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ON PURSUIT CURVES

J. C. BARTON! and C. J. ELIEZER?

(Received 1 July 1996)

1. Introduction

Recently, several papers [2—4, 6] have been published concerning a pursuit problem
which was apparently first posed explicitly by Leonardo da Vinci and which may have
been present in earlier thinking about kinematics and geometry. Falconry appears to
go back, in Europe, to the days of Pliny, Aristotle and Martial, and, in Asia, to 2000
BC [5].

We give here a brief survey of these papers and add some results for pursuit and
flight in three dimensions, results which, although elementary, may not yet have been
brought to notice.

George Boole [1] says that “the term curve of pursuit is given to the path which
a point describes when moving with uniform velocity towards another point which
moves with uniform velocity in a given curve”.

Nowadays, since the advent of vector analysis, we would be more inclined to
replace the word “velocity” by “speed”. It is implicit in Boole’s analysis that he is
dealing with motion in two dimensions only.

Boole derives a second-order differential equation in plane coordinates x, y for
pursuit and flight in a plane and, by way of example, solves the equation for the case
when the pursued point traverses the line x = a, beginning at time zero from the point
(a, 0), and the pursuing point begins the chase from the origin. When the speed ratio
is 1 (pursuer and pursued moving with equal speeds) Boole finds the pursuit curve to
be a parabola, a result which is clearly wrong since it is physically evident that the
line x = a must be an asymptote to the curve.

Colman [2] resurrected this problem, but in a slightly more general form in which
the line x = a is replaced essentially by the straight line y = (x —a) cota for —m/2 <
a < /2. He does not give an explicit rectangular cartesian formula-equation for the
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21 On pursuit curves 359

flight path of the pursuer but finds coordinates for the point of capture in the case when
the speed ratio ¢ > 1. (Speed ratio c is the ratio pursuer’s speed : pursued’s speed.)

It might be expected that, by choosing axes and origin suitably, this ‘Colman’
problem could be presented as a minor variation of Boole’s example in which the
pursuer begins at some point other than the origin; the authors have done this [4] and
given an explicit cartesian equation for the pursuit curve. We give another method of
deriving this path-formula below.

Guha and Biswas [6] showed how the ‘Colman’ problem could be analysed so as
to bypass much of the heavy algebra that is evident in Colman’s treatment.

2. Flight and pursuit in three dimensions

We give now differential equations for pursuit curves in three dimensions and
exhibit some special solutions of them. The merit of doing this lies in the following
consideration.

In the sense that simply expressed differential equations for such motions can be
derived, the whole matter is thereby closed, for any pursuit problem becomes merely
the problem of solving the differential equations subject to the appropriate starting
conditions. Assuming that there will always be a computer which can solve the
differential equations to any nominated degree of accuracy (in a step-by-step way),
such elementary solutions as there are remain hidden, and it seems inherently valuable
to bring as many of them as we can discover up to the light. This we do. As well,
dropping one dimension to return to plane motion, we show how these differential
equations can be solved to give an alternative solution of the ‘Colman’ problem.

Let the pursuer have rectangular coordinates x, y, z in three dimensional space,
and the pursued have coordinates X, Y, Z. The pursued always lies on the tangent, at
(x, y, ), to the pursuer’s curve.

A tangent vector to the pursuer’s curve has components (x, y, z), dots denoting
derivatives with respect to some parameter, for example time ¢, in terms of which the
coordinates are expressible. Hence

X=x+M, Y=y+iy, Z=z+Az 1)

for some multiplier A, which, in general, will depend on the parameter ¢.

As Boole observes, “the velocities of the two points being uniform, the correspond-
ing elementary arcs will be in the constant ratio of the velocities with which they are
described”.

So we have by Pythagoras’s theorem,

4+ +2=(X2+ Y2+ 7%, cconstant. ()
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Equations (1) and (2) are four first-order, non-linear differential equations for the four
functions x (), y(2), z(¢), A(t), where we suppose that the functions X (¢), Y(¢), Z(2)
are given.

We remark here that it is by no means necessary that pursuer and pursued traverse
their paths with uniform speeds. All that is needed is that the speed ratio ¢ be constant,
and (2) expresses this even for an arbitrary parameter ¢ which need not be a measure
of elapsed time.

