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We present an analysis of the coherent structures in Langmuir turbulence, a state of
the ocean surface boundary layer driven by the interactions between water waves and
wind-induced shear, via a resolvent framework. Langmuir turbulence is characterised
by multiscale vortical structures, notably counter-rotating roll pairs known as Langmuir
circulations. While classic linear stability analyses of the Craik-Leibovich equations
have revealed key instability mechanisms underlying Langmuir circulations, the vortical
rolls characteristic of Langmuir turbulence, the present work incorporates the turbulent
mean state and varying eddy viscosity using data from large-eddy simulations (LES)
to investigate the turbulence dynamics of fully developed Langmuir turbulence. Scale-
dependent resolvent analyses reveal a new formation mechanism of two-dimensional
circulating rolls and three-dimensional turbulent coherent vortices through linear
amplification of sustained harmonic forcing. Moreover, the integrated energy spectra
predicted by the principal resolvent modes in response to broadband harmonic forcing
capture the dominant spanwise length scales that are consistent with the LES data.
These results demonstrate the feasibility of resolvent analyses in capturing key features
of multiscale turbulence—wave interactions in the statistical stationary state of Langmuir
turbulence.
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1. Introduction

The ocean surface boundary layer features characteristic circulating rolls known as
Langmuir circulations, which are formed by the combined influence of wind-driven
currents and surface waves (Leibovich 1983; Thorpe 2004). These circulations organise
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into pairs of counter-rotating rolls, which induce alternating converging and diverging
regions at the water surface, and lead to the accumulation of buoyant materials into
visible streaks known as windrows. The regime of boundary layer turbulence dominated by
Langmuir circulations is referred to as Langmuir turbulence, featuring coherent structures
spanning a range of spatial and temporal scales influenced by surface waves. Langmuir
turbulence plays a crucial role in the mixing and transport of momentum, mass and heat in
the upper ocean, which influences the mixed layer depth and mediates air—sea interactions
(Sullivan & McWilliams 2010; D’ Asaro 2014).

Early theoretical work by Craik & Leibovich (1976) established a foundation for
understanding the dynamics of Langmuir circulations. Craik & Leibovich (1976)
developed a wave—current interaction model, known as the Craik—Leibovich (CL) model,
to describe the evolution of ocean currents under the influence of surface gravity waves.
This model is based on a multiscale asymptotic analysis, which essentially takes an average
over a short time to filter out the oscillating wave motions, and retains the slowly varying
currents. This asymptotic analysis shows that the wave effect after averaging is represented
by a vortex force, defined as the cross product of the wave’s Stokes drift and the flow
vorticity, which affects the current evolution. Subsequent studies (Craik 1977; Leibovich
1977b) showed that the CL model admits an instability mechanism that gives rise to
vortical motions resembling the roll cells of Langmuir circulations, thereby validating
its theoretical relevance for studying Langmuir circulations. The CL equations have since
been extensively applied in theoretical and computational studies of these flows. In recent
decades, CL equations have been adopted for large-eddy simulations (LES) of Langmuir
turbulence, enabling the resolution of the complex, nonlinear evolution of wave-forced
upper-ocean turbulence structures, and the analysis of ocean boundary layer dynamics
under realistic conditions (see e.g. Skyllingstad & Denbo 1995; Harcourt & D’ Asaro 2008;
Van Roekel et al. 2012; Yang, Chamecki & Meneveau 2014; Chamecki et al. 2019; Deng
et al. 2019).

To elucidate the dynamics of Langmuir circulations, modal analysis techniques, such
as stability analyses, have been employed by researchers for theoretical studies. These
theoretical analyses of the CL model have not only established the model’s relevance
to Langmuir circulations, but also provided key insights into the characteristics of flow
structures and their physical origins. Linear stability analysis has been conducted to
investigate the onset of Langmuir circulations by examining the evolution of infinitesimal
perturbations governed by the CL equations (Craik 1977; Leibovich 1977h; Leibovich
& Paolucci 1980, 1981; Cox & Leibovich 1993; Leibovich & Tandon 1993; Phillips
2001). It was found that instability can arise from a weak mean shear current in the
presence of Stokes drift induced by surface waves. Specifically, the vertical vorticity
associated with the spanwise disturbances in the shear flow is tilted by Stokes drift,
leading to the amplification of streamwise rolls. This mechanism, known as CL-II or
CL2 instability, is widely recognised as the primary generation process for Langmuir
circulations. These analyses also revealed key features of Langmuir circulation observed
in the ocean, including their orientation, spacing, and associated surface convergence.
Stability analyses have also been performed for shallow-water conditions (Phillips & Dai
2014).

While valuable insights have been gained from classic linear stability analyses, there
are limitations to what these analyses can describe about fully developed Langmuir
turbulence. Linear stability and related modal analyses focus on the generation and growth
of vortical cells by considering the most unstable eigenmode of the CL-derived operator,
but can be less representative of the sustained turbulence state and the multiscale feature
of Langmuir turbulence. Most traditional stability analyses consider two-dimensional roll
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structures with infinite streamwise lengths. Although the stability of three-dimensional
structures has also been analysed, it was found that the two-dimensional structures are
more unstable than three-dimensional modes in unstratified water (Leibovich & Paolucci
1980; Leibovich & Tandon 1993). As a result, most analyses have focused on the dynamics
of two-dimensional rolls. However, in addition to large-scale cells, field observations
and LES have shown that Langmuir turbulence comprises coherent vortices with a
wide range of spatial and temporal scales (Thorpe 2004). Quasi-streamwise vortices
with length scales smaller than those of large-scale Langmuir cells have been identified
in LES (McWilliams, Sullivan & Moeng 1997; Xuan, Deng & Shen 2019; Tsai &
Lu 2023), particularly near the water surface. These vortical structures resemble the
horseshoe vortices found in turbulent shear boundary layers, but exhibit distinct length
scales, suggesting that they are affected by both the shear current and surface waves.
Their inclination in the vertical direction and finite streamwise lengths reflect their full
three-dimensionality, deviating from the canonical depiction of Langmuir circulations as
elongated, roll-like cells. The turbulent, multiscale nature of these small-scale vortices
likely contributes to the randomness of streaks observed at the ocean surface, as supported
by experiments associating surface streaks with small-scale coherent vortices (Melville,
Shear & Veron 1998; Veron & Melville 2001). However, these three-dimensional vortices
are not adequately considered in existing stability analyses. Additionally, classic stability
analyses of Langmuir circulations typically assume idealised mean velocity profiles and
constant eddy viscosity. These assumptions do not well represent the fully developed
turbulence state, and may therefore overlook a range of coherent structures in Langmuir
turbulence.

In addition to classic stability analyses, resolvent analysis is another powerful modal
analysis technique widely used for investigating flow dynamics (Trefethen et al. 1993;
Farrell & Ioannou 1993; Schmid & Henningson 2001; Jovanovi¢ & Bamieh 2005; McKeon
& Sharma 2010; Jovanovi¢ 2021). Unlike classic stability analysis, which focuses on
the asymptotic growth of eigenmodes, resolvent analysis examines a linearised system’s
response to a harmonic input forcing around a given base flow, providing an input—output
view of flow behaviours. By characterising the input—output dynamics, resolvent analysis
can identify the dominant linear amplification mechanisms and the associated resolvent
modes. Resolvent analysis is not limited to laminar base flows. It can be applied to fully
developed, statistically stationary turbulent flows. In such cases, the base flow is the
ensemble mean flow, which can be approximated as the time-averaged flow by invoking the
assumption of ergodicity. The nonlinear interactions omitted in the linearisation, which are
likewise statistically stationary, can be represented by a superposition of harmonic forcing
modes that continuously excite the system and sustain the modal response (McKeon &
Sharma 2010; McKeon, Sharma & Jacobi 2013). This view provides a way to study the
self-sustaining mechanisms of turbulent flows. The resolvent analysis has been shown
to be effective in revealing dominant coherent structures and their dynamics for various
types of turbulent flows, such as canonical wall-bounded turbulence (Moarref et al.
2013; Illingworth, Monty & Marusic 2018), rotating channel flows (Nakashima, Luhar
& Fukagata 2019), stratified flows (Ahmed et al. 2021) and boundary layer separation (Wu
et al. 2022).

In the present study, we seek an improved understanding of Langmuir turbulence
via the resolvent framework. We analyse the system’s response to harmonic forcing to
investigate the dynamics of its fully-developed, self-sustained turbulence state. To achieve
this goal, we base our analyses on the average of the turbulent flow extracted from LES,
which, in contrast to idealised or laminar base flows, reflects the reduced vertical shear
resulting from the highly efficient turbulent mixing in Langmuir turbulence. Furthermore,
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we incorporate a vertically varying eddy viscosity, which is also derived from the LES
data, into the linearised system. While early linearised analyses typically employed either
the molecular viscosity or a constant eddy viscosity to examine flow dynamics, recent
studies have shown that using a spatially varying eddy viscosity informed by the turbulent
mean flow can improve predictions of flow dynamics, particularly in capturing the energy
content of dominant resolvent structures (Illingworth et al. 2018; Morra et al. 2019; Symon
et al. 2023; von Saldern et al. 2024; Zhu, Chen & Fu 2024). The eddy viscosity may serve
as a simple mechanism to partially represent the nonlinear effect of turbulence, which can
mimic energy dissipation and transfer by unresolved motions. Linear models augmented
with eddy viscosity can thus enhance the ability to predict turbulent flows.

Our resolvent analysis predicts amplification across different length scales corre-
sponding to both full-depth, large-scale Langmuir cells and smaller-scale near-surface
turbulence vortices. (In this work, we distinguish between the two types of structures for
clarity of nomenclature, but they can be broadly interpreted as Langmuir circulations at
different scales considering the influence of surface waves.) The flow structures associated
with the principal response mode are consistent with the characteristic vortical motions in
Langmuir turbulence. Furthermore, under harmonic forcing, we find that the linearised
system with the turbulence mean state can accurately predict the peak spanwise length
scales of vertical velocity fluctuations observed in LES. These results further indicate
the potential of resolvent analysis as a useful tool for investigating turbulence—wave
interactions and the associated coherent structures in Langmuir turbulence.

To our knowledge, this study is the first reported resolvent-analysis-based study of
Langmuir turbulence. In addition to effectively capturing coherent structures, resolvent
analysis reveals a new mechanism for the emergence of these structures in Langmuir
turbulence, where Langmuir vortical structures arise as a forced response to nonlinear
interactions intrinsic to turbulent flows. Additionally, this forced mechanism provides
a dynamic explanation for the near-surface, small-scale vortices observed in previous
simulations and experiments. This new interpretation of Langmuir turbulence dynamics
complements the CL-II mechanism revealed by stability analyses, providing a more
comprehensive understanding of the dynamics underlying turbulence—wave interactions.

