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Abstract. Let (Σ, g) be a closed Riemann surface, and let u be a weak solution to the
equation

−∆gu = µ,

where µ is a signed Radon measure. We aim to establish Lp estimates for the gradient of
u that are independent of the choice of the metric g. This is particularly relevant when
the complex structure approaches the boundary of the moduli space. To this end, we
consider the metric g′ = e2ug as a metric of bounded integral curvature. This metric
satisfies a so-called quadratic area bound condition, which allows us to derive gradient
estimates for g′ in local conformal coordinates. From these estimates, we obtain the
desired estimates for the gradient of u.

Mathematics Subject Classification: 53C21

1. Introduction

Let fk be a sequence of conformal immersions from the 2-dimensional disk D into Rn

satisfying
∫
D
|Ak|2 < 4π − τ for some τ > 0, where A denotes the second fundamental

form. Define the induced metric by gk = f ∗k (gRn) = e2ukgeuc. The celebrated Hélein
convergence theorem asserts that if the areas of fk(D) are bounded, then ‖uk‖L∞(D 1

2
)

remains bounded and fk converges to a W 2,2-conformal immersion, or uk → −∞ and fk
collapses to a single point. Hélein’s theorem plays a crucial role in variational problems
involving the Willmore functional. However, we can not directly get a meaningful limit
in the collapsing case. When collapse occurs, one typically finds suitable translations yk
and scalings λk and studies the convergence of λk(fk−yk). However, the areas potentially
tend to infinity, so we need a gradient estimate to ensure that the areas remain locally
bounded.

In [7], the authors employed the gradient estimate |∇xG(x, y)| ≤ C
d(x,y)

to derive gradient

bounds for solutions to equations of the form −∆gu = f on closed surfaces. However,
the constant C depends on the metric g, rendering this approach unsuitable for sequences
whose induced conformal classes diverge in moduli space.

In [8], the first author utilized the conformal invariance of the Willmore energy to es-
tablish gradient estimates under the assumption that fk(D) extends to a closed immersed
surface satisfying ‖A‖L2 < C. Several years later, in [10], the authors showed that such
gradient estimates also hold under the density condition

Area(fk(D) ∩Bn
r (y))

πr2
< C

for sufficiently small r and all y ∈ fk(D). By Simon’s monotonicity inequality([15]), the
extension assumption implies this density condition.

In [9],the authors proved an intrinsic version of these estimates. In this paper, we apply
the method in [9] to provide gradient estimates for solutions to the equation

(1.1) −∆gu = µ,

where µ is a signed Radon measure.
1
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Here, we say that u is a solution to (1.1) if u ∈ L1(Σ, g) and

(1.2) −
∫

Σ

u∆gϕdVg =

∫
Σ

ϕdµ

holds for any ϕ ∈ D(Σ), where D(Σ) denotes the set of compactly supported smooth
functions on Σ. It follows easily from Brezis-Merle’s result (see Theorem 2.1 in section
2) and Weyl’s lemma ( cf. [11, Theorem 2.3.1]) that u ∈ W 1,p

loc for any p ∈ [1, 2). Since∫
Σ
u∆gϕdVg is independent of g when the conformal class is fixed, actually the definition

of equation (1.1) depends only on the conformal class of g.
Equations of this type arise naturally and frequently. For instance, if f ∈ L1(Σ, g),

then fVg can be regarded as a signed Radon measure. More importantly, the Green’s
function may be viewed as a solution to such an equation.

In fact, (1.2) is equivalent to

−2
√
−1

∫
Σ

u∂∂̄ϕ =

∫
Σ

ϕdµ,

i.e. the current−2
√
−1∂∂̄u is represented by the Radon measure µ. From this perspective,

it is natural to expect an estimate of u that is independent of g.
To state our estimates, we introduce the following notation. We set C to be the set of

conformal embeddings from D into Σ and define

Ep(u) = sup{‖∇u ◦ ϕ‖Lp(D 1
2

) : ϕ ∈ C},

where ∇ denotes the standard gradient operator in the Euclidean space.
When the complex structure approaches the boundary of the moduli space, it becomes

necessary to consider estimates on collars. For 0 ≤ a < 1
π

log 2, we let Ca be the set of

conformal embeddings from D \Da into Σ and define

Ea,p(u) = sup{‖∇u ◦ ϕ‖Lp(D 1
2
\D2a) : ϕ ∈ Ca}.