The differential equations are non-linear because of the Pythagorean metric of our
space. We can not expect to obtain much, if anything, in the way of a general solution
of them. We exhibit a few special solutions.

One of the simplest is a pair of circular cylindrical helices (screw threads), of equal
pitch, but different diameters. Take, with no loss of generality, radius one unit for the
pursuer’s helix, and let the pitch be p:

x =cost, y=sint, z=(p/2m)t.
Then, from (1), we have, for the pursued’s curve:
X =cost—Asint, Y =sint+Aicost, Z=(p/2m)(t+ 1)
and, taking A constant, setting cos @ = (1 + A*)~'/2, these can be written
X =0+r)"cos(t +a), Y=(1+r)"sin(t+a),
zZ=Lu+a+ 0o,

which is a circular cylindrical helix of radius (1 + A?)!'/2 and pitch p.
If 5, S denote respectively arc length measures along the paths of pursuer and
pursued, the speed ratio is (ds/dt)/(dS/dt) and is easily calculated to be

_( 1+p¥Er?) )”2
€= (1 A2+ p?/(an?)

which is less than 1.

If we imagine that pursuer and pursued describe these curves at constant speeds,
the chase continues forever, the separation A(1 + p?/(4m?))'/? remaining constant.

This example is an extension, into three dimensions, of the concentric circular
motion in the plane which we gave in Eliezer and Barton [3, p. 184].

Since the speed ratio ¢ is necessarily less than 1 for these circular helices, we ask
whether we might find solutions, with ¢ > 1, for a different kind of helix, in particular
one whose orthogonal projection on the xy plane is an equiangular spiral. We are
looking for an extension of the plane motion in two congruent spirals which we gave
in [3, Section 4, pp. 183-4].
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So we begin with the pursuer:
x=e cost, y=eXsint, z=r(),

where f is at present left unspecified. We shall call such a curve an equiangular-
spiral-helix, because its orthogonal projection on the xy plane is the equiangular
spiral p = e* in which p, ¢ are plane polar coordinates with the pole at the origin;
o = (x? 4+ y?)!/2 is the radius vector and ¢ is the azimuth.

A tangent vector has components given by

(e (—kcost —sint), e (—ksint +cost), f'(1)).

The current coordinates for a point on the curve of the pursued are as follows, in which
A may vary with the parameter ¢:

X =e™{(1 —Ak)cost — Asint}, Y =e{(1—Ak)sint+ Acost},
Z=f+Ai".

Referring to Figure 1, these can be written as
X =He" cos(t +a), Y=He sin(t+a), Z=f+Ar"

If we keep A constant, then ¢ and H are constants and the orthogonal projection of
the curve on the xy plane is an equiangular spiral congruent to that of the pursuer, for
(X2 4 YH)'2 = He™ = ¢+ where the constant #, satisfies H = e~*%,

We now have set up a new problem: can we find a function f such that, A being
constant, these six coordinates will satisfy the speed condition (2)?

Substituting the coordinate functions into (2) we have

ML+ )+ 7 = B A+ 1) + (£ + 47| 3)

and this is a non-linear second-order differential equation for the required function f .
We remove the exponential factors by defining a new function g(¢) by the equation
f@®) =e*g(t). Then f' = e (g —kg), f" = e *(g" — 2kg’' + k*g), and if these
be substituted into (3), the exponential factor e~%** can be cancelled out. The equation
that remains is

14K+ (kg +g) = {H2(1 g
+ [~ k(1 — kMg + (1 — 2k0)g + Xg"]z} L@

This is again a second-order non-linear differential equation for g. We abandon any
attempt to find a general solution; instead we exhibit a few special solutions for which
the corresponding flight and pursuit curves have some interesting features.
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1— Ak

FIGURE 1.

The case of equal speeds: ¢ = 1. We take k = 1 (the 45° equiangular spiral) along
with ¢ = 1 (equal speeds for pursuer and pursued) and A = 1. Consequently, H =1
and o = /2 (Figure 1).

Equation (4) reduces to

(g/ _ g)2 _ ( _ g/ + g//)zy
so that
g—g=%(-¢g+¢"). )

We consider these two equations in turn.
(a) Taking the plus option:

g —2¢'+g=0
with solution
g(®) = (A + Br)e
and then
f)=A+ Bz,

where A and B are the arbitrary integration constants.