The remainder of this paper is organised as follows. Section 2 introduces the formulation
of resolvent analysis for turbulence—wave interactions, along with the setup of LES and the
base flow extracted from the simulation data. In § 3, we present and discuss the results of
the resolvent analyses, including the model-predicted coherent structures and the energy
distribution across scales. Finally, in § 4, we summarise our findings and discuss future
work.

2. Formulation and LES data

In the present study, we focus on the canonical scenario of Langmuir turbulence, in which
the surface gravity wave and wind-driven shear current are co-aligned. In this section,
we first describe the linearised equations used to model the perturbations around the base
flow for Langmuir turbulence. We then present the set-up of the companion LES that are
used to obtain the base flow for the linearised model and to validate the model. Finally, we
discuss the base flow configuration employed for setting up the resolvent analysis.

2.1. Linear model for fluctuations in Langmuir turbulence
To derive the governing equations for the linearised model describing the turbulence—
wave interaction in Langmuir turbulence, we begin with the following wave-averaged
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momentum equations (Suzuki & Fox-Kemper 2016):
av
ot

where A denotes the Laplace operator defined as A =932/0x% + 9%/dy? + 82/9z>.
Notably, as surface waves carry mean momentum (Stokes 1847; Longuet-Higgins 1953;
Andrews & MclIntyre 1978), distinguishing between Eulerian and Lagrangian motions
in wave—current interaction models is necessary. In (2.1), v is the Eulerian velocity, U®
is the Stokes drift quantifying the Lagrangian transport of fluid particles by the wave,
vl =v 4 U? is the Lagrangian velocity, v is the molecular kinematic viscosity, and
®=p+|U’° |2 — |v)? is the modified pressure, with p being the pressure divided by the
water density p (Holm 1996). For brevity, all pressure variables in this study refer to the
pressure normalised by the fluid density. Note that through vector identities, the above
formulation (2.1) is mathematically equivalent to the original CL formulation, in which
the wave effect appears as a vortex force term U°® x (V x v) (Leibovich 1977b), as used
in the LES in § 2.2. Here, we present this alternative form because the term (L . Vv
makes explicit that the effective advection velocity in the presence of gravity waves is
the Lagrangian velocity v%, which is important for determining the dispersion relation in
resolvent analysis.

To obtain the linearised equations, the flow velocity v is decomposed into a mean
component and a perturbation, v = U + u, where the mean component U is defined as
the time- and plane-averaged flow velocity, i.e. U = v, by assuming statistical stationarity
and homogeneity. Following the approach of Reynolds & Hussain (1972), del Alamo &
Jiménez (2006), Pujals et al. (2009) and Hwang & Cossu (2010), we incorporate a simple
vertically varying eddy viscosity into the linearised equations for the perturbations u,
which are written as

+ @ - V)v=—-Vo +vAv—vx (Vxvh)— (v - V)l 2.1)

du L L s

E—F(U <Viu+@ - VYU +u x (VxU?)
- Vp+uV. [VTT(Vu—FVuT)]—I—d, 2.2)
V.u=0. (2.3)

Here, the perturbations u are advected by the Lagrangian mean velocity UL = U + U?,
the sum of the Eulerian mean velocity U and the Stokes drift velocity U®. An alternative
form for the perturbation equation that explicitly includes the vortex force term associated
with the Stokes drift velocity is provided in Appendix A. For the case of co-aligned waves
and currents in the present study, the mean Eulerian current and Stokes drift velocity
are defined as U = [U (y), 0, O]T and U® =[U*(y), 0, O]T, respectively, which vary in the
vertical direction y. The term d denotes a forcing term.

Equation (2.2) may be interpreted as the equation for coherent perturbations within
the framework of triple decomposition (Reynolds & Hussain 1972). The influence of
background turbulence on the coherent perturbation, manifested as fluctuating forces, is
modelled using the eddy viscosity term via the Boussinesq assumption. The forcing term
d =ldy, dy, dz]T accounts for the residual nonlinear effect (see also Reynolds & Hussain

1972, (2.6)), i.e.d = —u - Vu + u - Vu, where the second term, u# - Vu, ensures that
d has a zero mean, thereby representing only the fluctuating nonlinear forcing. This
interpretation has been adopted in previous studies, e.g. Pujals ef al. (2009) and Hwang
& Cossu (2010), and essentially assumes that the effect of background turbulence can be
represented using the eddy viscosity term. A more general interpretation considers that the
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eddy viscosity term partially represents the effect of nonlinear interactions from all scales
on the perturbation motions, without attributing it to a specific term (e.g. Pickering et al.
2019, 2021). For example, Hwang (2016) and Symon, Illingworth & Marusic (2021) found
that the eddy viscosity term captures some features of the unresolved energy dissipation
(Hwang 2016; Symon et al. 2021). In the present study, we do not seek to define the
exact physical origin of d. Instead, we treat it as a generic representation of nonlinear
interactions that are not explicitly captured by the linearised operator. Previous studies
found that its inclusion in the perturbation equations enables simpler forms of forcing (e.g.
white in space and time) to more efficiently predict coherent structures (Symon et al. 2023;
von Saldern et al. 2024). It has also been found that the eddy-viscosity-augmented linear
operator improves the descriptions of coherent motions and the predictions of turbulence
statistics across various types of turbulent flows (Hwang 2016; Illingworth et al. 2018;
Morra et al. 2019; Pickering et al. 2019; Symon et al. 2023; von Saldern et al. 2024).

The governing equations above must be completed with boundary conditions. The full
system is driven by a constant shear stress representing the wind shear at the surface y = 0.
At the bottom y = — H, where H is given based on the boundary layer depth, a stress-free
boundary condition is applied because the shear at the base of the ocean mixed layer is
weak (Belcher et al. 2012). In the oceans, the Coriolis force acts to balance the overall
momentum within the ocean boundary layer (see e.g. Zikanov, Slinn & Dhanak 2003). In
the present set-up, a uniform adverse pressure gradient is introduced to balance the mean
momentum. This boundary condition configuration has been used in Xuan et al. (2019)
to isolate and examine the wave effect on the wind-driven oceanic turbulent boundary
layer. Within this framework, the perturbation velocities satisfy the stress-free boundary
conditions at both the surface and the bottom:

Ju Jw
—=—=0, v=0 aty=0, (2.4a)
dy 9y
Ju Jw
—=—=0, v=0 aty=-—H. (2.4b)
dy 9y

The surface shear stress is accounted for by the mean flow, and as a result, the perturbation
u satisfies the stress-free condition at the surface.

The pressure term in (2.2) can be eliminated using (2.3), resulting in the following
formulation in terms of the vertical perturbed velocity v and vertical vorticity w, to
facilitate subsequent dynamic analyses:

JdAv Av ov w AV
UL— —U"— + U == — vy A%v =2V
o 7 ox 0 T MTAVTAT
2 2
ax2  9y? 972 dxdy dzdy  9Ix2 972
dwy 1 dwy , 0V , 0wy ddy  0d;
24Ut 4 U — —vr Awy — v —2 = - =, 2.6
o1 ox o7 TR T T e T b (2.6)

The above equations are similar to the classic Orr—Sommerfeld and Squire equations
for parallel shear flows, but include modifications originating from turbulence—wave
interactions. First, the advection velocity of the perturbed motions is the Lagrangian
mean velocity U”. Additionally, the term U* '(dwy/dz) in the v equation is unique to
the flows influenced by water waves. This term represents the interaction between the
spanwise variations in the vertical vorticity and the vertical gradient of the Stokes drift,
which directly affect the dynamics of v. This term is thus closely associated with the
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CL-II instability mechanism, which describes the process of the Stokes drift gradient
titling vertical vortices into streamwise vortices. Moreover, we note that this term couples
the equations of v and wy, in contrast to the classic parallel shear flows without wave
effects, where the Squire equation is decoupled from the Orr—Sommerfeld equation. It
should be noted that the formulation of the pressure-eliminated perturbation equations
is not unique. For example, Leibovich (1977a) derived three-dimensional perturbation
equations in terms of the vertical and streamwise velocity components. Upon rearranging
the terms, the vertical perturbation velocity equation in Leibovich (1977a) becomes
equivalent to (2.5) in the case of constant eddy viscosity and in the absence of
forcing.

For conciseness, we denote the variables v and w, as a state vector defined as § =
[v, a)y]T. Given that the fully developed turbulence is statistically homogeneous in the
horizontal directions (x and z) and stationary in time, we express the state variable &
and forcing d using a Fourier transform with respect to the homogeneous directions and
time:

m .
£E= / / / E(y; ky, kg, ) e ®¥Thez=on qr - dk. dw, (2.7)
—

oo .
d= / f / d(y: ke, kz, ) e @700 di dk; do, (2.8)
—00

where (*) denotes a quantity in the wavenumber—frequency domain, characterised by
the streamwise wavenumber k,, spanwise wavenumber k, and temporal frequency w. In
other words, we may consider the flow state (or forcing) as a superposition of various
Fourier modes é (or t:i), with each mode specified by a triplet (ky, k;, ). Applying
the Fourier transform to the linearised perturbation equations (2.5) and (2.6) yields the
equation for a single Fourier mode (see also Jovanovi¢ & Bamieh 2005; Hwang & Cossu
2010):

— (iwE+ F)E = Bd, 2.9)
where
[ A o
E_[ o } (2.10)
— Los —ik; U’

F—[ iU Ly | Q2.11)

| =ik, —k*> —ik,D
B= [ ik, 0 ik |’ @12)
Los=—ikU"A+ikU" +vr A+ 20p DA +0f (D*+47),  13)
Lsy = —ik UL +vr A 4} D. (2.14)

In (2.9)—(2.14), I denotes the identity operator, k = ,/k2 + kZ2 denotes the magnitude of

horizontal wavenumbers (ky, k;), D denotes the derivative operator with respect to y, i.e.
dy,and A = D? — k21 denotes the Laplacian operator in the Fourier space. The boundary

conditions for é that are consistent with the stress-free conditions specified in (2.4a) and
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(2.4b) are given by
0=D?0=Dd,=0 aty=0, (2.15)
0=D?0=Dd,=0 aty=—H. (2.16)

Additionally, we note that the state variable é can be transformed to the Fourier mode of
perturbed velocity & = [u, v, w]T by

i = CE, (2.17)
| [ kD ik,
C=—> k2 0 ) (2.18)
ik.D ik,

By combining (2.9) and (2.17), the perturbed velocity in the Fourier space # can be
related to the forcing d through an input—output formulation:

a=Td, (2.19)

where T= C(iwE — F)~' Bis the transfer operator that connects the input forcing d to the
velocity response &. To characterise the input—output dynamics, we can obtain a Schmidt
decomposition of the transfer operator T as

o
Td:ZJj(d,(bj)E v, (2.20)

j=1
where {0 j} are the singular values in descending order, and {(I) j} and {1/f j} are known as
right-singular and left-singular vectors, respectively. The inner product ( f, g)  is defined

as

0
(f. 8)p= / g fdy, (2.21)
-H
where ()™ denotes the complex conjugate transpose, y = 0 denotes the water surface, and
H is the depth of the boundary layer. This inner product naturally defines the physically
meaningful energy norm as || f ||%E = (f, f)g- The right-singular and left-singular vectors,

{¢ j} and {lﬁ j }, are orthonormal bases of the input and output spaces, respectively. That
is, {¢j} and {Wj} satisfy (¢;, ¢ ;) , =dij and (¥, Wj)E = §;;. The vectors {¢j} span the
optimal forcing directions, and the vectors {Vf j } span the corresponding velocity response

directions. In other words, the relationships between the forcing and velocity response
(2.19) are represented by pairs of (¢, ¥ ;) modes, and each pair satisfies

Top;=0;¥;, (2.22)

where o, the singular value associated with the jth input—output pair, quantifies the
amplification of each forcing mode into its corresponding response mode. In this way,
the analyses of the input—output dynamics are transformed into analyses of the resolvent
modes and the associated energy amplification.

