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T. R. MARCHANT'AND A. J. ROBERTS2

(Received 12 September 1988; revised 6 March 1989)

Abstract

Wave reflection by a wedge in deep water is examined, where the wedge can rep-
resent a breakwater of finite length or the bow of a ship heading directly into
the waves. In addition, the form of the solution allows the results to apply to
ships heading at an angle into the waves. We consider a deep-water wavetrain
approaching the wedge head on from infinity and being reflected. Far from the
wedge there is a field of progressive waves (the incident wavetrain) while close to
the wedge there is a short-crested wavefield (the incident and reflected wavetrains).
A weakly-nonlinear slowly-varying averaged Lagrangian theory is used to describe
the problem (see Whitham [16]) as the theory includes the nonlinear interaction
between the incident and reflected wavetrains. This modelling of a short-crested
wavefield allows the nonlinear wavefield to be found for broad wedges, as opposed
to previous theories which are applicable to thin wedges only.

It is shown that the governing partial differential equations are hyperbolic and
that the solution comprises two regions, within which the wave properties are con-
stant separated by a wave jump. Given the wedge angle and the incident wavefield,
the jump angle and the wave steepness and wavenumber of the short-crested wave-
field behind the wave jump can be determined. Two solution branches are found
to exist: one corresponds to regular reflection, while for small amplitudes the other
is similar to Mach-reflection and so it is called near Mach-reflection. Results are
presented describing both solution branches and the transition between them.

1. Introduction

Wave reflection and diffraction by a wedge in water is of interest in practical
situations such as for a breakwater of finite length or the bow of a ship
heading directly or at an angle into the waves.
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62 T. R. Marchant and A. J. Roberts [2]

In the linear analysis, a wavetrain approaches the wedge head on from in-
finity and is reflected by the wedge, the incident and reflected waves on either
side of the wedge being symmetric about the boundary's normal. However,
this picture can be significantly modified for nonlinear waves. Experimental
observations for waves of glancing incidence upon a wall in water of shallow
depth (Perroud [11], Chen [1] and Wiegel [17]) show that the reflection is not
regular. Instead, a wave develops which propagates along the wall (called a
Mach-stem). This phenomenon is called Mach-reflection due to its similarity
to the reflection of a shock wave in supersonic flow. As the incident wave
becomes less oblique, the Mach-stem disappears and the wave reflection is
qualitatively similar to that of linear wavetrains.

Much progress has been made on the problem of the forward scattering
or diffraction of a wavetrain striking a thin wedge at glancing incidence. A
parabolic assumption is made where the variation in the wave amplitude in
the direction of propagation is small (0(e2), where e is the order of the wave
amplitude) compared with the spanwise variation (which is 0(e)). This ap-
proximation was used by Mei and Tuck [8] and Tsay and Liu [14] in deriving
the linear parabolic wave equation which describes the wave envelope. Mei
and Tuck [8] obtained numerical results for a thin submerged obstacle head
on to the waves in water of otherwise constant depth. Their results show
that a significant amplification of the wave amplitude occurs in the vicinity
of the obstacle. Tsay and Liu [14] derived a similar linear equation valid for
mildly sloping sea beds. They considered two problems: the diffraction of
obliquely incident waves in water of slowly varying depth, and the wavefield
in the region of a submerged circular shoal. It was shown that increased
wave amplitudes occur in both examples. However, in the region of large
wave amplitudes a linear theory is not valid so a weakly-nonlinear theory
must be considered.

Yue and Mei [18] consider a weakly-nonlinear theory to study the diffrac-
tion of waves in water of finite depth by a thin wedge. Again using the
parabolic approximation, they derived a nonlinear Schrodinger equation
which describes the wave envelope. They give extensive numerical solutions
which show that a Mach-stem develops as the incident wave amplitude is
increased. Outside the Mach-stem region fluctuations of smaller amplitude
join the Mach-stem with the incident wavefield. Also, as the wave propagates
along the wedge the transition region spreads out linearly. In addition they
show that by ignoring the fluctuations, the Mach-stem can be approximated
as a constant wavefield, separated by a wave jump, or shock, from the inci-
dent wavefield. They obtain good agreement with their numerical solutions
by this approximation.
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Kirby and Dalrymple [4] derived a nonlinear Schrodinger equation in a
similar way to Yue and Mei [ 18] but allowed for slow depth variation. They
considered two numerical examples: a submerged circular shoal, and a wedge
shaped depression. For the case of the submerged circular shoal their results
show that linear theory substantially overpredicts the wave amplitude in the
vicinity of the shoal. In addition, wave jumps can be identified and are
qualitatively similar to Yue and Mei's results. For the case of the wedge
shaped depression, linear and weakly-nonlinear theory are again compared.
The linear results show the presence of a caustic along the line of the wedge
depression. The wave amplitude is small inside the depression region; hence
this indicates that the wave is almost totally reflected (see their Figure 3). In
the far-field (when the wave has propagated a long way along the wedge) the
wavefield can be described by an Airy function solution. The correspond-
ing weakly-nonlinear far-field solution is described in terms of the second
Painleve transcendent. The weakly-nonlinear solutions show that for large
incident wave amplitudes, the linear picture changes and a broad region of
progressive waves with slowly varying amplitude occurs along the depression
line, and extends well inside the depression region. This wave can be identi-
fied as a Mach-stem. Hence for large wave amplitudes the far-field solution
involving the second Painleve transcendent is unlikely to occur, as Mach-
reflection occurs instead, with very little or no reflected wave.

Peregrine [9] considered the reflection, refraction and diffraction of finite-
amplitude water waves associated with wave jumps. First, he examined the
problem of Mach-reflection, which can be simplified to the consideration of
a single wavetrain in deep water incident upon a wedge with the wavetrain
constrained to travel parallel to the wedge after the wave jump. To locate the
wave jump he uses conservation of wave action, conservation of wavenumber
along the jump and conservation of frequency (see his Figure 4). Numeri-
cally exact integral properties of finite-amplitude progressive waves are used
in the calculations. For small wedge angles and low waves his solutions com-
pare well with the wave jump approximation of Yue and Mei [18]. This
extension to finite-amplitude waves has the disadvantage that the structure
of the wave jump is lost (the structure of Yue and Mei's wave jump is the re-
gion of fluctuating wave amplitude between the Mach-stem and the incident
wavefield; see their Figures 3, 4 and 6). Secondly, Peregrine noticed that the
wave jump found by Yue and Mei looks like an undular bore propagating
away from the wedge. He takes this analogy further by transforming the
nonlinear Schrodinger equation into a form equivalent to the shallow water
equations used to describe undular or turbulent bores. Thirdly, he considered
the defocusing nature of the nonlinear Schrodinger equation for gravity water
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waves. Using an hydraulic analogy he examined the effect that nonlinearity
has upon a linear caustic. Linear theory results in a cusp caustic, while the
weakly-nonlinear solution defocuses this cusp caustic into two separate wave
jumps or caustic lines (see his Figure 5). Hence the conclusion from this and
from the results of Yue and Mei [18] and Kirby and Dalrymple [4] is that
nonlinear wave jumps are not necessarily similar to linear wave jumps; there
may be qualitative differences.