We can take A zero, with no loss of generality, for this is just a matter of choosing
the location of the origin on the z axis. If then we take B zero, the whole motion
becomes a plane motion in the plane z = O (see Figure 2).

AP is the pursuer’s path; B Q is the pursued’s path. The equations for A P are

x=¢e"cost, y=e'sint, z=0
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B

FIGURE 2.

and for B Q are
X=e"'cos(t+m/2), Y=e'sint+n/2), Z=0.
Taking B non-zero, positive say, the equations of the paths are

x =¢e"'cost, y = e 'sint, z = Bt,
X =e¢'cos(t+m/2), Y=e sin(t+n/2), Z=B@+1).

The pursuer P begins, at t = 0, at the point (1, 0, 0) and the pursued Q begins at the
point (0, 1, B). Asthe motion progresses, P and Q continue to climb and wind around
the z axis, getting very close to it but maintaining a separation just a little greater than,
but approaching ever nearer to, B. Figure 2 shows the orthogonal projection, on the
plane z = 0, of the initial parts of the two flight paths.
(b) Taking the minus option in (5), we get g — g = O with solution g(t) =
Ae' + Be™'. Consequently, f (1) = A + Be 2.

As in (a), we can put A zero without any effect on the shape or relative positions
of the curves. Again, taking B zero gives us motion in a plane.

If B # 0 and is positive say, g(t) = Be~' so that f (t) = Be~*. The path equations
are now as follows. For the pursuer:

x=e'cost, y=e'sint, z=Be™* fort > 0.

The starting point is (1, 0, B).
For the pursued:

X=¢"cos(t+m/2), Y=e'sint+n/2), Z=—Be™

https://doi.org/10.1017/50334270000011292 Published online by Cambridge University Press


https://doi.org/10.1017/S0334270000011292

364 J. C. Barton and C. J. Eliezer [7]

for t > 0. The starting point is (1, 0, —B).

The pursuer spirals downwards from (1, 0, B) towards the origin while the pursued
spirals upwards from (1, 0, — B) towards the origin. Again Figure 2 can be used as a
representation of the orthogonal projection of the paths on to the xy plane.

The motions we have obtained so far, for ¢ = 1, have been for the special conditions
k = A =1, and g has been determined as an elementary function of ¢.

It is evident that there will be other elementary solutions, with ¢ = 1, in which we
take g constant. For in this case, (4) becomes

kKg?(1 — Ak =k2g* — (H* — DA + k&%)

and there are positive values of A and k satisfying this relation when H? < 1. There
are also solutions for A and k for other values of H.

EXAMPLE. If we choose k = 1/2and A = 2, then H = 2,0 = n/2 and g*> = 15.
The pursuer has coordinates:

x =e"cost, y=e"?sint, z=+15""

and starts, at ¢ = 0, from the point (1, 0, +/15).
The pursued moves in the plane Z = 0 and has coordinates:

X =2e"cos(t +m/2), Y=2e""sin(t+n/2), Z=0,

and starts, at + = 0, from the point (0, 2, 0). The speeds are
1\’ 15
Y i = {(5) + (1) + 7] e’ =5¢",

Y X = {4 ((%)2 + (1)2) + 0} e~ =5e".

Hence =Y i2/ 3 X*=1.

This example will suffice to show that there will be a variety of such motions,
depending on the choice of values for k and A.

We set aside further investigations of equal-speed paths to deal with those paths
traversed with non-equal speeds. To keep this reasonably short we shall offer some
numerical examples rather than essay a complete analysis.
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The case of non-equal speeds: ¢ £ 1. To get elementary solutions for g from (4),
we can, in the first instance, take g constant; afterward we look at the case g not
constant.

(i) If g is constant, so that g’ = g” = 0, (4) reduces to

1+ k2 4+ kg = {H*(1 + k%) + Kg*(1 — kA)}, (6)

which can be satisfied for some values of ¢ both greater than and less than 1.
For example, let A = 4 and k = 1/2, so that H = +/17. Substituting these values
into (6) we find

5+¢ = (85+¢gY,

and this relation can be satisfied for values of ¢ between 1/+/17 and 1 by an appropriate
choice of g.