In this work, the linearised system (2.9)—(2.19) is discretised using the rectangular
spectral collocation method based on Chebyshev polynomials (Driscoll & Hale 2016). This
method provides a generalised way to impose boundary conditions with the Chebyshev
collocation schemes. More details about the rectangular spectral collocation method
are provided in Appendix B. After the discretised transfer operator is constructed, the
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Figure 1. Convergence of the discretised resolvent system for case La; = 0.2 with k, H = 107, k, H = 207 and
w= kaL(y = —0.08H) =459u,/H, as indicated by the singular values o; (solid line), and the cumulative

squared singular values Z{:] crl.2 /> aiz (dashed line), for different numbers of Chebyshev collocation

points: circles for N = 64, squares for N = 128, and triangles for N = 256. The cumulative squared singular
values are plotted against the right-hand vertical axis.

decomposition (2.20) is evaluated using the singular value decomposition of the matrix
representing the operator T. Through a grid independence study based on the convergence
of the singular value spectrum, we decide to use 256 Chebyshev collocation points of the
first kind (see (B4) in Appendix B) in the y direction to impose the differential equations.
The grid independence result for an example mode is shown in figure 1, which compares
the results on three Chebyshev grids with N =64, N =128 and N =256. Negligible
differences are observed between the results for N = 128 and N = 256. This convergence
behaviour is observed consistently across the range of wavenumber—frequency triplets
considered in the present study, confirming that N =256 provides sufficient resolution
to capture dominant resolvent modes.

2.2. The LES set-up

To enable the linearised model to represent more realistic Langmuir turbulence, we
perform LES to extract the base flow state. The simulations also serve as a reference for
comparison with the linearised model. The governing equations for the LES utilise the CL
equations, which are given as

v
at
Here, v denotes the filtered velocity in LES (for brevity, we do not distinguish it

notationally from the unfiltered velocity), IT = p + |vL|2/2— |v|2/2 is the modified
pressure, and 7595 denotes the subgrid-scale (SGS) stress. The simulation is set up in
a domain with dimensions L, x Ly, x L, =8w H x H x 4w H, where H represents the
depth of the ocean surface boundary layer. Periodic boundary conditions are imposed in
the horizontal directions x and z. In Deng et al. (2019), a grid size study demonstrated
that a domain with dimensions 47 H x H x 8w H/3 (equivalent to 8wh x 2h x 16wh/3
in their study, where h = H/2 is the half-depth) is sufficiently large to minimise the
artificial effects associated with the streamwise and spanwise periodicity. Therefore, the
computational domain used in the present LES should be adequate for capturing the
largest-scale motions. The flow is driven by a steady surface wave represented by a
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constant Stokes drift. Specifically, the Stokes drift is prescribed as that of a deep-water
monochromatic wave, US = Ug e2koy where Ug is the Stokes drift magnitude at the water
surface (y =0), and kg, the wavenumber of the surface wave, is set to koH =3.5. A
constant wind-induced shear stress 7, = pu? is applied at the water surface, with p being
the water density, and u, being the friction velocity. Langmuir turbulence is characterised
by the turbulent Langmuir number, defined as La; =,/u./Ug, which quantifies the
relative importance of the wave forcing to the wind-shear forcing (McWilliams et al. 1997).
A decreasing La; indicates that the wave forcing becomes increasingly dominant. In the
present study, we consider two cases, La; =0.2 and La; = 0.3. Both cases correspond
to the Langmuir turbulence regime with strong wave effects (Li, Garrett & Skyllingstad
2005). Additionally, we set the friction Reynolds number to Re; = u,H /v = 1000. The
CL-based LES with moderate Reynolds numbers have been adopted by previous works
for investigating turbulence—wave interaction dynamics (Tejada-Martinez & Grosch 2007;
Deng et al. 2020), and have been shown to reproduce the characteristics of Langmuir
turbulence observed at higher, practical Reynolds numbers. For example, Deng et al.
(2020) reported that for Langmuir circulations in shallow waters, the intensities of
Langmuir cells and the magnitudes of Reynolds stress components in most of the water
column vary only slightly across a wide range of Reynolds numbers, from Re; =395
to Re; = 10* The observed insensitivity to the Reynolds number is consistent with
earlier findings showing the similarity of turbulence statistics across Re; from 180 to
1000 (Tejada-Martinez & Grosch 2007; Deng et al. 2019), with the LES results in
agreement with field measurements. Additionally, for Langmuir turbulence in the open
ocean boundary layer, wave-phase-resolved LES at a moderate Reynolds number Re; =
2000 can also predict the vertical turbulence intensities, in good agreement with field
measurements (Xuan et al. 2020, 2024). Therefore, the moderate Reynolds number LES
here should be able to capture the dominant dynamics of Langmuir turbulence at practical
Reynolds numbers, and provide a representative dataset for mechanistic studies such as the
resolvent analysis in the present work.

The simulations are performed using a hybrid pseudo-spectral/finite-difference
discretisation scheme along with a fractional-step method for time integration. A dynamic
Smagorinsky model is used to model the SGS stress (Germano et al. 1991; Lilly 1992).
The computational domain is discretised using a grid N, x Ny x N, =768 x 256 x 1024,
with the grid clustered near the surface and bottom to resolve the boundary layers. The
minimum grid spacing in the wall units is Ayntl.n = Aymints/v = 0.25. The numerical
method used in these simulations has been validated for LES of Langmuir turbulence in
Deng et al. (2019), and the tests are thus not repeated here.

2.3. Base flow

The base flow used in the linearised model is obtained from the mean turbulent velocity
profile extracted from the LES result, allowing the resolvent model to more truthfully
represent the dynamics of fully developed Langmuir turbulence. Once the mean velocity
and Reynolds shear stress profile are obtained, the turbulent eddy viscosity v; is calculated
as v;(y) = —u'v'/(dUL /dy). Notably, the eddy viscosity here is determined using the
gradient of the Lagrangian mean velocity. This approach has been shown to more
accurately model turbulence mixing and transport in the ocean surface boundary layer
governed by Langmuir turbulence (McWilliams & Sullivan 2000; Yang et al. 2015; Liu,
Yuan & Liang 2022).

Figures 2(a) and 2(b) show the profiles of the mean Lagrangian velocity and eddy
viscosity, respectively. Owing to the strong mixing effect of Langmuir turbulence, the
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Figure 2. Profiles of (a) the Lagrangian mean velocity U” and (b) the eddy viscosity v, extracted from the
simulations of cases with La; = 0.2 (circles) and La; = 0.3 (squares).

Eulerian mean current is nearly negligible throughout most of the boundary layer. As
a result, the Lagrangian mean current is predominantly determined by the Stokes drift
velocity, which increases exponentially towards the surface (y = 0).

For the cases considered, the linearised system, described by (2.5) and (2.6) minus
the forcing term d, is asymptotically stable. In other words, when the turbulent mean
velocity and eddy viscosity profiles are considered, the wave—current interaction does not
support the long-term growth of infinitesimal perturbations into coherent structures such
as Langmuir cells. The asymptotic stability of the system suggests that the traditional
stability analysis does not depict the full picture of the dynamics of Langmuir turbulence,
for which we present the resolvent analysis below to complement existing studies.

3. Results

In this section, we present the results obtained from the analyses of the resolvent model for
turbulence—wave interactions in Langmuir turbulence. The optimal harmonic responses
and the associated forcing and response structures are presented in § 3.1. The spectral
behaviour of the coherent structures predicted by the model is discussed in § 3.2.

3.1. Harmonic responses and coherent structures
For a harmonic forcing with frequency w, the steady-state response of the linearised system
(2.19) is also harmonic. The optimal amplification of energy from the forcing to response
for a triplet (ky, k;, w), G(ky, k;, ®), is defined as

N
a7,
G(kx,kz,a)):max—2 =max ———. (3.1)
d#0 | 4 d+#0 a
E E

By definition (2.20), the amplification is maximised when the input forcing d aligns with
the principal right-singular mode ¢; of the decomposition of T, and the response is
i = o1y . The optimal energy amplification G is thus given by the square of the largest
singular value, i.e. G = 012.
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Figure 3. Contours of the maximum energy amplification G4, (3.2) at different streamwise and spanwise
wavelengths for cases with (@) La; = 0.2 and (b) La; = 0.3. The dashed line indicates 4, = A..

We first consider the maximum energy amplification achieved across all frequencies,
which is defined as

Gax (ky, k;) = mailx Gky, k;, w). (3.2)

This maximum amplification is also known as the Hy, norm of the transfer operator T
(Jovanovi¢ & Bamieh 2005). The computed G ,qx (ky, k) is plotted in figure 3, which
shows the optimal linear amplification supported by the system across different structure
length scales (Ay, A;) = 27/ ky, 27/ k;). The wavelengths are sampled logarithmically
over the ranges A, € [0.1H,40H] and A, € [0.05H,40H] using a grid of 96 x 112
sampling points. For each wavelength pair, the maximum energy amplification is
computed by searching over a frequency range corresponding to phase speeds c €
[0.0lUE ., UL 1, evaluated at 50 evenly spaced phase speed values, where UL denotes
the maximum Lagrangian mean velocity, reached at the water surface (see figure 2a). The
corresponding frequency w is given by @ = ck,. For both turbulent Langmuir numbers,
La; =0.2 and La; =0.3, strong amplification is observed for streamwise elongated
structures with A, >> A,. In other words, even weak nonlinear forcing inherent to turbulent
flows is likely to excite elongated structures. This feature of amplified length scales is
consistent with the characteristics of coherent structures in Langmuir turbulence, which
are dominated by elongated quasi-streamwise vortices (McWilliams et al. 1997; Teixeira
& Belcher 2010; Xuan et al. 2019).