By convention, we set D0 = {0} and define Ea,p(u) = 0 when Ca = ∅.
Our main result is the following:

Theorem 1.1. Let Σ be a closed Riemann surface of genus g and u be a solution to (1.1).
Then for any p ∈ [1, 2) and 0 ≤ a < 1

π
log 2,

Ep(u) ≤ C(p, g)|µ|(Σ), Ea,p ≤ C(a, p, g)|µ|(Σ).

Remark 1.2. Such a result does not hold locally. For example, on a disk, for the harmonic
functions uk = kx1 we have ‖∇uk‖ → +∞ uniformly.

Remark 1.3. Applying the Collar Theorem, from Theorem 1.1 we obtain a new proof of
Theorem 0.1 in [16].

The proof of Theorem 1.1 is geometric in nature. Choose a smooth metric g with∫
Σ
|Kg|dVg < C and set g′ = e2ug. If we assume |µ|(Σ) = 1, then g′ is a metric with

bounded integral curvature in the sense of Alexandrov (we refer to Section 2 for the
definition). By a result in [5], g′ has quadratic area bound which, together with a blow-up
argument, yields the desired estimate.

As a corollary, we obtain an estimate on a constant curvature surface involving the
metric.

Corollary 1.4. Let (Σ, g) be a closed surface with Kg = 0 or −1, and u be a solution of
(1.1). Then there exists a constant C depending only on the genus, such that

(1.3)

∫
Bgr (x0)

|∇gu|dVg < Cr|µ|(Σ).
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For p ∈ (1, 2), our method does not provide a uniform estimate—the constant C de-
pends on certain geometric data: when Kg = 0,

(1.4) r
p−2
p ‖∇gu‖Lp(Bgr (x0)) < C(p)

(
πr2

Area(Bg
r (x0))

) p−1
p

|µ|(Σ);

and when Kg = −1,

(1.5) ‖∇gu‖Lp(Σ,g) < C(p)
|χ(Σ)|

1
p

Inj(Σ, g)
|µ|(Σ),

where Inj is the injectivity radius.

2. Preliminaries

In this section, we list some geometric and analytic results that will be used later.

2.1. Brezis-Merle’s estimates. The following theorem, established by Brezis and Merle [3],
plays a crucial role in this paper.

Proposition 2.1 (Brezis-Merle). Given a signed Radon measure µ supported in D ⊂ R2

with 0 < |µ|(R2) < +∞, let

Iµ(x) = − 1

2π

∫
R2

log |x− y|dµ(y).

Then Iµ ∈ W 1,q
loc (R2) for any q ∈ [1, 2) and weakly solves the equation:

(2.1) −∆Iµ = µ.

Moreover, we have

(2.2) rq−2

∫
Dr(x)

|∇Iµ|qdx ≤ C(q)|µ|(R2)q, ∀x, r,

and

(2.3)

∫
DR

e
(4π−ε)|Iµ|
|µ|(R2)| dx ≤ CR

ε
2π , ∀R > 0 and ε ∈ (0, 4π).

Corollary 2.2. Let µ be a signed Radon measure on D with |µ|(D) < τ . Suppose that u
solves (1.1) weakly on D and ‖u‖L1(D) < γ. Then for any p < 4π

τ
there exists β = β(τ, p, γ)

such that ∫
D 1

2

ep|u|dx ≤ β.

The proof of this corollary can be found in [5].

2.2. BIC metrics. We begin with the following definition.

Definition 2.3. Let (Σ, g0) be a smooth Riemann surface without boundary. LetM(Σ, g0)
denote the set of measurable tensor g = e2ug0 with u ∈ L1

loc(Σ) such that there exists a
signed Radon measure µ satisfying∫

Σ

ϕdµ =

∫
Σ

(ϕKg0 − u∆g0ϕ) dVg0 , ∀ϕ ∈ D(Σ).