Peregrine ([10], Section 6) considers the dark soliton solution of the non-
linear Schrodinger equation, so-called because it results in the wave ampli-
tude decreasing below the amplitude of the carrier wavetrain. His Figure
8(a) shows these solitons developing on a smooth wave jump between two
uniform wavefields. The x and t directions there correspond respectively
to the spanwise and wave propagation directions in Yue and Mei's wedge
geometry. The similarity with Yue and Mei's solutions is readily apparent
(see their Figure 4).

Whitham [15] considers nonlinear dispersive waves via an averaged La-
grangian approach. The variational equations form a system of nonlinear
hyperbolic partial differential equations which can lead to multi-valued solu-
tions. However, the slowly-varying wave can be saved by the inclusion of a
wave jump (as given by the Rankine-Hugoniot conditions) in the region of the
multiple solutions. In contrast, Yue and Mei [ 18] and Kirby and Dalrymple
[4] derived a nonlinear Schrodinger equation, which because of the resolu-
tion of shorter length scales, describes the solution in the transition region
near the wave jump without becoming invalid (as in Marchant and Roberts
[7] where the nonlinear ray theory became invalid at a circular caustic while
a modified nonlinear Schrodinger equation provides a valid description of
the wavefield in the caustic region). Slowly-varying wave theory is used in
another context by Howard and Kopell [3]. They consider slowly-varying
solutions to reaction-diffusion equations and find shocks or wave jumps oc-
curing. Again, consideration of the full equations leads to information about
the shock region, such as its thickness (see their Section 4).

In Section 2 we consider the problem of a deep-water wavetrain directly
approaching a wedge from infinity, and then being reflected (however, the
form of the solutions allow the results to apply to wavetrains approaching
the wedge at an angle). Far from the wedge there is a field of progressive
waves (the incident wavetrain) while close to the wedge there is a field of
short-crested waves (the incident and reflected wavetrains). Thus the problem
is formulated, as in Marchant and Roberts [7], by using the slowly-varying
averaged Lagrangian theory of Whitham [16] which includes the nonlinear in-
teraction between the incident and reflected wavetrains. This is in contrast to
both Peregrine [9] and Yue and Mei [18] who considered only a single wave-
train, not allowing for reflection at the wedge. Thus the consideration of the
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short-crested wavefield allows reflection from broad wedges to be examined.
This research complements Marchant and Roberts [7] where the wavefield
considered varies in the radial direction but has no angular variation; here
the wavefield varies in the angular direction but has no radial variation.

In Section 3 the linear solution is derived by the method of characteristics,
the governing partial differential equations being hyperbolic. In Section 4 a
limit involving small wedge angle and small amplitudes is considered. The
governing partial differential equations are hyperbolic and, by the method of
characteristics, the solution is shown to be two constant wave regions sepa-
rated by a wave jump. Hence in Section 5 a numerical scheme is developed
for arbitrary wedge angle and wave steepness. We consider the problem as
a wavefield of constant progressive waves separated by a wave jump from a
wavefield of short-crested waves. The variational principle gives equations
comprising both algebraic and partial differential equations. The partial dif-
ferential equations provide the Rankine-Hugoniot conditions to be satisfied
across the wave jump. Thus, given the wedge angle and the incident wavefield,
the jump angle and the wave steepness and wavenumber of the short-crested
wavefield behind the wave jump can be determined. Section 6 considers Mach
reflection where there is no reflected wavetrain. Here the incident wavetrain
bends through the wave jump to travel parallel to the wedge. This is the sit-
uation considered by Peregrine [9] and Yue and Mei [18], and so the results
are compared with theirs. In Section 7 results are presented for a wavefield
where reflection from the wedge occurs and thus a reflected wavetrain exists
and a short-crested wavefield is generated. For a blunt wedge the reflection
is regular (where the picture is qualitatively similar to the reflection of linear
waves). However, for thin wedges two branches of the solution exist: one
corresponding to regular reflection, while for small amplitudes the other is
similar to Mach-reflection and so is called near Mach-reflection.

2. Variational formulation and boundary conditions

2.1. The variational equations for a steady wavefield
We shall describe the interaction of two nonlinear slowly-varying deep-

water wavetrains in the same way as Marchant and Roberts [7]. To accom-
plish this, Whitham's [16] variational formulation is used. This formulation
includes a local averaging which removes the oscillations of the wave motion
from the equations, leaving the slow variations in space and time of ampli-
tude, wavenumber and frequency to be found. The averaged Lagrangian is
obtained by substituting expressions for the wave motion into the Lagrangian
and then averaging. The equations obtained from the averaged Lagrangian by
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varying the parameters in the expression then describe the slow variations of
the wave properties. We consider a co-ordinate system where x, y are hor-
izontal co-ordinates and the z-axis is vertically up. Upon assuming that the
fluid is incompressible and inviscid and that the fluid motion is irrotational,
we consider a velocity potential <f> and a free surface shape r\ describing the
two wavetrains given by

where Q{(x,y,t) and Q2(x, y, t) are two phase functions. Thus <f> and
t\ are periodic in both 0 , and 6 2 with period In and

= 1,2, (2.2)

where k, are the wavenumber vectors, and w are the frequencies of the
two phases. For simplicity only deep water is considered, for which the
Lagrangian, as proposed by Luke [5] is

+ i|Vtf>|2) dz - ^-r,2, (2.3)

where p is the density of water and g is the gravitational acceleration. The
variational principle for water waves is one of stationary pressure; (2.3) just
represents the depth integrated pressure of the fluid. We write <j) and r\ in
the following truncated form

<$> = bxe
k'z s i n (e , ) + b2e

klZ s in(02)

+ bye
lk{Z sin(20,) + b/klZ sin(262)

+ b5e
lki+k*lz sin(6, + G2) + V l k '~ k 2 ' Z sin(e, - 8 2 ) ,

and

r} = a, cos(©,) + a2 cos(G2) + a3 cos(26,) + a4 cos(262)

+ a5 cos(e, + e 2 ) + a6 cos(ej - 02) . (2.5)

Normally, b{, b2, al and a2 will be of first order in wave amplitude while
the other coefficients will be of second order. The largest neglected higher
harmonics in these expressions will be of third order; thus this analysis is
valid only for waves which are not too high.