Furthermore, we observe that the amplified structures can be classified into two
regimes, based on the spanwise wavelengths. Specifically, the amplified structures can
be approximately categorised into very-large-scale motions with A, > H, and smaller-
scale motions with A, < H. For the first regime (very large scales), the maximum
amplification G4, increases with the streamwise wavelength, and G, is found to reach
a maximum for streamwise-invariant modes (ky = 0, not shown on the logarithmic scale
in figure 3). This result is also somewhat consistent with previous stability analyses using
constant eddy viscosity, which revealed that the streamwise-invariant mode is the most
unstable (Leibovich & Paolucci 1980). In our analysis, this streamwise-invariant mode,
corresponding to a static resolvent with w = ck, =0, represents the limiting case of a
base flow modification, i.e. a two-dimensional mean flow with three velocity components.
The strong amplification of the streamwise-invariant mode is also observed in the
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analysis of turbulent channel flow without the wave forcing (e.g. Hwang & Cossu 2010).
However, these structures may not clearly manifest in actual flows, likely because nonlinear
interactions redistribute energy away from this mode, and a persistent nonlinear forcing
to close the self-sustaining loop is not evident. Nevertheless, the strong amplification
of such limiting modes suggests the presence of streamwise elongated structures with
large A, /A, aspect ratios. For the second regime, consisting of structures with smaller
spanwise wavelengths, figure 3 shows that strong amplification occurs for a range of large
streamwise wavelengths with comparable amplification factors, indicating that the linear
amplification mechanism is not particularly selective about the streamwise wavelengths
for these narrow structures. Moreover, the amplifications in this regime are considerably
greater than those of very-large-scale structures, suggesting the potential importance of
smaller-scale, three-dimensional coherent structures in Langmuir turbulence.

To further elucidate the amplification dynamics, we next examine the spatial structure of
the principal resolvent mode pair (¢, ¥;), corresponding to the optimal input forcing and
the resulting coherent structure supported by the linearised system. Here, we use the modes
predicted for case La; = 0.2 as examples for discussion, as the characteristic features of
the flow structures are qualitatively similar for the La; = 0.3 case.

A representative principal mode corresponding to the streamwise-invariant very-large-
scale motions with k, =0 and k, =2 /H (or A, = oo and A; = H) is shown in figure 4.
For streamwise-invariant motions, it is natural to set the frequency to w =0, i.e. we
consider a stationary streamwise-invariant structure. We can observe that the structures
consist of pairs of counter-rotating rolls (figure 4a). These streamwise rolls exhibit
significant vertical penetration, occupying most of the water depth. This type of structure
thus corresponds to large-scale Langmuir cells. In the surface converging zones induced
by counter-rotating motions, the streamwise velocity is positive, indicating that the
fluid flows faster than the mean flow. Conversely, in the surface diverging zones, the
streamwise velocity is lower than the mean velocity. This correspondence between the
converging/diverging zones and variations in the streamwise velocity is also consistent
with the canonical features of Langmuir cells (Leibovich 1983). Figure 4(b) shows the
mean squared amplitudes of the three velocity components of the principal response mode.
The energy of the spanwise and vertical velocities is considerably greater than that of
the streamwise velocity, indicating the dominance of streamwise vortical motions. The
spanwise velocity nearly vanishes at the depth where the vertical velocity fluctuations
reach a maximum, corresponding to the depth of the rotational centre of the streamwise
rolls.

The structure and strength of the corresponding optimal forcing mode are shown in
figures 4(c) and 4(d), respectively. The forcing is dominated by the streamwise component.
Recall that the forcing (partially) accounts for the nonlinear interactions affecting the
perturbation motions, which arise from the self-interaction of the perturbation motions
and/or from the interactions with the background turbulence. Therefore, this result shows
a mechanism for sustaining the streamwise vortical motions: spanwise variations in
streamwise accelerations, as shown in figure 4(c), can excite the system to generate
streamwise rolls. This behaviour bears similarity to the CL-II instability mechanism,
which states that an initial spanwise perturbation in the streamwise current velocity,
in the presence of waves, can grow into Langmuir circulations. The resolvent analysis
complements the CL-II mechanism by showing that in fully developed Langmuir
turbulence, large-scale Langmuir cells can be sustained by the variations in the forcing
in the streamwise momentum equation. Although investigating the detailed flow processes
responsible for such forcing in Langmuir turbulence is beyond the scope of this study,
we note that previous studies have shown that the turbulence fluctuations and Reynolds
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Figure 4. Structures of the optimal (a) velocity response u = (u, v, w) and (c) input forcing d = (d,, dy, d;)
for case La; =0.2 at (ky, k;, ) =(0,27/H,0). In (a) and (c), the contours represent the streamwise
components, u and d,, respectively; the vectors represent the cross-stream components, (w, v) and (d;, dy),
respectively. The vertical variations in the mean squared response velocity and forcing components are plotted

in (b) and (d), respectively: streamwise component (#2 or d]%, circles), vertical component (v2 and d%, squares)

and spanwise component (E and E, triangles).

stresses are modulated by large-scale Langmuir cells (Deng et al. 2019, 2020) and
manifest spatial correlations with the cells, which suggests that nonlinear interactions in
turbulence may indeed produce spatially varying forcing at the wavelength of the amplified
mode. Notably, the energy amplification factor between the forcing and response is large
(figure 3); therefore, a relatively weak nonlinear forcing is capable of generating these
circulating motions.

We next examine a representative three-dimensional mode predicted by the model.
As shown in figure 3, the model predicts strong amplification of structures with
small spanwise wavelengths and finite streamwise wavelengths. However, such turbulent
coherent structures are often overlooked in classic stability analyses of Langmuir
circulations, which typically focus on streamwise-invariant modes. For our analysis, we
select the wavenumber and frequency triplet (ky, k;, ) based on the energetic structure
scales observed in the LES of Langmuir turbulence at La; =0.2. Assuming that the
coherent structures are convected by the local mean Lagrangian velocity, the velocity
response takes the form of a travelling wave with frequency w = cky (see (2.7)), where
c is the phase speed and is set to ¢ = UL. Here, we set c = UL (y = —0.12H), the depth
at which the vertical turbulent kinetic energy reaches maximum. Then the streamwise and
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Figure 5. Vortex structures of the principal response mode for case La; =0.2 with ky H =4, k. H =16.5
and w =k, UL (y =—0.12H) =44.9u,./H. The vortex structures are elucidated using the iso-surfaces of the
Q-criterion (10 % of the maximum value), with red and blue indicating positive and negative streamwise
vorticity, respectively.

spanwise wavenumbers k, and k; are chosen to be the most energetic wavenumbers in the
energy spectra computed at this depth.

Figure 5 shows the flow structures of the selected three-dimensional mode. Using the
Q-criterion, the coherent vortical structures revealed are quasi-streamwise vortices, which
are most prominent near the water surface. These vortices exhibit alternating rotation
directions, and are inclined with their near-surface ends pointing in the downstream
direction. These structures closely resemble the statistically dominant vortical structures
extracted from numerical simulations of Langmuir turbulence (McWilliams et al. 1997,
Xuan et al. 2019; Tsai & Lu 2023).

Figure 6(a) plots the velocity components on a vertical cross-plane, clearly showing
the vortex-induced counter-rotating motions. In the converging zone between two counter-
rotating vortices, a downward jet is formed, accelerating the downstream flow away from
the surface. In the diverging zone, an upward motion that brings low-momentum fluid
towards the surface is observed. Figure 6(b) shows the energy of the three velocity
components. Compared with the large-scale Langmuir cells (figure 4b), the energy of
these three-dimensional vortices is more concentrated near the surface. The vertical and
spanwise velocity components continue to dominate the energy content of the coherent
quasi-streamwise vortices. The vertical velocity fluctuations peak near y =—0.12H,

coinciding with the depth where ﬁL = w/ky. As the free surface is approached, owing
to the kinematic constraint imposed by the free-surface boundary conditions, the vertical
velocity fluctuations diminish, whereas the spanwise velocity fluctuations increase rapidly.
The streamwise velocity fluctuations remain negligible in this near-surface region. The
relative strength among the three velocity components for the turbulent coherent structures
is consistent with the characteristics of Langmuir turbulence, where the streamwise
velocity fluctuations are suppressed by the enhanced mixing induced by strong vertical
velocity fluctuations (Li et al. 2005). This behaviour differs from that in classic wall-
bounded shear turbulence, where the streamwise component dominates the kinetic energy,
indicating that the wave can significantly change the turbulence dynamics.

Figure 6(c) shows the optimal forcing mode on the same cross-plane as the velocity
field in figure 6(a). The corresponding plane-averaged squared forcing components are
plotted in figure 6(d). Similar to the streamwise-invariant mode discussed above, the
optimal forcing for the three-dimensional structure is primarily in the streamwise direction.
That is, alternating streamwise accelerations and decelerations induced by nonlinear
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Figure 6. Cross-plane structures of the optimal (a) response # = (u, v, w) and (c) input forcing d =
(dy, dy, d;) shown in figure 5, plotted at x = (7r/12) H. In (a) and (c), the contours represent the streamwise
components, u and d,, respectively; the vectors represent the cross-stream components, (w, v) and (d;, dy),
respectively. The vertical variations in the plane-averaged squared response velocity and forcing components

are plotted in (b) and (d), respectively: streamwise component (u2 or d)%, circles), vertical component (vZ and
72 ; 2 T2 1
dy, squares) and spanwise component (w” and dz, triangles).

interactions propagate through the flow and, via the linear amplification mechanism, drive
the formation of inclined vortex structures shown in figure 5.

Both the two-dimensional and three-dimensional response modes presented above
exhibit characteristic features that are consistent with the large-scale roll cells or smaller-
scale vortices observed in Langmuir turbulence. For both selected modes, the leading
singular value is noticeably larger than the second mode, with o1/07 = 3.4 for the two-
dimensional mode, and o1 /07 & 2.4 for the three-dimensional mode. Therefore, at these
scales, the optimal mode and its associated amplification dynamics are more pronounced
than those of the subsequent modes. The singular value behaviours and the associated low-
rank property of the flow are further discussed in § 3.2. For completeness, the secondary
mode is shown in Appendix C.

These results demonstrate that the linearised model successfully captures the dominant
coherent structures arising from turbulence-wave interactions. We note again that the
physical meaning of the resolvent analyses is different from that of traditional stability
analyses or temporal energy growth problems, which describe the process that Langmuir
circulations arise from the evolution of small-amplitude, unstable initial perturbations.
The results of the resolvent analyses indicate that the Langmuir vortical structures can
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also be sustained by the linear amplification of harmonic forcing, which may originate
from the nonlinearity inherent in the turbulent flow. We also note that according to the
maximum energy amplification (figure 3), the three-dimensional Langmuir vortices near
the water surface (figure 5) are highly sensitive to nonlinear forcing, which indicates
their amplification potential through the input—output amplification mechanism shown
in figure 6, and supports the expectation that inclined, smaller-scale vortical structures
are a prominent feature of Langmuir turbulence. Building on these results, we next show
that the resolvent model can reproduce certain statistical properties of coherent turbulent
structures.