We call µ the Gauss curvature measure of g, and denote it by Kg.
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Given g ∈M(Σ, g0), we define

(2.4) dg,Σ(x, y) = inf

{∫
γ

eudsg0 : γ is a piecewise smooth curve from x to y in Σ

}
where γ is parametrized by its g0-arclength. As mentioned in the introduction, it follows
from the equation in the above definition that u ∈ W 1,p

loc (Σ) for any p ∈ [1, 2).Therefore,
dg,Σ is a well-defined distance function whenever dg(x, y) is finite for any x and y. In this
case, we say g is a metric of bounded integral curvature in the sense of Alexandrov. For
other equivalent definitions, see [17].

If |Kg|({x}) < 2π for any x ∈ Σ, dg is finite (see [5, 12, 13, 14] for more details).
The following estimate proved in [5] is essential for the results developed in the next

section.

Theorem 2.4. Let (Σ, g0) be a closed surface and g = e2ug0 ∈ M(Σ, g0) with |Kg|(Σ) <
+∞. Assume dg,Σ is finite in Σ× Σ. Then

(2.5)
Area(Bg

R(x))

πR2
≤ 1 +

1

2π
K−g (Σ).

3. The gradient estimate

We begin by proving a gradient estimate on the two-dimensional disk. As mentioned in
the introduction, the examples uk = kx1 show that no gradient estimates can hold when
k is sufficiently large. Therefore, such examples must be excluded.

Definition 3.1. We say g = e2ugeuc ∈ M(D) has quadratic area bound with constant Λ,
if for any x and r , we have

Area(BD
r (x, dg))

πr2
< Λ.

Here, by BD
r (x, dg) we mean the disk is defined with respect to the metric dDg ,which is dg

restricted to D (see the remark below).

Remark 3.2. Suppose Ω1 ⊂⊂ Ω2 and g ∈ M(Ω2). Then we also have g ∈ M(Ω1). Let
d1 and d2 denote the distances induced by g on Ω1 and Ω2, respectively. Note that d2(x, y)
may be strictly less than d1(x, y). However, for any x, y ∈ Ω1 with d1(x, y) < r, we have

d2(x, y) ≤ d1(x, y) < r,

which implies y ∈ Br(x, d2) , and thus

Br(x, d1) ⊂ Br(x, d2).

Therefore, Theorem 2.4 implies that any topological disk domain of Σ has quadratic area
bound.
Having the above in mind, in the rest of this section we will simply write Br(x, dg) in place
of BD

r (x, dg) when there is no risk of confusions.

First, we show Theorem 1.3 in [9] still holds if we only assume that g ∈M(D).

Lemma 3.3. Let g = e2ugeuc ∈ M(D) has quadratic area bound with constant Λ. Then
for any p ∈ [1, 2), there exist positive constants C and ε0, such that if |Kg(D)| < ε0, then

‖∇u‖Lp(D 1
2

) < C.

Proof. Assume the result does not hold, then there exists a sequence gk = e2ukgeuc ∈
M(D) such that ‖Kgk‖(D)→ 0, while ‖∇uk‖Lp(D 1

2
) → +∞.
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Let vk = IKgk be as in Proposition 2.1. By Proposition 2.1,

sup
Dr(x)⊂D

rp−2

∫
Dr(x)

|∇vk|p → 0.

Set wk = uk − vk, which is harmonic on D. Then ‖∇wk‖C0(D 1
2

) → +∞.

Define

ρk = sup
x∈D 2

3

(
2

3
− |x|)|∇wk|(x).

There exists xk ∈ D 2
3
, such that ρk = (2

3
− |xk|)|∇wk|(xk). Set rk = 1/|∇wk(xk)|.

Since

ρk ≥ (
2

3
− 1

2
)‖∇wk‖C0(D 1

2
) → +∞,

we have
rk

2
3
− |xk|

=
1

ρk
→ 0,

which implies that DRrk(xk) ⊂ D 2
3

for any fixed R > 0, when k is sufficiently large.

Define w′k(x) = wk(xk + rkx)− wk(xk). We claim that for large k

sup
x∈DR

|∇wk|(x) ≤ 2.