Upon substituting the above expressions into (2.3) and using (2.2), an
expression is found for

L = L(ai,bi,coj,kj,ej). (2.6)

Assuming at, b(, cOj and k;. to be slowly-varying functions of space and
time and thus effectively constant over a wave period, we define the averaged
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Lagrangian to be

1 fn f 2 n ( 2 . 7 )
L is truncated to fourth order, as the neglected harmonics first contribute
at sixth order. L contains the information about the interaction of the slow
variations in amplitude, wavenumber and frequency of the two wavetrains.
According to Whitham [15], the variational equations to be solved are then

V x k, = 0

(2.9)

Equations (2.8) are the results of variations of L with respect to the inde-
pendent amplitude variables. The last of the equations (2.9) is the result of
variations with respect to the independent phase function Qj . The remain-
ing equations in (2.9) are conditions on k. and (Oj which ensure that 6 ;

exists.
In particular, for wavefields where all the properties are steady (d/dt — 0)

(2.8) and (2.9) become

i = l , . . . 6, (2.10)
Lt, = 0

and

cOj = constant \ j = 11 2. (2.11)

V • L, = 0 I
kj )

2.2. Initial and boundary conditions
For a wedge of apex angle 2a (see Figure 1) (x, y) co-ordinates are used

as shown. Firstly the wavenumber of the incident wavetrain is defined by

k. = cos(a)i - sin(a)jl
> as x cos(a) - y sin(a) —» -oo. (2.12)

CO. = CO I
This just defines the incident wavetrain to be directly incident upon the wedge
with kl normalised to 1. In addition the gravitational acceleration g is
normalised to 1. Hence, for the linear case co. = 1, while for the nonlinear
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FIGURE 1. Definition sketch of the problem. Drawn is a wedge with apex angle 2a with
the positive x axis forming the wedge boundary. The incident wavetrain travels at an angle a
to the negative x axis and is reflected at the wedge.

case setting col to a constant value co implicitly fixes the amplitude of the
incident wavefield via the nonlinear dispersion relation (k; and g remain
1 in the nonlinear case).

Also the wedge boundary must be impervious, that is dfy/dy = 0 on
y = 0. Differentiating (2.4) and neglecting terms involving di and k'j since
they are negligible in the slowly-varying approximation we get

k'z
k>z

^ = klyble
k'zcos(ei) + k2ye

k>z cos(e2)lybl

2klyb3e
2k'z cos(26,) cos(202)

(2.13)

The terms of (2.13) can only only cancel if 6 , = 6 2 and k{ = k2. Thus
(2.13) gives, as the boundary condition on the wedge,

Klx ~ K2x

bi=b2,

L- — —k
2y on y = 0. (2.14)

Another alternative for the boundary condition is to let a2 — 0 (no re-
flected wavetrain) and k. = 0 on y = 0 . This alternative corresponds to
Mach-reflection where the wavefield is composed of two regions of progres-
sive wavefields separated by a wave jump (one progressive wavefield is the
incident wave while the other behind the wave jump is constrained to travel
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parallel to the wedge). This is the case investigated by Peregrine [9] and Yue
andMei[18].

3. The linear solution

Initially the linear solution is considered (obtained by retaining only the
lowest order terms in the Lagrangian) to illustrate the nature of the solution.
To lowest order,

= 1,2. (3.1)

Combining the first two equations of (3.1) and letting co = 1 gives

kj=l and aj = bj,

Substituting for k- in the first of (2.11) gives

kj=l and aj = bj, j = 1, 2. (3.2)

The solution to this partial differential equation is

dkjx/dx = 0 on dy/dx = kjy/kjx, j = 1, 2. (3.4)

Hence k- and k. are constant along their characteristic directions. Now
jy y-*

the last of (2.2) is considered along the characteristics of (3.3). This equation
becomes

dbi fkiv\ db,

^ + [ k f x ) ^ - ° ' J=l>2- ^
Hence A. is constant along these same characteristics. The initial conditions
give the solution along the characteristics which correspond to the initial
wavetrain,

klx = cos(a), kly = — sin(a), a, = bx = a, on y = - tan(a)x + c,
(3.6)

where a7 is the amplitude of the incident progressive wavefield. The bound-
ary conditions give the solution along the characteristics corresponding to the
reflected wavetrain,

k2x = cos(a), k2y = sin(a), a2 = b2 = a{ on y = tan(a)x + c, (3.7)

for c > 0. For c < 0, a2 = b2 = 0 and there is no reflected wavetrain.
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The solution shows the classic ray picture that the incident wavetrain prop-
agates to the wedge in the direction — tan(a) without change in wave steep-
ness. The reflected wavetrain propagates from the wedge in the direction
tan(a) without change in wave steepness also. There is a jump in the re-
flected wave steepness from 0 to a{ along the characteristic through the
wedge tip, y — tan(a)x . The full solution of the linear wave equation would
of course describe the transition between the incident progressive wavefield
and the short-crested wavefield. The linear ray solution, and the later nonlin-
ear ray solution neglects diffractive and refractive effects which would provide
details of the structure of the solution in the wave jump region. For exam-
ple, the linear parabolic wave equation (valid for small wedge angles and
derived using the parabolic assumption) includes some of these effects with
the far-field solution being described in terms of an Airy function.

4. Approximate nonlinear solutions involving
small amplitudes and small wedge angle

4.1. One-phase solutions
In the nonlinear case the full equations are too complicated for an analytic

solution to be obtained. However, by letting both the wedge angle and the
wave amplitude be small, that is

a , a , « l , (4.1)

then the nonlinear equations are amenable to analysis. For this one-phase
Mach-reflection case the leading approximations are

co2~\+a), bx~ax, ai~a2/2, k~oj2-a2, 6 3 ~ 0 , (4.2)

where al is the amplitude of the incident progressive wavefield. Equations
(2.10) and (2.11) become to leading order

dJ^l 0 (43)
U' ( '

dx dy ' dx " dy

k — to - a,.

By substituting for k in the two partial differential equations (4.3) a set of
two equations in two unknowns of the form

Ayx + Bvy = 0, (4.4)

is obtained, where
kjky 2ajk\ / 1 2 o

ax 2kxax ) \-\kxlky)a\ Zk
y
a\-2a\n

and v' = (kx, a , ) .
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We solve for the eigenvalues Xi of the system (B - XA) and the left
eigenvectors 1(. which satisfy 1,(5 - XtA) - 0. Then the system of partial
differential equations is reduced to the set of ordinary differential equations
of the form Xtdy/dx = 0 along the characteristic directions dy/dx — Xt. To
leading order the eigenvalues of the system (4.4) give the characteristics

-r~ = -r- ± —=r• (4-5)
dx kx kx

The corresponding left eigenvectors are I, = ( T ^ , 1) and hence on (4.5)

z2>L^2k —i = 0 , (4.6)

which can be integrated to

kx T 2kyax = C± , (4.7)

along the respective characteristics. In the incident wavefield the constants
of integration are

C± = cos(a) ± 2 sin(a)fl7 , (4.8)

along the characteristic directions

dy/dx = - tan(a) ± a,. (4.9)

Hence everywhere in the incident wavefield the wavefield properties will be
constant.

Equation (4.9) shows the splitting of the linear characteristic direction into
two slightly different directions which is typical of nonlinear waves. This
derivation of the small amplitude characteristics is similar to that done by
Whitham ([16], Section 15.1) and shows that the splitting is proportional to
the wave amplitude.

In the wavefield next to the wedge k = 0, hence the last of (4.3) provides
an additional equation relating kx and a, . Thus there are two equations for
the two unknowns along the characteristics and so the wave properties must
be constant along

dy/dx = ±ar (4.10)

A family of characteristics from each of the two constant regions will
overlap, predicting a multi-valued solution, and hence a discontinuous shock
or wave jump must be fitted in. This can be seen in Figure 7 which shows
the characteristics for a wavefield corresponding to Mach-reflection. Behind
the wave jump one family of characteristics emanate from the wedge while
the other family emanate from the wave jump and can be considered as the
continuation of one family of characteristics in the incident wavefield. The
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characteristics corresponding to the solid lines can be seen to intersect at the
wave jump.