3.2. Energy distribution across various wavelengths

In this subsection, we continue analysing the resolvent model for linearised turbulence—
wave interaction, and use it as a reduced-order model that retains only the principal
forcing and response modes. We demonstrate that even in this simplified form, the model
can reproduce features of turbulence statistics in Langmuir turbulence. Specifically, we
focus on vertical velocity fluctuations, because strong vertical mixing is one of the most
prominent characteristics of Langmuir turbulence, and the vertical turbulence velocity
fluctuation intensity is an important metric for quantifying mixing in a wave-driven ocean
boundary layer (see e.g. D’ Asaro et al. 2014).

Here, we consider the system’s response to unit-amplitude forcing across all possible
wavenumber—frequency triplets (ky, k;, ). Although the forcing in a realistic flow
requires a weighted sum of input modes, the broadband harmonic forcing can still offer
insights into the flow dynamics (Moarref et al. 2013). By the definition of the Schmidt
decomposition (2.20), the fraction of energy contributed by the jth response mode ¢ ; is
given by crj2 o akz). If a few leading modes dominate the energy content of the velocity
response, then the transfer operator T exhibits a low-rank structure, suggesting that the
input—output dynamics of the system may be governed by a small number of resolvent
modes.

Figure 7 shows the energy ratio of the leading mode, 012 o akz), for different
streamwise and spanwise wavelengths. In this figure, we examine three values of the phase
speed c, corresponding to the Lagrangian mean velocity U’ at three depths representative
of the near-surface and bulk regions of the flow. At all the selected depths, the energy ratio
of the leading mode is large over a broad range of streamwise and spanwise wavelengths,
which is evident from the large regions where the leading mode accounts for 65 % of
the total energy (enclosed by the black contours in figure 7). This result demonstrates the
broad applicability of a low-rank approximation for various turbulence scales.

Notably, the most energetic scales in LES tend to coincide with the wavenumbers
for which the resolvent system is low-rank. To illustrate this point, in figure 7, the pre-
multiplied energy density spectrum computed from LES (indicated by the grey contours)
is overlaid on the energy ratio of the leading resolvent mode. As seen in figure 7(a—c) and
7(d—f), the wavelength region where the system is strongly low-rank shifts towards larger-
scale motions with increasing depth. This trend is consistent with the LES results, which
show that the turbulence structures grow in size with increasing depth, and that larger
coherent structures become more dominant at greater depths. For example, as shown in
figure 7(a), near the surface (y = —0.05H), the leading mode accounts for approximately
60 % of the total energy at the energy spectrum peak of LES (1, =0.4H, A4, =0.18H).
At deeper depths (e.g. y=—0.4H, figure 7c), short wavelengths no longer exhibit low-
rank behaviour. However, the system remains highly low-rank at the energy peak of LES
Ay =TH, A; = H), corresponding to large-scale circulation cells. This overlap of the
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Figure 7. Contours of the energy ratio of the leading response mode relative to the total response 012 /> j ojz,

for different streamwise and spanwise wavelengths at selected phase speeds c¢: (a,d) ¢ = UL (y = —0.05H),
(b,e) c=UL(y=—0.12H) and (cf) c= UL(y=—0.4H). The black line indicates the contour of the 65 %
energy ratio. The grey contour lines represent the pre-multiplied turbulent kinetic energy spectrum from the
LES at the corresponding depths, plotted from 20 % to 80 % of the maximum values in increments of 20 %.
Results are for (a—c) the case with La; =0.2 and (d—f) the case with La; =0.3. In (b) and (e), the black
crosses mark the wavelengths selected for the spectrum of the singular values shown in figure 8(a—c) and
8(d—f), respectively.

energetic turbulence scales with the low-rank operators, also observed in turbulent channel
flows (Moarref ef al. 2013), suggests that the key dynamics in Langmuir turbulence may
be effectively captured by the leading resolvent mode.

To further examine the low-rank characteristics of the system, the normalised singular
values and the cumulative energy ratio of the leading twenty modes are plotted in
figure 8 for selected wavenumber—frequency triplets (marked by black crosses in figure
7b,e). For large-scale motions, e.g. those shown in figures 8(a,b) and 8(d,e), the leading
singular value is appreciably larger than the second and third modes. The remaining
singular values decay rapidly towards zero. Correspondingly, the energy content is
well captured by the first few modes, with the leading mode contributing a significant
fraction. For small-scale motions, as shown in figure 8(c,f), although the largest singular
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Figure 8. The normalised singular values o; /oy and the cumulative energy ratio Zl] aiz /Y aiz of the first
twenty resolvent modes at selected streamwise and spanwise wavelengths: (a,d) (1, 4;) = (10H, 7 H/2), (b,e)
(Ax, A7) =(wH/2, 4w H/33) and (¢,f) (Ax, A;) = (0.5H, 0.2H). The cumulative energy ratio is plotted against
the axis on the right. Results are for (a—c) the case with La; = 0.2 and (d—f) the case with La, = 0.3. For both
cases, the phase speeds are chosen as ¢ = UL (y = —0.12H). The three modes are marked by black crosses in
figure 7(b) and 7(e) for cases La; =0.2 and La, = 0.3, respectively.

value is still approximately twice as large as the second mode, the decay of singular
values of the higher modes is more gradual. This behaviour indicates that the low-
rank nature of the resolvent system is more pronounced at larger scales, whereas
fully capturing small-scale dynamics may require retaining a greater number of modes.
Nevertheless, as discussed above, the low-rank approximation can be effective in revealing
key characteristics of Langmuir turbulence given that the energetic scales tend to be
low-rank.

As shown in § 3.1, the resolvent-model-predicted coherent structures exhibit strong
vertical velocity intensity, suggesting that the model may offer information about the
vertical velocity component of turbulence fluctuations. Considering that the system
exhibits a low-rank property across a range of scales, when only the principal mode is
retained, the pre-multiplied energy density of the response to the broadband forcing is
given by (Moarref et al. 2013)

Eo(y: ke, ko) = / koo (o1 010y ke, Ky )])7 doo, (3.3)

where v denotes the vertical component of the principal response velocity ¢. The
function E,(y; ky, k;) is a two-dimensional energy spectrum at a vertical location
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v, indicating the energy content per logarithmic interval of streamwise and spanwise
wavenumbers. This integral can be reformulated with respect to the phase speed ¢ using
the relation w = ck,, yielding

Eo(y: ke k) = / K2k, (o1 o1 ()2 de. (3.4)

The integrand in (3.4) is consistent with the pre-multiplied energy density formulation
(2.13) in Moarref et al. (2013). A further integration provides the pre-multiplied energy
density spectrum with respect to the spanwise wavenumber:

Ey(y: k) =// k2k: (o1 |v1(y))* dlog(ky) de. (3.5

Figure 9 compares the pre-multiplied two-dimensional energy spectrum of v obtained
from LES with the energy distribution predicted by the resolvent-based model (3.4). As
shown by the energy spectrum evaluated from LES, the turbulence structures span a wide
range of streamwise wavelengths but are confined to a narrower range of spanwise scales,
which manifests the streamwise elongation of vortices in Langmuir turbulence. For all
the depths and turbulent Langmuir numbers considered, the energy distribution is centred
along a straight line on the log—log scale, indicating that the ratio of the streamwise to
spanwise wavelengths approximately follows a power-law relationship. For the energy
distribution predicted by the model, the slope of the contours closely matches that of the
simulation, indicating that the model captures this scaling trend reasonably well. However,
we do observe a slight discrepancy in the peak streamwise wavelength. For example, the
model tends to underestimate the streamwise wavelengths of turbulent structures at deeper
depths, as shown in figure 9(c,f). In addition, although the model captures the trend of
the increased length scales of turbulence structures at greater depths, it fails to capture the
energy peak associated with the large-scale Langmuir cells (1, ~2H). This discrepancy
may be due to the current modelling assumptions, particularly the use of unit-amplitude
broadband forcing for all scales, which may under-represent the contribution from very-
large-scale motions, and skew the results towards near-surface, smaller-scale turbulence
structures.

To further examine the model’s capability, we assess its performance in capturing
the variations in dominant spanwise length scales with depth, which are closely related
to the cross-wind spacings of circulating structures. Figures 10(a) and 10(c) show the
energy density spectrum with respect to the spanwise wavelength A, from LES for cases
La; =0.2 and La; = 0.3, respectively. With increasing depth, the spanwise length scales
of the vertical velocity v increase, which is consistent with previous findings of the
shift of dominant structures towards larger-scale motions at greater depths. The energy
density of v peaks near the surface at y ~ —0.1H, further confirming that most of the
vertical kinetic energy in Langmuir turbulence is concentrated in the near-surface region
and is associated with smaller-scale turbulence vortices. While large-scale Langmuir
cells are still important in the bulk region for mixing and mixed-layer deepening, they
contribute less to the total vertical kinetic energy than do smaller-scale vortices. This result
underscores the importance of modelling smaller-scale turbulence structures near the
surface.

The model-predicted energy distributions, computed using (3.5), are shown in
figures 10(b) and 10(d) for cases La; =0.2 and La; = 0.3, respectively. We find that
for both cases, the model-predicted energy distributions (figure 10b,d) are remarkably
similar to the peak energy scales in the LES (figure 10a,c), particularly in the near-
surface region where the vertical turbulence density is strong. First, the model-predicted
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Figure 9. Comparisons of the normalised pre-multiplied energy spectrum of the vertical velocity v with respect
to the streamwise and spanwise wavelengths, A, and A;, between the model prediction (contours, from (3.4))
and LES (colour). The results are shown for (a—c) La; =0.2 and (d—f) La; =0.3 at selected depths: (a,d)
y=—-0.05H, (b,e) y=—0.12H and (c,f) y = —0.4 H . Each spectrum is normalised by its respective maximum
value, and the contour lines of the model-predicted spectrum are drawn from 0.1 to 0.9 in increments of 0.1.

spanwise wavelength and the depth at which the energy density reaches the maximum
agree reasonably well with the LES data. Moreover, the model captures the depth-
dependent variations in the dominant spanwise scales. In figures 10(a,b) and 10(c,d),
we plot the power-law fits of the peak spanwise wavelengths in LES for cases La; =
0.2 and La, =0.3, respectively. The contours of the model-predicted energy density,
as shown in figure 10(b,d), follow the same trends indicated by the curves from the
simulation data. These results indicate that the resolvent model effectively predicts
the dominant spanwise length scales of vertical velocity fluctuations, particularly in
the near-surface region. In deeper regions (e.g. y < —0.4H), where the LES show the
presence of large-scale Langmuir cells with 4, > H (figure 10a,c), the model does not
fully capture the energy contributions from these structures (figure 10b,d). While this
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Figure 10. Comparisons of the normalised one-dimensional pre-multiplied energy spectrum of the vertical
velocity v with respect to the spanwise wavelength A, between (a,c) LES and (b,d) model prediction from
(3.5), for (a,b) La; =0.2 and (c,d) La; =0.3. Each spectrum is normalised by its respective maximum value.
The white dashed lines indicate the fitted power-law relationships between the peak spanwise wavelength and

the vertical coordinate y for the LES data: (a) y = 0.38(/lzpwk)1'l for La; =0.3,and (¢) y = 0.27(/lfeak)0'9 for
La; =0.3. The black crosses in (a) and (¢) mark the A, y values where the energy density peaks in LES for
cases La; =0.2 and La; = 0.3, respectively. For the purposes of comparison, the white dashed lines and the
black crosses, indicating the characteristic features of the LES energy spectra are overlaid on the corresponding
model-predicted spectra in (b) and (d).

difference reflects the model’s bias towards near-surface structures in predicting the
spanwise energy distribution, similar to the two-dimensional spectra discussed above,
the model remains valuable for understanding the energetically important motions in
Langmuir turbulence, as it accurately captures the dominant spanwise scales associated
with vortical structures near the surface, where the vertical turbulence intensity is
strong.