Indeed, for large k and any x ∈ DR, xk + rkx ∈ D 2
3
,

(
2

3
− |xk|)|∇wk|(xk) ≥ (

2

3
− |xk + rkx|)|∇wk|(xk + rkx),

which gives

|∇w′k|(x) = rk|∇wk(xk + rkx)| = |∇wk(xk + rkx)|
|∇wk(xk)|

≤
2
3
− |xk|

2
3
− |xk + rkx|

≤
2
3
− |xk|

2
3
− |xk| − rkR

≤ 2,

for k large enough.
By the standard elliptic estimate, we may pass to some subsequence and assume that

w′k smoothly converges to a harmonic function w on every bounded domain of R2, such
that w(0) = 0, |∇w|(0) = 1, |∇w| ≤ 2. By Liouville’s theorem for harmonic functions,∇w
is constant, therefore w = ax1 +bx2 with a2 +b2 = 1. By rotation, we may assume w = x1.

Next, we define

v′k(x) = vk(rkx+ xk)− ck, u′k(x) = v′k(x) + w′k(x),

where ck is chosen such that
∫
D
v′k = 0. Then for any x ∈ DR, we have∫

D(x)

|∇v′k|p = rp−2
k

∫
Dr(xk+rkx)

|∇vk|p → 0.

By the Poincaré inequality (cf. [1, Theorem 5.4.3]) and Proposition 2.1, we may assume v′k
weakly converges to 0 in W 1,p

loc (R2). By Corollary 2.2 and the Lebesgue-Vitali Convergence
Theorem(cf. [2, Theorem 4.5.4]), for any q ∈ [1,+∞) and R > 0,

(3.1)

∫
DR

|eu′k − ex1 |q → 0,

∫
DR

|e2u′k − e2x1| → 0.

Next, we compute the area bound of the metric g0 := e2x1geuc. Let T (θ) be the constant
such that

Length((cos θ, sin θ)t|t∈[0,T (θ)], g0) = R, i.e.

∫ T (θ)

0

er cos θdr = R.
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It is easy to verify that

T (θ) =
log(1 +R cos θ)

cos θ
, i.e. eT (θ) cos θ = R cos θ + 1

Let a > 0 be sufficiently small and define

Ω(R) = {(r, θ) : r ∈ (0, T (θ)), θ ∈ (−π
2

+ a,
π

2
− a)}.

Then

Area(Ω(R), g0) =

∫ π
2
−a

−π
2

+a

∫ T (θ)

0

e2r cos θrdrdθ

=

∫ π
2
−a

−π
2

+a

(
e2r cos θr

2 cos θ
− e2r cos θ

4 cos2 θ

)∣∣∣∣T (θ)

0

dθ

=

∫ π
2
−a

−π
2

+a

(
(R cos θ + 1)2T (θ)

2 cos θ
− (R cos θ + 1)2 − 1

4 cos2 θ

)
dθ

= R2

∫ π
2
−a

−π
2

+a

(
1

2
log(1 +R cos θ)− 1

4

)
dθ +

∫ π
2
−a

−π
2

+a

RT (θ)dθ

+

∫ π
2
−a

−π
2

+a

T (θ)−R
2 cos θ

dθ

= R2

∫ π
2
−a

−π
2

+a

(
1

2
log(1 +R cos θ)− 1

4

)
dθ +O(R logR).

Therefore,

lim
R→+∞

Area(Ω(R), g0)

πR2
= +∞.

Since Ω(R) ⊂ BR(0, dg0), it follows that

lim
R→+∞

Area(BR(0, dg0 , g0))

πR2
= +∞.

Let T1 = max|θ|≤π
2
−a T (θ). Fix q > 2. By the first part of (3.1) and Hölder’s inequality,∫ 2π

0

∫ T1

0

|eu′k(r,θ)−ew(r,θ)|drdθ =

∫ 2π

0

∫ T1

0

|eu′k(r,θ)−ew(r,θ)|r
1
q r−

1
q drdθ ≤ C‖eu′k−ew‖Lq(DT1 ) → 0.

Passing to a subsequence, we have
∫ T1

0
|eu′k(r,θ) − ew(r,θ)|dr converges to 0 for a.e. θ ∈ S1.

For small ε > 0, by Egorov’s theorem there exists A ⊂ S1 with Lebesgue measure less

than ε such that
∫ T1

0
|eu′k − ew|dr → 0 uniformly on S1 \ A. Set g′k = e2u′kgeuc and

Ω(R,A) = Ω(R) \ {(r, θ) : θ ∈ A}.