If a wave jump occurs across the line y = tan(y)x then for a conservation
equation of the form

dP/dx + dQ/dy = O, (4.11)
the Rankine-Hugoniot jump condition is

\zn(j)[P] = [Q], (4.12)

where [ ] refers to the difference in the quantity across the wave jump.
Applying the jump condition to the two partial differential equations of (4.3)
combined with the last of (4.3) gives the three equations

tan(j) sin(a) + (kx - cos(a)) = 0,

tan(j)(kxa] - cos(a)aj) - sin(a)aj = 0, (4.13)

k = \+a)-a],
where a, denotes the constant amplitude behind the wave jump. The leading
order solution is then

")/4> ( 4 1 4 )

2 2 2

fl7 ~ a /2 + a, + ja.
This leading order solution agrees with Yue and Mei's [18] Mach-stem

approximation solutions (their equations (4.20) and (4.21); for deep water
and small wedge angles their variables are K = 2(at/a)2, E_ - (ajcij)2

and P = 1 + j/a).
Making the additional scaling a} <£. a. gives the leading order approxima-

tions
j~2a2/a, ai~a/V2. (4.15)

This solution describes the broad details of the Mach-reflection (which can be
seen in Figures 3 and 4 for small a,): that the jump angle increases like the
square of the incident wave amplitude and decreases with the wedge angle;
also that for very small incident waves the amplitude of the Mach-stem is
large, when compared to the incident wave amplitude af, and proportional
to the wedge angle a.

4.2. Two-phase solutions: regular reflection
Now the regular reflection case (where there are two wavetrains present in

the wavefield) is considered. Again the wedge angle a and the amplitudes
are taken to be small (it is not essential that a be small in this case, however
it simplifies the algebra considerably),

o,f l , , f l 2<l , (4.16)
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and we perform a similar analysis as in the one-phase case. The leading
approximations are

co ~ 1 + a,, b. ~ a., a,~a./2, b7~a^,
l 1 1 J i ^ i

a4~a2/2, as~axa2, b5, b6, a6, b3 ~ 0, (4.17)

rC. rs-f CO — fl« — ^ ^ 2 * 2 "" t t

So (2.10) and (2.11) become to leading order

2 2 - 2

- a2-2ar

dx dy

d{kjxa)) d{kjya)) _

dx + a^
; 2 2 - > 2 ; 2 2 . 2

kx — (o -al-2a2, k2 = (o -a2-2ax..

7 = 1 , 2 . (4.18)

By substituting for &. in the two partial differential equations (4.18) a set
of four equations in four unknowns of the form

A\+B\=Q, (4.19)

is obtained, where

A =

B = 0
0

/*u/*i,

«f
0

V o

2kx a,

2^i^ai
4ai/k2y

0

0
- 2flf lkx
0

0
0

«\

0
0
1

4a2/kly y

0
2 a 2 / ^

2^2x^2 /

-4axa2/kXy

0
- ( ^ / ^ ) « 2 2fc2^2 - 2a\lk2y

and v' = (klx, ax, k2x, a2).
To leading order the eigenvalues of the system (4.19) give the characteris-

tics

kjx

The corresponding left eigenvectors are
and hence on (4.20)

dk

, 1 , 0 , 0 ) and ( 0 , 0 , ^a2, 1)

da1_.Y da.
7Ji=F2A:lv-rJ- = 0,

dx x* dx (4.21)

dx
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which can be integrated to

*„ =F lkXyax = C1± ,

* 2 , T 2 ^ = C 2 ± )

along the respective characteristics. Hence to this level of approximation
there is no interaction between the incident and reflected wavetrains, the
leading nonlinear effect being the splitting of the linear characteristic direc-
tions into two slightly different directions, unaffected by the other wavetrain.
For the incident wavetrain the constants of integration are

Ci± - cos(a) ± 2 sin(a)a7, (4.23)

along the characteristics

dy/dx = - tan(a) ± a,. (4.24)

Hence the properties of the incident wavetrain will be constant throughout
the wavefield.

The boundary conditions define the reflected wavetrain at the wedge in
terms of the incident wave, so for the characteristics corresponding to the
reflected wavetrain which begin at the wedge, the constants of integration are

C2± = C 1 ± , (4.25)

along the characteristics

dy/dx = tan(a) ± a,. (4.26)

At all points between the line y = (tan(a) - a^x (which corresponds to the
C2_ characteristic which starts at the tip of the wedge) and the wedge itself,
the intersection of the two families of characteristics corresponding to the
reflected wavetrain, which all begin at the wedge (and hence have constants
defined by (4.25)) cause the solution to be constant in this region.

Consideration needs to be given to what occurs in the thin angular region
(defined say, as the region between the C2+ and the C2_ characteristics
which start at the wedge tip) between the constant region next to the wedge (as
described in the preceeding paragraph) and the incident wavefield. A solution
where both families of characteristics are varying in this transition region is
not possible. The C2+ characteristics in this transition region are defined by
(4.25) since they all start at the wedge, while the C2_ characteristics would
start on a line (in the incident wavefield) where a2 = 0 and k2x is constant,
hence all the C2_ constants of integration would be the same. This transition
region would then be of constant amplitude and wavenumber. Alternatively
an expansive fan of the C2_ characteristics in this transition region (each
one of the fan of C2_ characteristics would have a2 and k2x constant along
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• - X

FIGURE 2. The nonlinear characteristics corresponding to the reflected wavetrain which start
at the wedge (the positive x axis) have split into two families. The dashed line represents the
wave jump.

it) is not possible as the C2_ characteristics of the fan would intersect with
the C2_ characteristics near the wedge. Hence the only feasible solution is
a wave jump between the two constant regions of the solution.

Applying the jump conditions (4.12) to the partial differential equations
(4.18) gives to leading order

klx = cos(a), k2y = - sin(a), a2 = an j = a. (4.27)

So to this leading order approximation the wave properties are the same as in
the linear solution but are carried along the nonlinear characteristics which
have split into two families. Figure 2 shows the splitting of the characteristics
corresponding to the reflected wavetrain.

It is shown in Section 7 that actually there exist two solution branches
(see Figure 8 for an example) and the solution branch of higher jump angle
corresponds to regular reflection. Figures 15(a) and 15(b) show the charac-
teristics corresponding to the incident and reflected wavetrains respectively
for an example corresponding to the regular reflection.

4.3. Two-phase solutions: near Mach-reflection
The solution branch of lower jump angle described in Section 7 correspond

to solutions where the wavetrain is glancingly reflected from the wedge. Here
a small amplitude and small wedge angle a solution is described correspond-
ing to this lower solution branch. As in Section 4.2 the equations are given to
leading order by (4.18) so the characteristics are described by (4.20), (4.21)
and (4.22). In Section 4.2 regular reflection was being considered where kl
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and k2 ~ O(a), here glancing reflection is considered so we let

kly,k2y~O(a2), (4.28)

in the wavefield next to the wedge. Now to leading order the characteristics
of the wavefield in this region near the wedge are

dy/dx = ±a,/k*r j=\,2. (4.29)

These leading order characteristics for the wavefield near the wedge are of the
same form as the characteristics for the Mach-reflection solution described
in Section 4.1 (see (4.10)). Here though there is an incident and reflected
wavetrain near the wedge not just one wavetrain. Using similar arguments as
in Section 4.1, a wave jump must be fitted between the incident and reflected
wavefields. The characteristics corresponding to the incident wavefield are
qualitatively similar to Figure 7 which describes Mach-reflection. For the re-
flected wavefield one family of characteristics emanate from the wedge while
the other family emanates from the wave jump. Hence a close analogy exists
between Mach-reflection and near Mach-reflection.