We shall now give a numerical example in whichc > 1. Letk =1and XA = 1, so
that H = 1 and @ = 7 /2. Let g = 2. The pursuer has coordinates

x=e'cost, y=e'sint, z=2"

and starts, at ¢ = 0, from the point (1, 0, 2).
The pursued has coordinates

X=e'cos(t+m/2), Y=e'sin(t+n/2), Z=0,

and starts from the point (0, 1, 0).
We easily calculate the following:

-2
Zicz = 6e ¥, ZX2 =22, = Zx =3, s0 c=+3>1.
X2

Figure 2 again shows the orthogonal projection of the paths on to the xy plane.
The pursuer spirals down from (1, 0, 2) towards the origin; the pursued spirals, in the
plane Z = 0, in towards the origin from the point (0, 1, 0).

There is no capture despite the fact that the speed ratio is greater than 1. The angle
x between the velocity vectors of pursuer and pursued can easily be calculated from
the scalar product formula

Y iX
(T xx)”

and it is found that y = m/2, independently of ¢, becauser’X is zero.

cosy =
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The pursued is always moving at right angles to the line joining its position to that
of the pursuer. There is a small paradox in that the path lengths, of both pursuer
and pursued, calculated as limits (+ — 00), are finite; that if the speeds could be
maintained constant, these paths would therefore be totally traversed in a finite time,
that is they both terminate at the origin and yet there is no capture. It is the result of
the infinite winding of the spirals.

(ii) Motions in which g is not constant.

We can see that, if H? # 1, (4) will in general be a non-reducible quadratic
equation in g, g’, g” and hence is most unlikely to yield elementary solutions for g(¢).

If H? = 1, (4) is reducible to two linear equations in g, g, g” whose coefficients
are constant when A is constant. There will then be elementary exponential solutions
for g. A further simplification is made by taking Ak = 1.

Thus we put H = A = 1/c and k = ¢ so that (4) becomes

(—cg+g) =(—g +g"/c),
equivalent to the two equations
—cg+8 =x(-cs'+g"). (7
Taking the plus option, the differential equation has general solution
g(t) = Aé' + Be”.
Then
f)y=e""g(t) =Ae"" + B. (8)

If A = 0, the motion is entirely in the plane z = B, which we analysed in detail in [3].
Taking the minus option in (7), the differential equation has general solution

g(t) = Ae™' + Be”.
Then
f@)y=e“"g(t) =Ae™"" + B. ©)

Similar remarks to those made about (8) apply to (9). We shall set B = 0 without
loss of generality and illustrate the case of non-zero A by the following numerical
example.

Takec =2,k =2,A=1/2, H =1/2 and o« = /2. We first refer to the solution
(8). The pursuer has coordinates

2

x=eYcost, y=e sint, z=Ae".
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The pursued has coordinates

X =1teYcos(t+m/2), Y=

. . 1 -
=1 e Msin(t +7/2), Z=j;Ae™.

1
2

We can easily calculate

. 5 1
sz = 54 + A2e—21’ ZXZ =M 4 _Aze—zx’

4 4
> x? .
2 — =% =4, as verification.

For A > 0, in the first motion both pursuer and pursued are spiraling down towards
the xy plane; in the second motion the pursuer spirals downward and the pursued
spirals upward.

There may be other real exponential solutions of (4), for the conditions g not
constant and ¢? H? = 1, in which Ak # 1, but we shall not investigate this question.
Whatever real solutions do exist will give motions that are similar to those we have
just illustrated.

Instead we show how we can solve fairly simply the fundamental equations (1) and
(2), with the third dimension suppressed, for the straight line flight case considered
by Colman {2].

C

3. The straight line problem revisited

The pursued follows the straight line A O (Figure 3). The pursuer starts from O.
The speed ratio is ¢, constant. We have to find the equation of the pursuer’s path OP.

We may suppose that the speed of the pursued is 1, so that, at time #, the coordinates
of the pursued are (¢ cos «, yo + ¢ sina).

In the notation of (1) and (2), but with z, Z removed, the equations to be solved for

X,y are
X + Ax = tcosa, (10)
y+ Ay = yo + tsing, (1
4yt = (12)

We can simplify the right-hand sides of Equations (10)—(12) by choosing new axes
AX Y with the origin at A, AY along A Q and AX perpendicular to A Q (see Figure 3).