By the Trace Embedding Theorem, for large k,

Length((cos θ, sin θ)t|t∈[0,T (θ)], g
′
k) < R + 1, ∀θ ∈ S1 \ A,

so

Ω(R,A) ⊂ B
g′k
R+1(0).

By the second part of (3.1), for small ε > 0 and large k,

Area(Ω(R,A), g′k) ≥
1

2
Area(Ω(R), g0).
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Therefore, for suitable R > 0,

Area(B
g′k
R+1(0), g′k)

π(R + 1)2
=

Area(Bgk
(R+1)rk

(xk), gk)

π((R + 1)rk)2
> Λ,

which contradicts the quadratic area bound condition for gk. 2

Next, we remove the assumption that |Kg|(D) < ε0.

Theorem 3.4. Let g = e2ugeuc ∈ M(D). Assume g has quadratic area bound with
constant Λ and |Kg|(D) < Λ′. Then for any p ∈ [1, 2), there exists a constant C =
C(Λ,Λ′, p) such that

‖∇u‖Lp(D 1
2

) < C.

Proof. Suppose the conclusion fails, then there exists a sequence gk = e2ukgeuc with
|Kgk |(D) < Λ′ and quadratic area bound with constant Λ such that

‖∇uk‖Lp(D 1
2

) → +∞.

Let vk = IKgk and wk = uk − vk. By Proposition 2.1,

rp−2

∫
Dr(x)

|∇vk|p < C, ∀Dr(x) ⊂ D.

Thus,
sup
D 1

2

|∇wk| → +∞.

Passing to a subsequence if necessary, we may assume that |Kgk | converges weakly to a
Radon measure µ. Let ε0 > 0 be as in 3.3 and set

S = {x ∈ D : µ({x}) > ε0
2
}.

Clearly, S is a finite set. For any x /∈ S, we can find r > 0, such that |Kgk |(Dr(x)) < ε0 for
sufficiently large k. Then ‖∇uk‖Lp(Dr/2(x)) < C(r), which implies that ‖∇wk‖Lp(Dr/2(x)) <

C(r). By the standard elliptic estimate, after passing to a subsequence we may assume
that there exist constants ck(for instance, fix a point p0 /∈ S and let ck = wk(p0)) and a
harmonic function w, such that wk − ck → w smoothly on Ω for any Ω ⊂⊂ D \ S.

Choose r0 > 0 such that for any distinct p, p′ ∈ S, Dr0(p) ∩ Dr0(p
′) = ∅. For any

x ∈ Dr0/4(p), ∂Dr0/2(x) ⊂ Dr0(p) \ Dr0/4(p). Applying the mean value property of har-
monic functions on ∂Dr0/2(x), it turns out that wk−ck are uniformly bounded on Dr0/4(p).
Therefore, |∇wk| are uniformly bounded on Dr0/4(p), hence |∇wk| are uniformly bounded
on D 1

2
, which leads to a contradiction. 2

Proof of Theorem 1.1: Without loss of generality, we assume |µ|(Σ) = 1. Choose a
smooth metric g with

∫
Σ
|Kg|dVg < C(g), where C(g) depends only on the genus g of Σ.

Set g′ = e2ug ∈M(Σ, g). Then

Kg′ = µ−KgdVg.

Moreover, we have |K|g′({x}) < 2π for any x, so dg′ is finite. By Theorem 2.4, both g′

and g have quadratic area bound with some constant Λ > 0.
For any ϕ ∈ C, ϕ defines a local isothermal coordinate chart. In this chart, we write

ϕ∗(g) = e2vgeuc, ϕ∗(g′) = e2(u+v)geuc.

By Theorem 3.4,
‖∇v‖Lp(D 1

2
) < C, ‖∇(u+ v)‖Lp(D 1

2
) < C
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which implies the first part of Theorem 1.1.

Next, we consider ϕ ∈ Ca and define v as above. For simplicity, let a = 2−m with m > 2
being a positive integer. Note that for any x ∈ D22−j \D21−j(where 2 < j ≤ m), we have
D2−j(x) ⊂ D \Da. By a rescaling argument,∫

D
2−j (x)

|∇u|p ≤ C(2−j)2−p.