The equations (4.18) and the symmetry of the incident and reflected wave-
trains behind the wave jump result in the jump conditions

+ sin(a)) + (kx - cos(a)) = 0,

tan(j)(k a - cos(a)a7) - (k ax + sin(a)a7) = 0,
2 2 (4-3°)

tan{j)kxa{ +kya1 = 0 ,

k = 1 + a) - 3a].
The solution to (4.30) is

4a 4 4
, / 2 x (4-31)
l a 2 . \

Making the additional scaling a, <g. a as in Section 4.1, gives the leading
order approximations

j~3a2j/a, a ,~a/>/6, (4.32)

(which can be seen in Figures 8 and 9 for small a7). This solution differs from
the solution (4.15) obtained for Mach-reflection in Section 4.1. Firstly the
jump angle is 50% larger. Secondly, the peak wave steepness behind the jump
is 15% larger (for near Mach-reflection the leading order peak wave steepness
is 2a/\/6 compared with a/\/2); however, the mean wave steepness behind
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the wave jump is 26% smaller (due to the spanwise variation in the wave
amplitude of the short-crested wavefield, even though the crests are relatively
long). The reasons for these differences are twofold. In near Mach-reflection
the wavefield behind the wave jump is relatively long-crested (ky ̂  0) while
for Mach-reflection the wavefield behind the wave jump consists of infinitely-
crested progressive waves. Also, as the two-phase wavefield becomes long-
crested the dispersion relation becomes

Co2 = k(l + 3k2a2/4), (4.33)

where a = 2a{ . The coefficient of the nonlinear correction is different from
the dispersion relation of progressive waves. This is because for genuinely
long-crested waves, the transverse variation of the wavefield is better de-
scribed in terms of elliptic functions, not trigonometric functions as in this
short-crested expansion. Roberts and Peregrine [13] describe this kind of
long-crested wavefield. Their solutions provide a smooth variation between
the limit of the short-crested expansion (with dispersion relation (4.33)) and
the progressive wave expansion. Hence their long-crested wave expansion
would provide a more appropriate description for the wavefield next to the
wedge for near Mach-reflection than the short-crested expansion used here.

5. The numerical scheme

In Section 4 it was shown that a nonlinear model involving small am-
plitudes and small wedge angle must include a wave jump separating the
incident wavefield from the short-crested wavefield near the wedge. The nu-
merical scheme, which is for arbitrary wedge angle a, shall use this as its
basis by assuming two constant wavefields separated by a wave jump. Also
the properties of the wavefield are considered to be steady (d/dt = 0) . Far
from the wedge only the incident wavetrain is present thus there is a wave-
field of progressive waves. Close to the wedge both the incident and reflected
wavetrains are present. Hence behind the wave jump a field of short-crested
waves is created.

In the region in front of the wave jump we shall define the properties of
the wavefield by the subscript / . In this region k71 is defined by (2.12) and
an = 0 . Due to the boundary conditions the wavenumbers of the short-
crested wavefield are defined by

K=kJ + kyi, k2 = kxi-kyj, (5.1)

and the amplitude coefficients are related by

b x = b 2 , b3 = b4, a{=a2, a3 = a4. (5.2)
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The first of the equations in (2.11) represents conservation of wavenum-
ber, the second represents conservation of waves, while the third equation
represents conservation of wave-action. According to Peregrine [9] these are
precisely the quantities that should be conserved across a wave jump. So
by applying the jump conditions (4.12) to the partial differential equations
(2.11) and using the symmetry of the short-crested wavefield behind the wave
jump ((5.1) and (5.2)) the following jump conditions are obtained,

+ sin(a)) + (kr - cos(a)) = Q\
_ _ _

K ~ H) - {LK ~ Lk,) = ° \ (5.3)
tan(J)\+Lky=0. J

A jump condition is not required for V x k2 = 0 since k2 is not defined in
front of the wave jump. Also, conservation of waves is required across the
wave jump,

co{ = co2 — c o , (5.4)

where co is a constant. In addition to (5.3) and (5.4), (2.10) must be satisfied
on both sides of the wave jump,

I f l / | = 0 , Tan = 0' Zbn=°> Tbn = °>)

La=0, La=0, I f l j = 0, 1 ^ = 0 , 1 (5.5)

Z 6 = 0 , Lb} = 0, I 6 j = 0, \ = 0.\

(5.3), (5.4) and (5.5) form a set of algebraic equations which can be solved
for a given wedge angle a and frequency co (which implicitly defines the
incident amplitude). Hence co remains constant throughout the wavefield
while k , , k2 and the wave amplitude may vary. The equations (the details
of which can be found in the Appendix) are too complicated to find an explicit
analytic solution so they are solved numerically using a version of Newton's
method.

6. Mach-reflection

In this section we consider the numerical solution when r\ = 7/(0,) and
<f> = </>(©,) are functions of one phase function only. Behind the wave jump
the wavetrain must propagate parallel to the wedge, hence the wavefield will
consist only of progressive waves. This is Mach-reflection and has been con-
sidered by Peregrine [9] and Yue and Mei [18]. Peregrine's solutions are
valid for finite-amplitude waves (due to the use of a numerically exact La-
grangian) and hence are more accurate than this weakly-nonlinear model.
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FIGURE 3. Combined angle j+a versus the incident wave steepness an for Mach-reflection.
Shown is the present theory (—) for wedge angles a = 5° , 15° and 25° . Shown for compar-
ison are the results of Peregrine [9] ( ) and Yue and Mei [17] ( ).

Yue and Mei's wave jump model (their Section 4) is weakly-nonlinear, as in
the parabolic assumption, and valid for small wedge angle a.

Figure 3 shows our results for the combined angle j + a versus incident
wave steepness ank for a — 5°, 15° and 25° (the relevent wedge angle
a is the zero amplitude limit of each curve). These results are compared
against both Peregrine's and Yue and Mei's results. Our results compare
well except for some deviation at higher wave steepnesses. Figure 4 shows
our results for the wave steepness behind the wave jump a, k versus incident
wave steepness ank for the same wedge angles a as in Figure 3. The results
in both figures are plotted to the maximum steepness for progressive waves
(as given by Cokelet [2]). Figure 4 shows that behind the wave jump the wave
is steeper than the incident wave. Indeed, even for very small incident waves
the waves behind the wave jump are of finite amplitude, with the amplitude
being proportional to the wedge angle a (see Section 4.1). As the wedge
angle a increases the range of initial wave steepness for which a solution is
possible decreases until, beyond a « 30° , no solution is possible.