Note that we have now abandoned the use of X, Y to refer to the pursued, as in (1)
and (2); (X, Y) are now the coordinates of the pursuer referred to the new axes.

https://doi.org/10.1017/50334270000011292 Published online by Cambridge University Press


https://doi.org/10.1017/S0334270000011292

368 J. C. Barton and C. J. Eliezer [11]

Yy
Q
Y P
(O,yO) DA a
L
T
@]
X
FIGURE 3.

The relations between (x, y) and (X, Y) are the standard ones for translation of
origin and rotation of axes and one easily finds the new equations equivalent to (10)-
(12):

X +AX =0, (13)
Y+AY =1, (14)
X 4+ =¢c% (15)

It is clear, physically, that X is a one-way (decreasing) function of ¢z, whence ¢ is a
one-way function of X, and we choose to regard X as the parameter, or independent
variable, for the motion, and A, Y ¢ as functions of X.

First we eliminate A from (13) and (14):

XY-XY=1X,
which we can write as
dY
Y-X|—)=1 16
(dx) (16)

Differentiating (16) with respect to X, we have

—-X cYy_ dt 17)
dx?)  dx’
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Dividing (15) by X? we get

ar\? dr\’
1 — ) =32—=) . 1
+(dX) ‘ (dX) {19
Eliminating dt/dX between (17) and (18) we find
dp 2
1+p2=¢X =), 19
+p =c (dx> (19)

where p denotes dY/dX.
Relative to the X Y axes the pursuer’s curve is concave upwards, that is, in the direc-
tion of the positive Y-axis, so that dp /dX = d*Y/dX? is positive for all relevant X.
Taking the appropriate square root of (19) we get

dp

1+p) P =cx (£ 20

(1+p%)" =X {5 (20)

and (2) is a simple separable variable differential equation from which we can deter-

mine Y as a function of X, that is, the cartesian equation of the path of the pursuer.
The initial conditions at t = O are, interms of X and Y,

(i) X=h, Y =-—htane, 20
@ x=h X nm—a)=-t 22)
ii =h, - =tan(r —a) = —tana,

where we have written & for y, cos a. Integrating (20) once, we get

c

X

{14940} =5, 23)
Xo

where X is an integration constant. Using the initial condition (22), we find

(seca —tana)’ = h/ Xo.

(The positive square root of 1 + (—tana)? is + sec o because —7/2 < a < 7/2.)
Hence

Xo = h(seca + tan@)® (24)

and is now a known constant.
From (23) we have

1/¢
n1/2 _(X
(1+p%) +p—(XO) ,
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whence, taking reciprocals

X ~1/c
1 21\ 1/2 _ {2
(1+p%)" —p X,

_AY LA X\ 25
w3l -(®) ) >

The integration of (25) is straightforward. An integral for the case ¢ = 1 will include
a logarithm. We shall leave the details of this case to the reader, and briefly deal with
the case ¢ # 1.

An integral of (25) is then

Y 1 X 1+1/c X 1-1/¢
Y _ 41 (_.) < _(X c 1 (26)
X() 2 XO C+ 1 X() C — 1

where A is an integration constant.
Using the initial condition (21) A can be evaluated:

and so

cseca 4+ tana

A = (seca —tan )¢ >
cc—1

27

Now, inserting (24) and (27) into (26) we find, after tidying up, the required cartesian
equation of the pursuer’s path:

Y cseca+tana 1 ¢ X\ e c X 1=t/e
S ckeer Al Z . -2 (28
h 1 +2{c+1w<h) c—1" (h) (28)

in which w denotes seca — tana.

We expect that there will be capture when ¢ > 1 and no capture when ¢ < 1. A
verification of this is found by calculating A, which is a multiple, a constant one if we
assume the speed to be constant, of the separation between pursuer and pursued.

From (13), (14) and (15) it is easy to verify that

X dar\V 1" x| o x\ o x\

Forc> 1,A - 0as X — Oand, in fact, A = 0 when X = 0.
The coordinates of the point of capture are, from (28), X =0, ¥ = h(cseca +
tana)/(c®> — 1) and from these we find the x-coordinate to be

ccosa + sinwo cosa
c2—1

x =Ycosa =y
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as in Colman [2].

Forc < 1,A —> ooand Y — oo as X — 0. The chase continues indefinitely, the
pursuer lagging ever further behind. The line A Q is an asymptote of the pursuer’s
curve.
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