By a covering argument, ∫
D2−i\D2−i−1

|∇u|p ≤ C(2−i)2−p,

so ∫
D2−1\D

2−m−1

|∇u|pdx ≤ C

m∑
i=1

(2−i)2−p.

For the case a = 0, letting m→∞ we get∫
D2−1\{0}

|∇u|p ≤ C

∞∑
i=1

(2−i)2−p.

2

4. Estimates on a surface of constant curvature

In this section, we assume that Kg = 0 or −1 on Σ and that u is a solution of (1.1).
The main aim is to prove Corollary 1.4, as well as (1.4) and (1.5). For simplicity, we also
assume |µ|(Σ) = 1 throughout the section.

4.1. The flat case. We first consider the case Kg = 0. Note that (1.3) and (1.4) hold for
g if and only if they hold for λg for any λ > 0. Since the lattices {1, z1} and {1, z2} induce
the same complex structure if z2 = a11z1+a12

a21z1+a22
, where (aij) ∈ SL(2,Z)(see the subsection

IV.7.3 of [6]), there is no loss of generality in assuming that (Σ, h) is induced by the lattice
{1, a+ b

√
−1} in C, where |a| ≤ 1

2
, b > 0, and a2 + b2 ≥ 1. Set

ρ =
√
a2 + b2, θ = arccos

a

ρ
, v = (ρ, 0). w = (cos θ, sin θ).

Then (Σ, h) is also induced by the lattice {v, w}, where it necessarily holds that ρ ≥ 1
and π

3
≤ θ ≤ 2π

3
.

Let Π : C→ Σ be the covering map. Let u′ denote the lift of u, i.e. u′ = u◦Π. For any

x ∈ C, and r <
√

3
4

, Dr(x) can be viewed as an isothermal coordinate chart of Σ around

Π(x) (Indeed, the inscribed circle of a fundamental parallelogram has radius at least
√

3
4

).
By Theorem 1.1, ∫

Dr(x)

|∇u′|pdx ≤ Cr2−p.

By setting r =
√

3
8

and using a covering argument, we have∫
[i,i+1]×[− sin θ

2
, sin θ

2
]

|∇u′|p < C.
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Without loss of generality, we assume 0 is a lift of x0. When r < 3, note that r/8 <
√

3
4

.
Covering Dr(0) with finitely many D r

8
(x) (having a universal upper bound on the number

of disks) gives ∫
Bgr (x0)

|∇gu|pdVg ≤
∫
Dr(0)

|∇u′|pdx ≤ Cr2−p.

When p = 1, this yields (1.3). When p ∈ (1, 2), since 0 < C ≤ Area(Bgr (x0))
πr2

≤ 1, we obtain
(1.4).

When r > 3, let m be the smallest integer such that r ≤ m. It is easy to check that if
x ∈ Π([−m

2
, m

2
]× [− sin θ

2
, sin θ

2
]), then

dg(x, x0) ≤
√

(
m

2
)2 + (

sin θ

2
)2 ≤ m− 1 ≤ r,

so

(4.1) Π([−m
2
,
m

2
]× [−sin θ

2
,
sin θ

2
]) ⊂ Bg

r (x0) ⊂ Π([−m,m]× [−sin θ

2
,
sin θ

2
]),

Then∫
Br(p)

|∇gu|pdVg ≤
∫

[−m,m]×[− sin θ
2
, sin θ

2
]

|∇u′|p =
m−1∑
i=−m

∫
[−m,m]×[− sin θ

2
, sin θ

2
]

|∇u′|p ≤ Cm.

When p = 1, using m− 1 < r, we get (1.3). When p ∈ (1, 2), by (4.1),

Area(Bg
r (x0)) ≤ Cm < 2Cr,

so
rp

Areap−1(Bg
r (x0))

≥ Crp/rp−1 = Cr,

which yields (1.4).

4.2. On a hyperbolic surface. Now, we assume Kg = −1.
Let rx denote the injectivity radius of g at x. Since

Area(Bg
rx(x)) = 2π(cosh rx − 1) ≤ Area(Σ) = 2π|χ(Σ)|,

it follows that rx is bounded above by a constant depending only on the genus of Σ.
It is well-known that for any r < rx (Bg

r (x), g) is biholomorphic to (D, gr), where

gr =

(
2 sinh(r/2)

1− sinh2(r/2)|x|2

)2

geuc.