Also of interest are the ray paths of the wavefield. In the linear theory the
ray paths correspond to the characteristics which are parallel to the wavenum-
ber k. However, nonlinearity splits the characteristics into two different
directions (this can be seen in Section 4 for small amplitude waves or in
Peregrine ([9], Section 5) for a hydraulic analogy). These characteristic di-
rections can be found by considering the equations (which are the one-phase
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FIGURE 4. The wave steepness behind the wave jump a{k versus the incident wave steepness
an for Mach-reflection. Shown is the present theory for wedge angles a = 5° , 15° and 25° .
As a increases the curves go from the bottom to the top of the figure.

equivalent of (2.10) and (2.11))

L = 0 , L. = 0 , 1 = 1,2,

and
V x k = 0 co - constant V • Lk = 0,

which can be written in the form

(6.1)

(6.2)

(6.3)

where v' = (a{, a2, b{, b2, kx, ky). (6.1) and (6.2) comprise two differen-
tial equations and four algebraic equations and hence if the equations are
hyperbolic then there will be two characteristic directions. To write them in
the form (6.3) requires that the algebraic equations be differentiated, with
respect to x say, so they can be written as a differential equation. Then
by solving for the eigenvalues kt of the system B - XA the characteristic
directions dy/dx = A( are obtained (zero eigenvalues corresponding to the
differentiation of (6.1) can be ignored).

Figure 5 shows lines which are parallel to the wavenumber vector k which
we shall call wavelines: in linear theory these wavelines correspond to the ray
paths; in this one-phase theory they are streamlines of the wave motion (but
this is not true for multi-phase wavetrains). Presented are results for the case
a — 5° and j = 8.5° . The incident waves propagate head-on to the wedge
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4.0

1 0 . 0

FIGURE 5. The wavelines of the wavefield for wedge angle a = 5° and jump angle j = 8.5°
for Mach-reflection. The wave jump is drawn along y = lan(j)x and the y-axis is stretched by
a factor of 1.5.

and are refracted through the wave jump to travel parallel to the wedge after
the jump. After the wave jump the wavelines are closer together; this reflects
the fact that the wedge accumulates the wave energy to some extent and
hence the wave steepness is greater after the wave jump than in the incident
wavefield. These basic features can also be seen in Figure 6, a contour plot
of the wave elevation r\ for the case described above, namely a = 5° and
j - 8.5°. The wave jump can be clearly seen as a line across which a large
increase in waveheight occurs. As for the linear case this nonlinear theory
does not give any detail of the refraction which occurs around the wave jump.

Figure 7 shows some characteristics of the wavefield as given by (6.3) for
this same case of a — 5° and j = 8.5°. Firstly it is seen again that the
ray paths of linear theory have split into two families of nonlinear charac-
teristics. This can be clearly seen in the incident wavefield where the two
families of characteristics beginning at the line x — 0 diverge from each
other. Behind the wave jump one family of characteristics emanate from the
wedge while the other family come from the characteristics of the incident
wavefield transmitted through the wave jump. The wave jump is formed by
the intersection of the characteristics corresponding to the solid lines. Qual-
itatively then, the example described here is similar to the small amplitude
one-phase solution described in Section 4.1.
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10 20 30 40 50

FIGURE 6. Drawn is a contour plot of the surface elevation t] for wedge angle a = 5° and
jump angle j = 8.5° for Mach-reflection. The wedge tip is in the bottom left hand corner of
the figure and the y-axis has been stretched by a factor of 1.5.

4 . 0 -

1 0 . 0

FIGURE 7. The nonlinear ray paths of the wavefield for wedge angle a = 5° and jump angle
j = 8.5° for Mach-reflection. The wave jump is drawn along y = tan(j)x and the y-axis has
been stretched by a factor of 1.5.
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7. Regular and near Mach-reflection

Here the model which involves reflection from the wedge, and thus pos-
sesses both an incident and reflected wave, is considered. Figure 8 shows
the numerical results for combined angle j + a versus incident wave steep-
ness ank for wedge angles a = 5°, 10° and 20° while Figure 9 shows
the results for the wave steepness (of one wavetrain) behind the wave jump
axk versus the incident wave steepness ank for the same wedge angles a
as in Figure 8. The results show that for small wedge angles there exist two
different solutions for each wedge angle a and for a range of incident wave
steepnesses.

The solution branch of lower jump angle has a steep long-crested wavefield
(as defined in Roberts and Peregrine [13]) behind the wave jump. In this case
the incident wavetrain is bent through the wave jump to strike the wedge
glancingly. This solution branch is similar to the solutions of Section 6 and
is thus called near Mach-reflection (the small amplitude and small wedge
angle a limit was discussed in Section 4.3). However, it is different as it
involves two distinct wavetrains behind the wave jump.

40.0

35 .0 -

m|6ue ps

C
om

bi
ns

30

25

20

15

10

. 0 -

. 0 -

. 0 -

. 0 -

. 0 -

5.0

0.05 0.10

Incident wave steepness

0.15 0.20

FIGURE 8. Combined angle j + a versus the incident wave steepness an for regular and
near Mach-reflection. Shown is the present theory for wedge angles a = 5° , a = 10° and 20° .
The circles on the curves represent the junctions between the regular and near Mach-reflection
regimes while the crosses represent Example A (on the solution branch of higher jump angle)
and Example B.
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FIGURE 9. The wave steepness behind the wave jump alk versus the incident wave steepness
an for regular and near Mach-reflection. Shown is the present theory for wedge angles a = 5° ,
a = 10° and 20° (the wave steepness of the near Mach-reflection solution branch increases
as a increases). The circles on the curves represent the junctions between the regular and near
Mach-reflection regimes while the crosses represent Example A (on the solution branch of lower
wave steepness) and Example B.

The solution branch of higher jump angle is qualitatively similar to the
regular reflection of linear waves (the small amplitude and small wedge angle
limit was discussed in Section 4.2). The incident wavetrain is only slightly
bent through the wave jump and the wave steepness is little changed. The
jump angle is approximately the same as the wedge angle, but decreases with
increasing incident wave steepness.

The theory also provides nonlinear solutions for blunt wedges. Figure 10
shows the results for the combined angle j + a versus the incident wave
steepness ank for a — 30°, 50° and 70°. The curves are plotted until
the maximum steepness of the corresponding short-crested wavefield behind
the wavejump is reached (using estimates from Roberts [12]). Here only the
solution branch of regular reflection exists because solutions corresponding
to near Mach-reflection would have wave steepness behind the wave jump
very much greater than the maximum steepness of water waves.

Figure 11 shows the Mach-reflection, regular reflection and near Mach-
reflection solution branches of the combined angle j + a versus the inci-
dent wave steepness ank for a = 15° which is a typical picture for thin
wedges. This shows that at low incident wave steepness there exists three
possible solutions. In practice it would be expected that the regular reflec-
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FIGURE 10. Combined angle j + a versus the incident wave steepness an for regular
reflection. Shown is the present theory for wedge angles a = 30° , 50° an 70° .
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Incident wave steepness

FIGURE 11. Combined angle j+a versus the incident wave steepness an for Mach-reflection
(the bottom curve), regular and near-Mach reflection. Shown is the present theory for wedge
angle o = 15°.

tion branch would occur for low wave steepnesses. As the wave steepness
increases the physically realised solution would transit to the Mach-reflection
solution. This is consistent with the solutions of Kirby and Dalrymple [4] for
their wedge shaped depression. Their solutions shows that at a small incident
wave steepness the nonlinear solution is similar to the linear solution (i.e. the
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solution is on the regular reflection branch) and for an increased incident
wave steepness the solution corresponds to Mach-reflection.