To summarise, in this section, we have presented results on the low-rank behaviour of
the linearised system and applied the low-rank property to investigate the spectral response
of the system under broadband harmonic forcing. Despite the simplified assumptions
regarding the harmonic forcings representing the nonlinear effects, the model is effective
in capturing key features of the length scales of the dominant velocity component, i.e. the
vertical velocity. These results indicate that the linearised model effectively reproduces the
key dynamics underlying turbulence—wave interactions, supporting the interpretation that
near-surface quasi-streamwise vortices in Langmuir turbulence can arise from the linear
amplification of nonlinear forcing. Additionally, the findings demonstrate the applicability
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of the low-rank approximation and the predictive capability of the resolvent model for
Langmuir turbulence.

4. Conclusions and discussion

In this paper, we present a resolvent-based analysis of Langmuir turbulence, a wave-forced
turbulent boundary layer in upper oceans, using linearised perturbation equations derived
from the CL equations. The linearised model includes the force of a prescribed surface
wave, and incorporates the profiles of the mean velocity of the turbulent shear current
and eddy viscosity obtained from LES, enabling a more realistic representation of the
time-averaged state of Langmuir turbulence than existing modal analyses of Langmuir
circulations. By employing the resolvent analysis, we obtain the linear amplification
behaviour of the system’s input—output dynamics, which may be considered the excitation
of time-invariant, wave-like propagating coherent structures by turbulence nonlinearity. To
our knowledge, this work extends the application of resolvent analysis to the turbulence—
wave interaction problem for the first time.

The analysis provides new insights into the sustained structure and energetics of
Langmuir turbulence, complementing the instability-based interpretation of Langmuir
turbulence. By analysing the maximum amplification of the resolvent model, we find that
the amplified structures can be categorised into two regimes according to their spanwise
length scales. The structures with very large spanwise wavelengths (1, > H) achieve
maximum amplification for streamwise-invariant motions that extend to nearly the full
boundary layer depth. These motions correspond to large-scale, quasi-two-dimensional
Langmuir cells with strong spanwise and vertical motions. The associated optimal forcing
mode indicates that these rolls are driven by forcings in the streamwise direction. The
amplifications at smaller spanwise wavelengths (1, < H) are strong over a range of finite
streamwise wavelengths, indicating that various three-dimensional coherent structures
can be responsive to the amplification mechanism. These three-dimensional coherent
structures take the form of quasi-streamwise vortices inclined upwards in the downwind
direction, and are similarly driven primarily by streamwise forcings. The optimal response
modes are similar to the characteristic vortical structures in real flows, suggesting that the
input—output amplification mechanism captured by the resolvent model can represent the
coherent structure dynamics in Langmuir turbulence.

The dynamics revealed by the resolvent analysis, i.e. the excitation of coherent
structures by nonlinear forcing, offers a more general interpretation of Langmuir
turbulence, and, more broadly, turbulence—wave interactions, than does the classic
CL-II mechanism. In addition to capturing the large-scale rolls that have been the
primary focus of existing stability analyses, the resolvent analysis also elucidates the
mechanisms underlying the smaller-scale vortical structures that are prominent near
the surface. Furthermore, unlike linear stability or transient energy analyses, which
describe Langmuir circulations as the result of growing initial perturbations, resolvent
analyses demonstrate that similar structures can form through linear amplification of
persistent harmonic forcing, and that such forcing may be due to nonlinear interactions
in turbulence. This forced response mechanism can be particularly relevant to the fully
developed Langmuir turbulence, where sustained forcing continually excites coherent
structures. As such, these findings complement the classic CL-II mechanism by
providing a more comprehensive view of the multiscale coherent structures in Langmuir
turbulence.

Building on the finding that coherent structures can be forced by sustained nonlinear
forcing, we consider the system’s response to broadband harmonic forcing. When the
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principal response modes are integrated across all wavelengths and frequencies, the
superimposed response is found to reproduce the key features of the vertical velocity
spectrum observed in LES. This result is possible because the resolvent operator is
low-rank over the wavenumbers where turbulence fluctuations are most energetic, allowing
the dominant dynamics to be captured by the principal modes.

Specifically, by examining the spectra predicted by the superimposed response, we
find that the model-predicted two-dimensional spectra with respect to the streamwise
and spanwise wavelengths are in qualitative agreement with the real spectra from LES.
Moreover, the model accurately captures the variations in the dominant spanwise length
scales of vertical velocity fluctuations with depth, particularly in the near-surface region
where the vertical kinetic energy is concentrated. These results suggest that the dominant
dynamics determining the structures of the vertical velocity fluctuations in Langmuir
turbulence are likely governed by linear amplification mechanisms. We also note that
although the simplified assumption of unit-amplitude broadband forcing successfully
enables valuable predictions of the multiscale features of Langmuir turbulence, the model
still shows discrepancies in the streamwise length scales, and does not fully capture
the energy of large-scale Langmuir cells in the bulk region. These limitations prompt
further improvement in input forcing modelling, which should be weighted to reflect the
nonlinear interactions in turbulence more realistically. One promising direction is to use
a data-driven method to determine the appropriate forcing or eddy viscosity terms (Zare,
Jovanovié¢ & Georgiou 2017; Gupta et al. 2021). Such approaches can potentially enhance
the predicted power of resolvent-based models for complex turbulence—wave interaction
systems.

The results presented in this study demonstrate that a resolvent model using the
turbulent mean flow and eddy viscosity as the base state is a promising approach
for understanding turbulence—-wave interaction dynamics. Both the coherent structures
and the statistical features of the energy distribution predicted by the model indicate
that the linear amplification of nonlinear forcing is a physically meaningful formation
mechanism of Langmuir vortices. This resolvent modelling framework shows the
feasibility of developing efficient tools to predict turbulence statistics in the ocean
surface boundary layer under the influence of surface gravity waves. In this framework,
we construct a model based on the CL equations, which use a wave-phase-averaged
approach to quantify the wave effect without explicitly resolving the wave orbital
motions. However, a crucial feature of turbulence-wave interactions is the strain rate
associated with wave orbital motion, which induces turbulence fluctuations with time
scales comparable to the wave period and results in wave-phase-dependent variations
in turbulent coherent structures (Xuan et al. 2019, 2020; Smeltzer et al. 2023; Xuan,
Deng & Shen 2024). To capture these effects, extending the current linearised system
into a wave-phase-resolved framework is desirable. Such an extension may be achieved
either by formulating the governing equations in a curvilinear coordinate system (Teixeira
& Belcher 2002; Cao & Shen 2021) or by incorporating the wave boundary conditions
through appropriate wave-phase-dependent perturbation expansions (Fedele 2022; Xuan
et al. 2024). Additionally, the modulation of the wind-induced surface shear by wave
geometry (Thais & Magnaudet 1996; Yang, Meneveau & Shen 2013) may be incorporated
as a harmonic forcing to represent coupled air—sea—wave interactions. These future
developments would enable resolvent-based models to resolve wave-phase-dependent
turbulence structures and to capture the turbulence—wave interaction processes more
completely.

Declaration of interests. The authors report no conflict of interest.
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Appendix A. Alternative formulation of the perturbation equation

Equation (2.2) can be reformulated to explicitly include a vortex force term. Applying
the vector identity V- U*)=(u - VU’ + (U* - Vu+u x (VxU*)+ U’ x (V x
u), the perturbation (2.2) becomes

ou

UVt VU =-Vj+vV- [V—T(Vu+VuT)]+USx(qu)+d,
\%

(AD)
where the modified pressure p absorbs the gradient term V(u - U®). The vortex force
in (Al), U® x (V x u), acts on the perturbations. It is also straightforward to derive
the linearised equation in the above form directly from (2.23), excluding the SGS term.
The vortex force in the above perturbation equation, U® x (V x u), corresponds to the
perturbation component of total vortex force U x (V x v) in (2.23).

Appendix B. Rectangular spectral collocation method for discretising the linearised
system

The rectangular spectral collocation method (Driscoll & Hale 2016), a generalised
approach to incorporate boundary conditions into the spectral collocation discretisation
of differential equations, is employed to discretise the linearised perturbation equations in
the present study. Consider a linear differential equation of order m for a function u(x):

ap(x) u(x) 4+ ay (x) w' (x) + - - - 4 am () u™ (x) = f(x), (B1)

where a;(x) (i=0,...,m) are the coefficients of each derivative order, and f(x)
on the right-hand side is a source term. This equation requires m boundary conditions,
specified as

l,-(u,u/,...,u(m_l))zgi, i=1,...,m, (B2)

where [; denote the linear functionals defining the boundary constraints, and g; are
prescribed scalars.

The function u is discretised at N +m Chebyshev points of the second kind {x;},
given by

Jjm .
P=— — ), =0,...,N -1 B3
Xj COS(N+m—1) J +m (B3)
The spectral collocation method evaluates the differential equation on a different set of
nodes, which are N Chebyshev nodes of first kind {X;}, defined by

i+ 7
ij:—cos((]T"‘)), j=0,...,N—1. (B4)

The conversion between the two sets of collocation grids is obtained using the rectangular
differential operator of the form PD¥, where P is a barycentric resampling matrix that
interpolates the polynomial represented by the nodal values at {x;} to {X;} (see Berrut
& Trefethen (2004) and Driscoll & Hale (2016) for the formulation), and D" is the kth-
order differentiation matrix evaluated at (B3) (Trefethen 2000). The operator PDk, which
downsamples the derivatives from N + m points to N nodes, has dimensions N x (N +
m). After adding all the differential terms, the m boundary conditions are appended to the
system to form a rectangular system matrix. For example, a Dirichlet boundary condition
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u = 0 at the first node is enforced by appending

uo
uj
1 o --- 0] .| =0, (B5)
UN-1
where [ug, ug, ..., uN_l]T denotes the discretised solution vector. Note that the

Chebyshev points of the second kind {x;} in (B3) include the domain boundaries.
Neumann conditions can be similarly enforced by appending the corresponding rows (first
and last) of the differentiation matrix D*. The resulting system takes the form

[ P(aol—}—alDlz—---—}—amD’") :|u:|: ng } (B6)

where L represents the discretised boundary constraint functionals, and g contains the
boundary values.