By applying Theorem 1.1, one readily verifies that when r ≤ rx/2,∫
Bgr (x)

|∇gu|pdVg ≤ Cr2−p.

Let a > 0 be fixed and Σa be the set of points where rx ≥ a. By Vitali’s 5-times
covering theorem, there exist pairwise disjoint closed balls {Bg

a/10(xi)} with xi ∈ Σa such

that {Ba/2(xi)} cover Σa. Then

#{xi} ≤
Area(Σ)

Va/10

,

where Va/10 is the area of a disk of radius a/10 in the hyperbolic plane. Therefore∫
Σa

|∇gu|p < C
|χ(Σ)|
a2

(a
2

)2−p
< C
|χ(Σ)|
ap

,

which gives (1.5) by letting a = 1
2
Inj(Σ, g).
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Next, we consider the collar regions, which are components of Σ \ Σarcsinh 1. For more
details on collars, we refer the reader to [4]. In particular, we note that the total number
of collar regions is bounded by 3g− 3, a constant depending only on the genus.

Let γ be a geodesic loop of length `(γ) < 2 arcsinh 1, γ defines a collar U ⊂ Σ, isometric
to S1 × (−T, T ) with the metric (

λ

cosλt

)2

(dt2 + dθ2).

See the appendix for the definitions of T and λ.
We claim that for small λ > 0 and any t1, t2 satisfying |t1| < T − 1,|t2| < T − 1,
|t2 − t1| < 2, there exists a universal constant C0 > 1 such that

(4.2) C−1
0 <

cosλt2
cosλt1

< C0

In fact,(4.2) holds with C0 = e2. Indeed, Lagrange’s mean value theorem (together with
the fact λ(T − 1) < π

2
− λ) gives that

| log cosλt2 − log cosλt1| ≤ λ|t2 − t1| sup
|t|<π

2
−λ
| tan t| < 2λ

tanλ
< 2

From which the claim follows.
Let k,m be integers.We claim that∫

[k,m]×S1

|∇gu|dVg ≤ Cdk,m

for any −T + 2 < k < m < T − 2, where we define

(4.3) dt,t′ = dg({t} × S1, {t′} × S1).

We first prove the case k ≥ 0 . Let Qi = [i, i+ 1]× S1. By Theorem 1.1,

(4.4)

∫
Qi

|∇u|dtdθ < C.

Since t 7→ λ
cosλt

is increasing on [k,m], (4.4) implies that∫
[k,m]×S1

|∇gu|dVg ≤ C

m−1∑
i=k

λ

cosλ(i+ 1)
≤ C

∫ m+1

k+1

λ

cosλs
ds.

Note that, by (4.2) and the monotonicity of cos t on [0, π
2
],

(4.5)

∫ i

i−1

λds

cosλs
≤
∫ i+1

i

λds

cosλs
≤ C

∫ i

i−1

λds

cosλs
.

Hence ∫ m+1

k+1

λds

cosλs
≤ C

∫ m−1

k+1

λds

cosλs
≤ Cdk,m.

Thus ∫
[k,m]×S1

|∇gu|dVg ≤ Cdk,m.

When k < 0, we have∫
[k,m]×S1

|∇gu|dVg =

∫
[k,0]×S1

|∇gu|dVg +

∫
[0,m]×S1

|∇gu|dVg ≤ C(dk,0 + d0,m) = Cdk,m.

This proves our claim.
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Next, we estimate
∫

(Bgr (x0)\Σa)∩U |∇u|. Choose a > 0 sufficiently small and assume

(Bg
r (x0) \ Σa) ∩ U 6= ∅, then 1

2
`(γ) = minx∈U rx < a. We can choose a such that (see the

calculations in the appendix)

inf
t∈(−T,−T+10)∪(T−10,T )

r(t,θ) > a, and dT−10,T > 2a.

We have two cases:
Case 1. Bg

r (x0) ⊂ [k−1, k+ 1]×S1 ⊂ (−T + 5, T −5)×S1. Without loss of generality,
we assume x0 = (t0, 0).