However, the possibility of hysteresis exists. For instance, if the wavefield
is on the Mach-reflection branch and the wave steepness is decreased to zero,
then the wavefield could remain in the form of Mach-reflection. However,
as the wave steepness approaches zero, the Mach-reflection solution probably
becomes less stable and a small perturbation would cause the wavefield to
transit back to the regular reflection branch. In this scenario we would expect
the near Mach-reflection branch to be unstable, but this is as yet unknown.

So at small incident wave steepnesses (corresponding to about K < 0.5
in deep water for Yue and Mei's [18] analysis) it is possible that numerical
solutions of the nonlinear Schrodinger equation could correspond to any of
the three solution branches (for incident wave steepnesses beyond about K =
0.5 only Mach-reflection is possible). Yue and Mei interpret their solutions at
K — 0 and K — 0.5 as Mach-reflection (see their Figure 8) which indicates
that hysterisis occurs. However, the linear solution (when K = 0) is just
the result of the superposition of the incident and reflected wavetrains hence
it corresponds to regular reflection. So at small K the solution is hard to
characterise due to the diffractive and refractive effects causing the position
of the wave jump to be very indistinct. The farfield solution (where the
existence of a Mach-stem would be more noticeable) would help resolve this
difficulty.

Another point of interest is the refraction of the incident wavetrain through
the wave jump. Figure 12 shows the results for 6 versus the incident wave
steepness ank for a = 5° , a = 10° and 20° where 0 represents the angle
which the incident wavetrain behind the wave jump makes with the wedge.
For regular reflection the incident wavetrain is slightly bent away from the
wedge as it goes through the wave jump, this effect increases as the incident
wave steepness increases. For near Mach-reflection the incident wavetrain is
bent through the wave jump to travel nearly (but not quite) parallel to the
wedge; this bending lessens (the wavetrain is at a greater angle to the wedge)
as the incident wave steepness increases.

To examine the transition between regular and near Mach-reflection two
examples (marked with crosses on the appropriate curves in Figure 8 and
9) for wedge angle a = 20° are considered. Example A with jump angle
j = 19.5° is an example of regular reflection while, Example B with a jump
angle j = 10° is an example of solutions in the transition region between
regular and near Mach-reflection.

The characteristics for the short-crested wavefield behind the wave jump
can be found by considering (2.10) and (2.11). Using the symmetry between
the incident and reflected waves the differential and algebraic equations cor-
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FIGURE 12. The angle between the wedge and the incident wavetrain behind the wave jump
0 versus the incident wave steepness an for regular and near Mach-reflection. Shown is the
present theory for wedge angles a = 5° (the inner curve), a= 10° and 20° (the outer curve).

responding to the incident wavefield can be written

L = 0 Lh=0 j = l , 3 , 5, 6,

and
V x k = 0 co = constant V • Lk = 0,

and hence may be written as

(7.1)

(7.2)

Avx + Bvy = O, (7.3)

where v' = (a , , a3, as, a6, blt b3, b5, b6, kx, ky). (7.1) and (7.2) comprise
two differential equations and eight algebraic equations. Thus if the equations
are hyperbolic then there will be two characteristic directions for the incident
wavefield. Hence by solving for the eigenvalues Xi of the system B — XA the
characteristic directions dy/dx — Xt are obtained (the zero eigenvalues can
be ignored as in Section 6). Because of the symmetry of the wavefield the
ray paths corresponding to the reflected wavetrain will have characteristic
directions dy/dx = -Xt.

Figure 13 shows the wavelines for Example A which is an example of
regular reflection. All the figures drawn for Examples A and B have the y-
direction scaled slightly, hence the wedge appears broader than in reality.
The incident waves are only slightly refracted through the wave jump and a
short-crested wavefield is set up between the wave jump and the wedge. Fig-
ure 14 shows a contour plot of the wave elevation r\ for this example. The
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5.0

10.0

FIGURE 13. The wavelines of the wavefield for Example A which has wedge angle a = 20°
and jump angle j = 19.5° . The wave jump is drawn along y = lan(j)x and the y-axis is
stretched by a factor of 1.2.

wave jump which divides the progressive wavefield from the short-crested
wavefield next to the wedge is clearly visible. The short-crested wavefield
consists of short steep waves with flat troughs (as a = 20° in this example,
the wave crests are already starting to lengthen in the y-direction). Figure
15 (a) and 15(b) show the two families of characteristics for the incident and
reflected wavefields respectively. Again the two families of characteristics
corresponding to the incident wavetrain show the typical nonlinear splitting
and are only slightly bent through the wave jump. For the reflected wavetrain
both families of characteristics emanate at the wedge. The family of char-
acteristics shown by the solid lines propagate to the wave jump, while the
family shown by the dashed lines do not reach the wave jump. Hence some
of the family of characteristics shown by the dashed lines also emanate at the
wave jump. Example A then, is qualitatively similar to the two-phase small-
amplitude solution described in Section 4.2 and is just a slight modification
of the linear ray theory.

Figure 16 shows the wavelines for Example B. This example is in the tran-
sition region between regular and near Mach-reflection. The incident waves
are refracted to a significant degree after the wave jump and the wavefield
behind the wave jump is becoming long-crested. Figure 17, a contour plot of
the wave elevation r\, shows that the waves next to the wedge are now very
long in the y-direction with only a little transverse structure evident in the
wavefield. Figure 18(a) and 18(b) show the two families of characteristics
for the incident and reflected wavefields respectively. Since the incident wave
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mam
10 20 30 40

FIGURE 14. Drawn is a contour plot of the surface elevation r\ for Example A which has
wedge angle a = 20° and jump angle j = 19.5° . The wedge tip is in the bottom left hand
corner of the figure and the y-axis is stretched by a factor of 1.3 .

5 . 0

10.0

FIGURE 15(a). The nonlinear ray paths of the incident wavefield for Example A which has
wedge angle o = 20° and jump angle j = 19.5° . The wave jump is drawn along y = \an(j)x
and the y-axis is stretched by a factor of 1.2.

steepness is larger here, the two families of characteristics corresponding to
the incident wavetrain are now split even wider. Behind the wave jump the
family of characteristics corresponding to the solid lines, associated with the
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5 . 0 -

1 0 . 0

FIGURE 15(b). The nonlinear ray paths of the reflected wavefield for Example A which has
wedge angle a = 20° and jump angle j = 19.5° . The wave jump is drawn along y = tan(v)jc
and the y-axis is stretched by a factor of 1.2 .

