on ¥ and that u is a solution of (1.1).
The main aim is to prove Corollary 1.4, as well as (1.4) and (1.5). For simplicity, we also
assume |u|(X) = 1 throughout the section.

4.1. The flat case. We first consider the case K, = 0. Note that (1.3) and (1.4) hold for
g if and only if they hold for Ag for any A > 0. Since the lattices {1, z;} and {1, 25} induce
the same complex structure if z, = 212242 where (a;;) € SL(2,Z)(see the subsection

IV.7.3 of [6]), there is no loss of generality in assuming that (3, h) is induced by the lattice
{1,a 4+ b/=1} in C, where |a| < 3, b >0, and a* 4+ b* > 1. Set

p=Va?+b, 0= arccosg, v=(p,0). w=(cosh,sinb).
)

Then (X, h) is also induced by the lattice {v,w}, where it necessarily holds that p > 1
and I <6 <2

Let IT : C — X be the covering map. Let u’ denote the lift of u, i.e. v’ = uoll. For any
r e C,and r < ‘/Tg, D,(x) can be viewed as an isothermal coordinate chart of 3 around

II(z) (Indeed, the inscribed circle of a fundamental parallelogram has radius at least \/T?,)
By Theorem 1.1,

/ |V [Pdz < Or*P.
D, (z)

S

V3

By setting r =

and using a covering argument, we have

"\p
/[i,i+1]x[_sige sin® Vu'|P < C.

72
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Without loss of generality, we assume 0 is a lift of xy. When r < 3, note that r/8 < \/Tg.
Covering D,(0) with finitely many D: (x) (having a universal upper bound on the number
of disks) gives

/ |V ulPdV, < / |V [Pde < Or*P.
B (x0) r(0)

When p = 1, this yields (1.3). When p € (1,2), since 0 < C' < %’W < 1, we obtain
(1.4).

When r > 3, let m be the smallest integer such that r < m. It is easy to check that if
T € H([_m m] % [_sm& 51n0])7 then

2772 2 72
in6
dy(, 39) < J(%)uflg P<m-1<r,
SO
m m sinf sin 6 sinf sinf
4.1 I([——, — — BY II([— X [—
( ) ([ 2,2]X[ 9 ) 9 ])C r(xO)C ([ m7m] [ 9 ) 9 ])7
Then
m—1
|V ulPdV, < / |Vu'|P = |Vu'|P < Cm.
/BT(P) [—m,m]x[—SiDe sinf] Z:Zm [—m,m]x|— S8 sine]

When p =1, using m — 1 < r, we get (1.3). When p € (1,2), by (4.1),
Area(BY(z0)) < Cm < 2Cr,

SO
rP

Area? ! (B{(x))

> CrP /rP~! = Cr,
which yields (1.4).

4.2. On a hyperbolic surface. Now, we assume K, = —1.
Let r, denote the injectivity radius of g at x. Since
Area(BY (x)) = 2m(coshr, — 1) < Area(X) = 27|x(X)],

it follows that r, is bounded above by a constant depending only on the genus of X.
It is well-known that for any r < r, (B¢(z), g) is biholomorphic to (D, g,), where

_( 2 sinh(r/2) )2
=\ s (/222 T

By applying Theorem 1.1, one readily verifies that when r < r,/2,

/ |V ulPdV, < Cr*~P.
BI(x)

Let a > 0 be fixed and X, be the set of points where r, > a. By Vitali’'s 5-times

covering theorem, there exist pairwise disjoint closed balls {B? 10(@i)} with @; € Xq such

that {Bg/2(z;)} cover ¥,. Then
Area(X
a/10
where V; 19 is the area of a disk of radius a/10 in the hyperbolic plane. Therefore
Y 2- )y
/IVWP<CWg”<% p<0m<»
Za

a 2 ap

which gives (1.5) by letting a = %Inj(Z, g).
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Next, we consider the collar regions, which are components of ¥ \ X, sinn1. For more
details on collars, we refer the reader to [4]. In particular, we note that the total number
of collar regions is bounded by 3g — 3, a constant depending only on the genus.

Let v be a geodesic loop of length £(y) < 2arcsinh 1, v defines a collar U C ¥, isometric
to St x (=T, T) with the metric

)\ 2
(COS At) (dt® + db?).

See the appendix for the definitions of 7" and .
We claim that for small A > 0 and any ¢, satisfying [t;| < T — L,|to] < T — 1,
|ta — t1] < 2, there exists a universal constant Cj > 1 such that

cos Ao

(4.2) Cit < < Cy

cos Aty
In fact,(4.2) holds with Cy = €2, Indeed, Lagrange’s mean value theorem (together with
the fact A\(T'— 1) < § — \) gives that

| log cos Aty — log cos At < A|ta — t1| sup [tant| < <2

ltl<Z-x an A

From which the claim follows.
Let k, m be integers.We claim that

/ |V uldV, < Cdj,m

[k,m]x St

for any =T+ 2 < k <m < T — 2, where we define

(4.3) dip = dy({t} x S*, {t'} x S1).