It suffices to consider the case where r > rx0/2. Then there exists a unit-speed geodesic
γ : [0, 2rx0 ] → Bg

2r(x0) with γ(0) = γ(2rx0). In particular, γ must pass through a point
x′0 = (t′0, π). By (4.2), we have 0 < cosλt ≤ C cosλt0, which implies

λ

cosλt0
≤ Cd(x′0, x0) ≤ 2Cr.

Consequently,∫
Bgr (x0)

|∇gu|dVg ≤
λ

cosλt0

∫
[t0−1,t0+1]×S1

|∇u|dtdθ ≤ C
λ

cosλt0
≤ Cr.

Case 2. Case 1 does not hold. Let t1 and t2 be the smallest and largest t ∈ [−T+5, T−5]

respectively, such that {t} × S1 ∩Bg
r (x0) 6= ∅. Then

dg({t1} × S1, {t2} × S1) ≤ 2r.

Let m = [t2] + 1, k = [t1]− 1. By (4.5),

dk,m ≤ Cdt1,t2 ≤ Cr.

Thus ∫
Br(x0)\Σa∩U

|∇gu|dVg ≤ Cdk,m ≤ Cr.

We are now in a position to prove (1.3). When r < a, we have already proved it for x0

in either Σa or Σ \ Σa. When r ≥ a, since Σ has at most 3g− 3 collars, we have∫
Bgr (x0)

|∇gu|dVg =

∫
Bgr (x0)∩Σa

|∇gu|dVg +

∫
Bgr (x0)\Σa

|∇gu|dVg ≤ C + Cr ≤ C ′r.

2

5. Appendix

In this appendix, we list some facts about collars.
Let γ be a geodesic loop with length `(γ) < 2 arcsinh 1, and

w = arcsinh
1

sinh(1
2
`(γ))

.

By [4, Theorem 4.1.6], γ defines a collar U ⊂ Σ, isometric to S1×(−w,w) with the metric

g = dρ2 + `2(γ) cosh2 ρds2 =

(
`(γ) cosh ρ

2π

)2
((

2πdρ

`(γ) cosh ρ

)2

+ dθ2

)
,

where s = θ
2π

.
Let

(t, θ) = φ(ρ, θ) =

(
4π arctan eρ

`(γ)
, θ

)
.
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Then φ is a diffeomorphism from (−w,w)× S1 to(
4π arctan e−w

`(γ)
,
4π arctan ew

`(γ)

)
× S1

with

φ ∗ (g) = `2(γ) cosh2 ρ(dt2 + dθ2) =

(
`(γ)

2π sin `(γ)t
2π

)2

(dt2 + dθ2).

Set

T =
4π arctan ew

`(γ)
− π2

`(γ)
, λ =

`(γ)

2π
.

Then the collar is also isometric to(
(−T, T )× S1,

(
λ

cosλt

)2

(dt2 + dθ2)

)
.

For −T ≤ t < t′ ≤ T , recall that we have defined (see(4.3))

dt,t′ = dg({t} × S1, {t′} × S1).

We compute dT−t,T and r(T−t,θ) for fixed t and small ` := `(γ). Recall the asymptotics
as x→ +∞

arctanx =
π

2
− 1

x
+O(

1

x2
), arcsinhx = log(2x) +O(

1

x2
).

We have

w = arcsinh
1

`/2 +O(`3)
= arcsinh(

2

`
+O(`)) = log

4

`
+O(`),

Then it follows from Lagrange’s mean value theorem that e−w = `
4

+O(`2), hence

arctan ew =
π

2
− `

4
+O(`2), T =

π2

`
− π +O(`).

Thus

d(t) := dT−t,T =

∫ T

T−t

λ

cosλs
ds =

∫ λT

λ(T−t)

ds

cos s
= log

1 + sinλT

1 + sinλ(T − t)
− log

cosλT

cosλ(T − t)

= − log
π

π + t
+O(`),

by [4, Theorem 4.1.6] again

sinh r(T−t,θ) = cosh
`

2
cosh d(t)− sinh d(t) = e−d(t) +O(`) =

π

π + t
+O(`),

so

r(T−t,θ) = arcsinh
π

π + t
+O(`).
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