5 . 0 -

10.0

FIGURE 16. The wavelines of the wavefield for Example B which has wedge angle a = 20°
and jump angle j = 10° . The wave jump is drawn along y = tan(j)x and the y-axis is
stretched by a factor of 1.2.

incident wavefield do not travel towards the wedge, hence some characteris-
tics of this family emanate at the wedge while the other emanates at the wave
jump. This picture of the characteristics then, is qualitatively different from
Example A.

The point when the picture of the characteristics changes is when one fam-
ily of characteristics travels parallel to the wedge. The circle on the solution
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FIGURE 17. Drawn is a contour plot of the surface elevation rj for Example B which has
wedge angle a = 20° and jump angle j = 10° . The wedge tip is in the bottom left hand corner
of the figure and the y-axis is stretched by a factor of 1.3 .

5 . 0 -

1 0 . 0

FIGURE 18(a). The nonlinear ray paths of the incident wavefield for Example B which has
wedge angle a = 20 and jump angle j = 10° . The wave jump is drawn along y = lan(j)x
and the y-axis is stretched by a factor of 1.2 .

branch of higher jump angle of the curves in Figure 8 and on the solution
branch of lower wave steepness of the curves in Figure 9 shows this junc-
tion between regular reflection (Example A) and solutions in the transition
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5 .0-

10.0

FIGURE 18(b). The nonlinear ray paths of the reflected wavefield for Example B which has
wedge angle a = 20° and jump angle j = 10° . The wave jump is drawn along y = tan(j)x
and the y-axis is stretched by a factor of 1.2 .

region (Example B). The transition to near Mach-reflection is complete when
behind the wavejump, one family of characteristics associated with the inci-
dent wavetrain emanate solely at the wedge while the other family emanate
from the wave jump (this is the picture of the characteristics for small am-
plitude near Mach-reflection, see Section 4.3). This point is marked on the
solution branch of lower jump angle of the curves in Figure 8 and on the
solution branch of higher wave steepness of the curves in Figure 9 by a circle
also. In summary, because of the qualitative differences between the pictures
of the characteristics the solution curves can be divided into three regions:
(a) regular reflection, (b) near Mach-reflection and (c) a transition region
between (a) and (b).

The force exerted by the waves upon the wedge is of interest since the
wedge can represent the bow of a ship or a breakwater of finite length. Here
the depth-integrated force per unit length on the wedge is considered. This
has been examined in Marchant and Roberts [6] for short-crested waves strik-
ing a breakwater of infinite length in water of finite-depth via a high-order per-
turbation series. Here the same definitions are used (see their Section 6) and
hence a second-order nondimensional depth-integrated force per unit length
is calculated. Figure 19 shows the results for incident wave steepness ank
versus the maximum force per unit length for wedge angles a = 5° , a = 10°
and a = 20° . The results correspond closely to that given by second-order
perturbation theory and show that for a given incident wavetrain a larger
maximum force will result if the wave displays near Mach-reflection rather
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0.05 0.10 0.15

Incident wave steepness

0.20 0.25

FIGURE 19. The maximum force per unit length versus the incident wave steepness an for
regular and near Mach-reflection. Shown is the present theory for wedge angles a = 5° (the
inner curve), a =10° and 20° (the outer curve).

than regular reflection since the wave steepness next to the wedge is greater
for the near Mach-reflection case.

In addition, solutions for waves approaching the wedge at an angle, other
than head on, can be found (for example, where the bow of the ship heads at
an angle into the waves). Because of the hyperbolic nature of the equations,
the wavefield on one side of the wedge is not affected by the wavefield on
the other side. The characteristics corresponding to the reflected wavetrain
exist only behind the wave jump and do not interact with the incident wave
ahead of the wedge nor do they interact with the characteristics on the other
side of the wedge. Hence the solutions for two different wedge angles can be
patched together to give the solution for waves approaching the wedge at an
angle.

Appendix

The averaged Lagrangian was calculated with the aid of REDUCE, an
algebraic manipulation package. The averaged Lagrangian for the incident
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progressive waveneld is

T,j = - (l/4)wk,anbn - 2wkjdnbn - wk,ananbn - 4wanbn

+ k]a2
Ixb]x + 4k]alxblxbn + 2kIb

2
n + a2

n - 2wanb]i

The variations of L, with the coefficients of the velocity potential cj> are

Lb = - (l/4)wk,aIl -wklanaI3 — 2wa}l+2kIan bn

bn ,2n - 4wan + 4k)anbn + 4ktbiy

The variations of L7 with the coefficients of the free surface shape t] are

Lan = - (3/4)wk2a2
nbn - 4wk,anbn - wkjCinbn - 2wbn

Lan = ~ wk,anbn - 4wbI} + 2aiy

The variations of Lx with the wavenumber involve

nbn - 2wa2
nbn - wananbn

hence

%k,anb]Xbn + b2
n + 2b2

n,

Lklx
 = Lkklxlkl ' Lkly

 =

The averaged Lagrangian for the short-crested waveneld is

Z = - 2kwaib3 - kwa{aibx - kwala5bl - kwaxa6bx

+ 2>ka]b2
xk

2
x + kaxb\k) + 2kaxbxkxb5 + 2kb2

3

+ kb\ - (3/4)wa3
xbxk

2 - 2wa]kxbi - 4wa363 - 2wa5b5

+ 4axbxbyk
2 + 2axbxk

2
xb5 + a] + (l/2)a2 - a5b

2k2

+ (l/2)a2
6 + a6b

2k2
x + (l/2)kxb

2
5 + kyb\

— 2waxbx +ax.
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The variations of L with the coefficients of the velocity potential </> are

Lb = - kwaxa3-kwaxa5-kwaxa6 +6kaxbxkx+ 2kaxbxky

+ 2kaxkxb5 + 2kbx - (3/4)wal
3k2 - 2wax + 4axb3k

2

+ 2axk% - 2a5bxk
2 + 2a6bX,

Lb = -2kwax+4kb3-4wa3 + 4axbxk ,

Zb = 2ka1blkx - 2wa]kx - 2wa5 + 2axbxk\ + 2kxb5,

\ - 2kyb6.

The variations of L with the coefficients of the free surface shape r\ are

La = - 4kwaxbi - kwaibx - kwaibx — kwa6bx + 6kaxbxkx

+ 2kaxb\k) + 2kbxkxb5 - (9/4)wa]bxk
2 - 4waxkxb5

- 2wbx + 2ax + 4blbik
2 + 2bxk

2
xbi,

La = - kwaxbx - 4wb3 + 2a3,
2 , 2

L a = - k w a x b x - 2 w b 5 + a5- bxk ,
2 , 2

La = - kwaxbx+a6 + bxkx.

The variations of L with the wavenumber involve

Lk= - 2waxb3 - waxa3bx - waxa5bl - waxa6b{

+ ^axb\k\ + a\b\k] + 2axbxkxb5 + b] + 2b\,

- {?>l2)wa\bxk + Saxbxb3k

dL/dkx = dka]b]kx + 2kaxbxb5 - 2wa]bi + 4axbxkxbs

+ 2a6b
2

xkx + b],

dL/dky = 2ka]b]ky - 2asb
2ky + b\.

where

Lkx = Lkkxlk + 9L/dkx ,

Lk =Lkky/k + dL/dky.
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