We first prove the case k > 0. Let Q; = [i,i + 1] x S'. By Theorem 1.1,

(4.4) |Vul|dtdd < C.
Qi
Since t — ﬁ is increasing on [k, m], (4.4) implies that
VuldV, < C —<C ds.
Af,m]XSll guldVy < ; cosA(i+1) — /k+1 cos hs
Note that, by (4.2) and the monotonicity of cost on [0, 7],
" Xds 1 \ds “\ds
4.5 < <C .
(4:5) /1'1 cosAs — /Z COSAS — /1'1 COS AS
Hence

m+1 m—1
/ As C/ S G
k+1 COSAS hp1 COSAS ’

A s |V uldVy, < Cdj .
,m] xSt

Thus

When k£ < 0, we have
/ |V uldV, = / |V ul|dV +/ |VuldV, < C(dko+ dom) = Cdj .
[k,m]x St [k,0]x St [0,m]x St

This proves our claim.
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Next, we estimate f(Bg(mo)\Ea)ﬂU |Vu|. Choose a > 0 sufficiently small and assume
(Bé(z0) \ Za) NU # 0, then $4(v) = mingey rp < a. We can choose a such that (see the
calculations in the appendix)

inf T > a, and dp_ijor > 2a.
te(—T,—T+10)u(T—10,T) ’

We have two cases:

Case 1. Bd(xo) C [k—1,k+1]x S* C (=T +5,T—5) x S*. Without loss of generality,
we assume xo = (o, 0).

It suffices to consider the case where r > r,, /2. Then there exists a unit-speed geodesic
v : 10,27, — Bj.(x¢) with v(0) = v(2r,,). In particular, v must pass through a point
xy = (ty, 7). By (4.2), we have 0 < cos At < C' cos My, which implies

A
cos Atg

< Cd(xy, o) < 2CT.

Consequently,

/ [VguldVy < L/ IVul|dtdd) < C A o
BY (o) €08 Ao J[tg—1,t0+1]x 51 cos g

Case 2. Case 1 does not hold. Let t; and ¢5 be the smallest and largest t € [-T'+5, T —5]

respectively, such that {t} x S* N Bf(xy) # 0. Then
d,({t:} x S, {ta} x S*) < 2r.
Let m = [to] + 1, k = [t1] — 1. By (4.5),
i < Cdy, 1, < C.

Thus
/ \VyuldV, < Cdjm < Crr.
Br(20)\SaNU

We are now in a position to prove (1.3). When r < a, we have already proved it for x,
in either 3, or ¥\ 3,. When r > a, since ¥ has at most 3g — 3 collars, we have

/ 1V, uldV, = / IV, uldV, +/ V,uldV, < C + Cr < C'r.
B?(a:o) B?(z‘o)ﬂza B;‘f(xo)\Ea

5. APPENDIX

In this appendix, we list some facts about collars.
Let v be a geodesic loop with length /() < 2arcsinh 1, and

1
sinh(30(7))
By [4, Theorem 4.1.6], v defines a collar U C 3, isometric to S! x (—w, w) with the metric

2 2
g = dp? + (*() cosh? pds* = (M) ((K(QL‘Z'O) + d02> ,

w = arcsinh

2 ) cosh p
where s = .

27
Let

(,6) = 6(p, ) = (

Am arctan e” )
oy)
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Then ¢ is a diffeomorphism from (—w,w) x S to

(47T arctane™ 4 arctan v ) L
xS

y) 7 )
with
) Y
0% (9) = (2(y) cosh® p(dt? + do?) = | —irr | (dt? + o).
QWSin%
Set
w 2
T:47Tarctane T ’ )\:@'
() 460, 27

Then the collar is also isometric to

((—T, T) x S, <COSAM)2 (dt* + d02)> .

For =T <t <t < T, recall that we have defined (see(4.3))
dt,t’ = dg<{t} X Sl, {t/} X Sl)

We compute dp_r and r¢p_¢ ) for fixed ¢ and small £ := ¢(7y). Recall the asymptotics
as r — +0o0

1 1 1
arctan r = g - + O(P)’ arcsinh z = log(2x) + O(P)
We have
= arcsinh ! = arcsi h(2+0(€))—10 4—1—0(6)
B 1) -8y ’

Then it follows from Lagrange’s mean value theorem that e~ = £ + O(¢?), hence

2
arctan e” = g — E +0(*), T= T o+ O(L).

1
Thus
SN AT s 1 4 sin AT cos AT’
d t) = d — — d = = l —l e
®) T /T ; COS AS ° //\(Tt) coss 21 +sin \(T' — t) 8 os AT —1t)
7r
= -1 o
g —— +0(0),
by [4, Theorem 4.1.6] again
‘ ¢ - (1) 77
sinh r(p_¢9) = cosh 5 coshd(t) —sinhd(t) =e +0) = 3 +O(0),
T
SO
= arcsinh —— + O()
T(r—t,9) = arcsii e .
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