In the present study, when discretising the linearised perturbation (2.2), v and w, are
discretised on N +4 and N + 2 Chebyshev points of the second kind, respectively, as
the equations for v and w, are fourth-order and second-order in y, respectively. The
rectangular collocation method resamples the function values and enforces the equations
on N nodes. It should be noted that the downsampling does not lead to the loss of
information. A function represented by N + m nodal values corresponds to a polynomial
of degree at most N +m — 1. For a differential equation of order m, the associated
polynomial can only be enforced at N degrees of freedom. The remaining m degrees
of freedom are constrained by the boundary conditions. Therefore, the downsampling
is a natural approach for enforcing the differential equations in the domain interior
while preserving the required degrees of freedom for boundary conditions. Further
discussions about the resampling and the relation of the rectangular collocation method
to other approaches, such as the Chebyshev tau method, are available in Driscoll & Hale
(2016).

Appendix C. Secondary resolvent response mode and forcing mode

In this appendix, we present the secondary mode for selected wavenumber—frequency
triplets, complementing the principal mode discussed in § 3.1. Although the principal
mode has the highest amplification and is more prominent in the flow, the subsequent
modes also contribute to the overall flow structure.

Figure 11 shows the secondary response and forcing structures for the two-dimensional,
streamwise-invariant mode examined in § 3.1, whose principal response and forcing are
presented in figure 4. The flow response is dominated by the spanwise and streamwise
velocity components, exhibiting as two vertically stacked layers of vortical motions
with accompanying variations in the streamwise velocity. The vortices near the surface
and deeper in the domain are aligned in the vertical direction and rotate in opposite
directions. Near the surface, the streamwise velocity is positive in the converging zone
and negative in the diverging zone. In the lower layer, positive streamwise velocity is found
to accompany the downward motion between counter-rotating vortices, which transports
high-momentum fluid downwards, whereas negative streamwise velocity corresponds to
upward motions. This flow response corresponds to nonlinear forcing that is dominated
by the streamwise component, i.e. alternating accelerations and decelerations in the
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Figure 11. Structures of the secondary (a) velocity response u = (u, v, w) and (c) input forcing d =
(dy, dy, d;) for case La; =0.2 at (ky, k;, w)=(0,27/H,0). In (a) and (c), the contours represent the
streamwise components, « and d,, respectively; the vectors represent the cross-stream components, (w, v) and
(d, dy), respectively. The vertical variations in the mean squared response velocity and forcing components

are plotted in (b) and (d), respectively: streamwise component (u2 or d2 circles), vertical component (v2 and
d2 squares) and spanwise component (w2 and d2 triangles).

streamwise momentum equation. The forcing also exhibits a two-layer structure. The two-
layer structure in the secondary mode is also observed in conventional turbulent boundary
layers without the wave forcing (see e.g. McKeon & Sharma 2010; Abreu et al. 2020).
Figure 12 shows the vortical structures of the secondary three-dimensional response
mode for the wavenumber—frequency triplet shown in figure 5. This secondary response
exhibits as two layers of quasi-streamwise vortices in the near-surface region, with each
layer consisting of an array of counter-rotating vortex pairs. From the velocity field on
the vertical cross-plane (figure 13a) and the energy of the three velocity components
(figure 13b), we find that the secondary response is dominated by the spanwise and
vertical motions. The streamwise velocity component is relatively weak. The spatial
pattern of the streamwise velocity, with positive u in the downwelling regions, and
negative u in the upwelling zones, aligns with the vertical transport of streamwise
momentum induced by the vortical motions. The forcing pattern and the plane-averaged
mean squared forcing magnitudes are shown in figures 13(c) and 13(d), respectively. The
streamwise forcing component is dominant, again exhibiting a two-layer distribution. For
this scale, the secondary mode shares similar dynamics with the principal mode, i.e. quasi-
streamwise vortices are driven via the linear amplification of streamwise nonlinear forcing.
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Figure 12. Vortex structures of the secondary response mode for case La, =0.2 with ky H =4, k, H = 16.5
and w =k, UL (y = —0.12H) =44.9u,./H. The vortex structures are elucidated using the iso-surfaces of the
Q-criterion (10 % of the maximum value), with red and blue indicating positive and negative streamwise
vorticity, respectively.
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Figure 13. Cross-plane structures of the secondary (a) response u = (u, v, w) and (c¢) input forcing d =
(dy, dy, d;) shown in figure 12, plotted at x = (7r/12) H. In (a) and (c), the contours represent the streamwise
components, u and d,, respectively; the vectors represent the cross-stream components, (w, v) and (d;, dy),
respectively. The vertical variations in the plane-averaged squared response velocity and forcing components

are plotted in (b) and (d), respectively: streamwise component (12 or df, circles), vertical component (v2 and
d2, squares) and spanwise component (w? and d2, triangles).
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Additionally, we observe that the dominance of vortical response and streamwise forcing
in the secondary mode is applicable to small-scale motions whose wavelengths are smaller
than domain depth H.

REFERENCES

ABREU, L.I., CAVALIERI, A.V.G., SCHLATTER, P., VINUESA, R. & HENNINGSON, D.S. 2020 Resolvent
modelling of near-wall coherent structures in turbulent channel flow. Intl J. Heat Fluid Flow 85, 108662.

AHMED, M.A., BAE, H.J., THOMPSON, A.F. & MCKEON, B.J. 2021 Resolvent analysis of stratification
effects on wall-bounded shear flows. Phys. Rev. Fluids 6 (8), 084804.

DEL ALAMO, C.J. & JIMENEZ, J. 2006 Linear energy amplification in turbulent channels. J. Fluid Mech. 559,
205-213.

ANDREWS, D.G. & MCINTYRE, M.E. 1978 On wave-action and its relatives. J. Fluid Mech. 89 (4), 647-664.

BELCHER, S.E. et al. 2012 A global perspective on Langmuir turbulence in the ocean surface boundary layer.
Geophys. Res. Lett. 39 (18), L18605.

BERRUT, J.-P. & TREFETHEN, L.N. 2004 Barycentric Lagrange interpolation. SIAM Rev. 46 (3), 501-517.

CAO0, T. & SHEN, L. 2021 A numerical and theoretical study of wind over fast-propagating water waves. J.
Fluid Mech. 919, A38.

CHAMECKI, M., CHOR, T., YANG, D. & MENEVEAU, C. 2019 Material transport in the ocean mixed layer:
recent developments enabled by large eddy simulations. Rev. Geophys. 57 (4), 1338—1371.

Cox, S.M. & LEIBOVICH, S. 1993 Langmuir circulations in a surface layer bounded by a strong thermocline.
J. Phys. Oceanogr. 23 (7), 1330-1345.

CRAIK, A.D.D. 1977 The generation of Langmuir circulations by an instability mechanism. J. Fluid Mech. 81
(2), 209-223.

CRAIK, A.D.D. & LEIBOVICH, S. 1976 A rational model for Langmuir circulations. J. Fluid Mech. 73 (3),
401-426.

D’ ASARO, E.A. 2014 Turbulence in the upper-ocean mixed layer. Annu. Rev. Mar. Sci. 6, 101-115.

D’AsARrRO, E.A., THOMSON, J., SHCHERBINA, A.Y., HARCOURT, R.R., CRONIN, M.F., HEMER,
M.A. & FOX-KEMPER, B. 2014 Quantifying upper ocean turbulence driven by surface waves. Geophys.
Res. Lett. 41 (1), 102-107.

DENG, B.-Q., YANG, Z., XUAN, A. & SHEN, L. 2019 Influence of Langmuir circulations on turbulence in the
bottom boundary layer of shallow water. J. Fluid Mech. 861, 275-308.

DENG, B.-Q., YANG, Z., XUAN, A. & SHEN, L. 2020 Localizing effect of Langmuir circulations on small-
scale turbulence in shallow water. J. Fluid Mech. 893, A6.

DriscoLL, T.A. & HALE, N. 2016 Rectangular spectral collocation. IMA J. Numer. Anal. 36 (1), 108—132.

FARRELL, B.F. & I0ANNOU, P.J. 1993 Stochastic forcing of the linearized Navier—Stokes equations. Phys.
Fluids A: Fluid Dyn. 5 (11), 2600-2609.

FEDELE, F. 2022 On the momentary stability of the laminar boundary layer beneath a Stokes wave. Water
Waves 4 (2), 181-192.

GERMANO, M., PIOMELLI, U., MOIN, P. & CABOT, W.H. 1991 A dynamic subgrid-scale eddy viscosity
model. Phys. Fluids A: Fluid Dyn. 3 (7), 1760-1765.

GUPTA, V., MADHUSUDANAN, A., WAN, M., ILLINGWORTH, S.J. & JUNIPER, M.P. 2021 Linear-model-
based estimation in wall turbulence: improved stochastic forcing and eddy viscosity terms. J. Fluid Mech.
925, A18.

HARCOURT, R.R. & D’ ASARO, E.A. 2008 Large-eddy simulation of Langmuir turbulence in pure wind seas.
J. Phys. Oceanogr. 38 (7), 1542-1562.

HoLM, D.D. 1996 The ideal Craik—Leibovich equations. Physica D 98 (2—4), 415—441.

HWANG, Y. 2016 Mesolayer of attached eddies in turbulent channel flow. Phys. Rev. Fluids 1 (6), 064401.

HWANG, Y. & Cossu, C. 2010 Linear non-normal energy amplification of harmonic and stochastic forcing in
the turbulent channel flow. J. Fluid Mech. 664, 51-73.

ILLINGWORTH, S.J., MONTY, J.P. & MARUSIC, 1. 2018 Estimating large-scale structures in wall turbulence
using linear models. J. Fluid Mech. 842, 146-162.

JOVANOVIC, M.R. 2021 From bypass transition to flow control and data-driven turbulence modeling: an input—
output viewpoint. Annu. Rev. Fluid Mech. 53 (1), 311-345.

JovaNoVIC, M.R. & BAMIEH, B. 2005 Componentwise energy amplification in channel flows. J. Fluid Mech.
534, 145-183.

LEIBOVICH, S. 1977a Convective instability of stably stratified water in the ocean. J. Fluid Mech. 82 (3),
561-581.

1023 A4-29


https://doi.org/10.1017/jfm.2025.10830

https://doi.org/10.1017/jfm.2025.10830 Published online by Cambridge University Press

A. Xuan and L. Shen

LEIBOVICH, S. 1977b On the evolution of the system of wind drift currents and Langmuir circulations in the
ocean. Part 1. Theory and averaged current. J. Fluid Mech. 79 (4), 715-743.

LEIBOVICH, S. 1983 The form and dynamics of Langmuir circulations. Annu. Rev. Fluid Mech. 15, 391-427.

LEIBOVICH, S. & PAoLuccl, S. 1980 Energy stability of the Eulerian-mean motion in the upper ocean to
three-dimensional perturbations. Phys. Fluids 23 (7), 1286—1290.

LEIBOVICH, S. & PaoLuccl, S. 1981 The instability of the ocean to Langmuir circulations. J. Fluid Mech.
102, 141-167.

LEIBOVICH, S. & TANDON, A. 1993 Three-dimensional Langmuir circulation instability in a stratified layer.
J. Geophys. Res. Oceans 98 (C9), 16501-16507.

L1, M., GARRETT, C. & SKYLLINGSTAD, E. 2005 A regime diagram for classifying turbulent large eddies in
the upper ocean. Deep-Sea Res. 1 52 (2), 259-278.

LiLLy, D.K. 1992 A proposed modification of the Germano subgrid-scale closure method. Phys. Fluids A:
Fluid Dyn. 4 (3), 633-635.

L1u, J., YUAN, J. & LIANG, J.-H. 2022 An evaluation of vertical mixing parameterization of ocean boundary
layer turbulence for cohesive sediments. Deep-Sea Res. 11 204, 105168.

LONGUET-HIGGINS, M.S. 1953 Mass transport in water waves. Phil. Trans. R. Soc. Lond. A 245 (903),
535-581.

MCKEON, B.J. & SHARMA, A.S. 2010 A critical-layer framework for turbulent pipe flow. J. Fluid Mech. 658,
336-382.

MCKEON, B.J., SHARMA, A.S. & JACOBI, 1. 2013 Experimental manipulation of wall turbulence: a systems
approach. Phys. Fluids 25 (3), 031301.

McWILLIAMS, J.C. & SULLIVAN, P.P. 2000 Vertical mixing by Langmuir circulations. Spill Sci. Technol.
Bull. 6 (3-4), 225-237.

McWILLIAMS, J.C., SULLIVAN, P.P. & MOENG, C.-H. 1997 Langmuir turbulence in the ocean. J. Fluid
Mech. 334, 1-30.

MELVILLE, W.K., SHEAR, R. & VERON, F. 1998 Laboratory measurements of the generation and evolution
of Langmuir circulations. J. Fluid Mech. 364, 31-58.

MOARREF, R., SHARMA, A.S., TROPP, J.A. & MCKEON, B.J. 2013 Model-based scaling of the streamwise
energy density in high-Reynolds-number turbulent channels. J. Fluid Mech. 734, 275-316.

MORRA, P., SEMERARO, O., HENNINGSON, D.S. & Cossu, C. 2019 On the relevance of Reynolds stresses
in resolvent analyses of turbulent wall-bounded flows. J. Fluid Mech. 867, 969-984.

NAKASHIMA, S., LUHAR, M. & FUKAGATA, K. 2019 Reconsideration of spanwise rotating turbulent channel
flows via resolvent analysis. J. Fluid Mech. 861, 200-222.

PHILLIPS, W.R.C. 2001 On an instability to Langmuir circulations and the role of Prandtl and Richardson
numbers. J. Fluid Mech. 442, 335-358.

PHILLIPS, W.R.C. & DAI, A. 2014 On Langmuir circulation in shallow waters. J. Fluid Mech. 743, 141-169.

PICKERING, E., R1GAS, G., SCHMIDT, O.T., S1pP, D. & CoLONIUS, T. 2021 Optimal eddy viscosity for
resolvent-based models of coherent structures in turbulent jets. J. Fluid Mech. 917, A29.

PICKERING, E.M., RIGAS, G., S1PP, D., SCHMIDT, O.T. & COLONIUS, T. 2019 Eddy viscosity for resolvent-
based jet noise models. In 25th AIAACEAS Aeroacoustics Conference, p. 2454. American Institute of
Aeronautics and Astronautics.

PUJALS, G., GARCIA-VILLALBA, M., COSsU, C. & DEPARDON, S. 2009 A note on optimal transient growth
in turbulent channel flows. Phys. Fluids 21 (1), 015109.

REYNOLDS, W.C. & HUSSAIN, A.K.M.F. 1972 The mechanics of an organized wave in turbulent shear flow.
Part 3. Theoretical models and comparisons with experiments. J. Fluid Mech. 54 (2), 263-288.

VON SALDERN, J.G.R., SCHMIDT, O.T., JORDAN, P. & OBERLEITHNER, K. 2024 On the role of eddy
viscosity in resolvent analysis of turbulent jets. J. Fluid Mech. 1000, A51.

ScHMID, P.J. & HENNINGSON, D.S. 2001 Stability and transition in shear flows. Applied Mathematical
Sciences, vol. 142. Springer.

SKYLLINGSTAD, E.D. & DENBO, D.W. 1995 An ocean large-eddy simulation of Langmuir circulations and
convection in the surface mixed layer. J. Geophys. Res. Oceans 100 (C5), 8501-8522.

SMELTZER, B.K., RG@MCKE, O., HEARST, R.J. & ELLINGSEN, S. 2023 Experimental study of the mutual
interactions between waves and tailored turbulence. J. Fluid Mech. 962, R1.

STOKES, G. 1847 On the theory of oscillatory waves. Trans. Camb. Phil. Soc. 8, 441-455.

SULLIVAN, P.P. & MCWILLIAMS, J.C. 2010 Dynamics of winds and currents coupled to surface waves. Annu.
Rev. Fluid Mech. 42, 19-42.

Suzukl, N. & Fox-KEMPER, B. 2016 Understanding Stokes forces in the wave-averaged equations. J.
Geophys. Res. Oceans 121 (5), 3579-3596.

1023 A4-30


https://doi.org/10.1017/jfm.2025.10830

https://doi.org/10.1017/jfm.2025.10830 Published online by Cambridge University Press

Journal of Fluid Mechanics

SYMON, S., ILLINGWORTH, S.J. & MARUSIC, I. 2021 Energy transfer in turbulent channel flows and
implications for resolvent modelling. J. Fluid Mech. 911, A3.

SYMON, S., MADHUSUDANAN, A., ILLINGWORTH, S.J. & MARUSIC, 1. 2023 Use of eddy viscosity in
resolvent analysis of turbulent channel flow. Phys. Rev. Fluids 8 (6), 064601.

TEIXEIRA, M.A.C. & BELCHER, S.E. 2002 On the distortion of turbulence by a progressive surface wave. J.
Fluid Mech. 458, 229-267.

TEIXEIRA, M.A.C. & BELCHER, S.E. 2010 On the structure of Langmuir turbulence. Ocean Model. 31 (3-4),
105-119.

TEJADA-MARTINEZ, A.E. & GROSCH, C.E. 2007 Langmuir turbulence in shallow water. Part 2. Large-eddy
simulation. J. Fluid Mech. 576, 63—108.

THAIS, L. & MAGNAUDET, J. 1996 Turbulent structure beneath surface gravity waves sheared by the wind. J.
Fluid Mech. 328, 313-344.

THORPE, S.A. 2004 Langmuir circulation. Annu. Rev. Fluid Mech. 36, 55-79.

TREFETHEN, L.N. 2000 Spectral Methods in MATLAB. Society for Industrial and Applied Mathematics.

TREFETHEN, L.N., TREFETHEN, A.E., REDDY, S.C. & DRIscOLL, T.A. 1993 Hydrodynamic stability
without eigenvalues. Science 261 (5121), 578-584.

TsAl, W. & Lu, G. 2023 A numerical study on Langmuir circulations and coherent vortical structures beneath
surface waves. J. Fluid Mech. 969, A30.

VAN ROEKEL, L.P., FOX-KEMPER, B., SULLIVAN, P.P., HAMLINGTON, P.E. & HANEY, S.R. 2012 The form
and orientation of Langmuir cells for misaligned winds and waves. J. Geophys. Res. Oceans 117, C05001.

VERON, F. & MELVILLE, W.K. 2001 Experiments on the stability and transition of wind-driven water surfaces.
J. Fluid Mech. 446, 25-65.

WU, W., MENEVEAU, C., MITTAL, R., PADOVAN, A., ROWLEY, C.W. & CATTAFESTA, L. 2022 Response
of a turbulent separation bubble to zero-net-mass-flux jet perturbations. Phys. Rev. Fluids 7 (8), 084601.
XUAN, A., DENG, B.-Q. & SHEN, L. 2019 Study of wave effect on vorticity in Langmuir turbulence using

wave-phase-resolved large-eddy simulation. J. Fluid Mech. 875, 173-224.

XUAN, A., DENG, B.-Q. & SHEN, L. 2020 Numerical study of effect of wave phase on Reynolds stresses and
turbulent kinetic energy in Langmuir turbulence. J. Fluid Mech. 904, A17.

XUAN, A., DENG, B.-Q. & SHEN, L. 2024 Effect of an incoming Gaussian wave packet on underlying
turbulence. J. Fluid Mech. 999, A45.

YANG, D., CHAMECKI, M. & MENEVEAU, C. 2014 Inhibition of oil plume dilution in Langmuir ocean
circulation. Geophys. Res. Lett. 41 (5), 1632-1638.

YANG, D., CHEN, B., CHAMECKI, M. & MENEVEAU, C. 2015 Oil plumes and dispersion in Langmuir, upper-
ocean turbulence: large-eddy simulations and K-profile parameterization. J. Geophys. Res. Oceans 120 (7),
4729-4759.

YANG, D., MENEVEAU, C. & SHEN, L. 2013 Dynamic modelling of sea-surface roughness for large-eddy
simulation of wind over ocean wavefield. J. Fluid Mech. 726, 62-99.

ZARE, A., JOVANOVIC, M.R. & GEORGIOU, T.T. 2017 Colour of turbulence. J. Fluid Mech. 812, 636-680.

ZHu, W., CHEN, X. & Fu, L. 2024 Resolvent analyses of incompressible turbulent channel, pipe and
boundary-layer flows. Intl J. Heat Fluid Flow 106, 109331.

ZIKANOV, O., SLINN, D.N. & DHANAK, M.R. 2003 Large-eddy simulations of the wind-induced turbulent
Ekman layer. J. Fluid Mech. 495, 343-368.

1023 A4-31


https://doi.org/10.1017/jfm.2025.10830

	1. Introduction
	2. Formulation and LES data
	2.1. Linear model for fluctuations in Langmuir turbulence
	2.2. The LES set-up
	2.3. Base flow

	3. Results
	3.1. Harmonic responses and coherent structures
	3.2. Energy distribution across various wavelengths

	4. Conclusions and discussion
	Appendix A. Alternative formulation of the perturbation equation
	Appendix B. Rectangular spectral collocation method for discretising the linearised system
	Appendix C. Secondary resolvent response mode and forcing mode
	References

