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Abstract

We consider a two-layer fluid of finite depth with a free surface and, in particular,
the surface tension at the free surface and the interface. The usual assumptions of a
linearized theory are considered. The objective of this work is to analyse the effect of
surface tension on trapped modes, when a horizontal circular cylinder is submerged in
either of the layers of a two-layer fluid. By setting up boundary value problems for
both of the layers, we find the frequencies for which trapped waves exist. Then, we
numerically analyse the effect of variation of surface tension parameters on the trapped
modes, and conclude that realistic changes in surface tension do not have a significant
effect on the frequencies of these.

2010 Mathematics subject classification: primary 76B15; secondary 76B55.
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1. Introduction

If the free surface of a fluid domain in an ocean extends to infinity in some direction,
there may be characteristic modes with finite as well as infinite total energy. The
former modes retain their energy (neglecting the effect of viscosity), while the latter
radiate theirs to infinity. For this reason, modes with finite energy are known as
trapped modes; these are the subject of the present paper. A trapped mode persists
in some localized region, including the free surface, while decaying rapidly to zero as
the free surface extends to infinity. The trapped modes have finite energy if attention
is restricted to only a finite length of the submerged body under consideration. In this
paper, we will consider a finite length along the axis of the cylinder (see Section 3).

The study of such modes was initiated by Stokes [15] in the context of edge waves.
His work was extended by Ursell [18] who gave explicit solutions for a set of edge-
wave modes on a plane beach of which the fundamental mode was found by Stokes.
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In a configuration where no trapped modes are possible, periodic motions with
periodicity along the direction of the axis of a cylinder of finite length are uniquely
defined by the prescribed periodic motion of the boundary, along with a radiation
condition at infinity. However, if trapped modes exist, then the radiation condition is
no longer sufficient for uniqueness. Earlier proofs of uniqueness were presented by
John [5] for single nonbulbous bodies of different types that intersect the free surface,
and by Ursell [16] for a submerged horizontal cylinder, lying in an infinitely deep fluid
immersed to any depth and for all frequencies. The existence of a trapped mode above
a submerged, horizontal circular cylinder in infinitely deep water was first established
by Ursell [17]. The most important result emerging out of this work [17], crucial
to subsequent investigations, is that the existence of trapped modes depends on the
vanishing of a certain infinite determinant. Ursell further proved that zeros of the
determinant did exist, if the radius of the cylinder was sufficiently small as compared to
the depth of submergence of the cylinder. Afterwards, Jones [6] generalized the result
of Ursell [17] for a cylinder of arbitrary but symmetrical cross-section in a finite depth
of water. Subsequently, the existence of a new type of trapped mode was uncovered by
McIver [10]. She found trapped-mode solutions for the two-dimensional water-wave
problem in which there was no longer any finite periodicity in a horizontal direction.
The fluid motion was essentially confined to the neighbourhood of a tandem structure
giving a free oscillation of finite energy within a fluid of infinite extent. The solution
was constructed from two equal-strength wave-sources placed at the free surface, and
positioned in such a way that the waves radiating to infinity from each source were
cancelled by those from the other, thus giving a local oscillation of the fluid. She
showed that there existed families of streamline pairs surrounding the sources that
could be interpreted as two surface-piercing structures. These investigations show
that it is difficult to analyse the existence of new types of trapped mode which are
embedded in a continuous spectrum.

It is reasonable to conclude that only a small amount of progress has been made
in the study of the existence of trapped modes in the presence of surface tension.
Harter et al. [3, 4] incorporated the effect of surface tension on trapped modes. They
showed that its exclusion from the problem was not always justifiable, as its inclusion
in the study of a particular submerged body changed the topological nature of the
streamline pattern. Motygin and McIver [11] described a criterion that accounted for
surface tension, while examining the existence of trapped modes supported by given
submerged bodies. The method was applied to pairs of ellipses, and numerical results
were used to demonstrate the effects of surface tension.

The results documented above are all related to homogeneous fluids only. A more
general class of problem arises in the case of two-layer fluids of different densities
having a common interface. An extensive literature survey on the capillary–gravity
wave motion in the presence of surface and interfacial tension in a two-layer fluid was
given by Mohapatra and Sahoo [12]. The first result concerning trapped modes in a
two-layer fluid was obtained by Kuznetsov [8] who examined and proved the existence
of trapped modes above a submerged cylinder in the lower layer of infinite depth by
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means of perturbation methods. Later, Linton and Cadby [9] computed the trapped-
mode frequencies for a horizontal circular cylinder submerged either in the upper layer
or in the lower layer by the use of a multipole expansion method. The authors of the
current paper have also discussed trapped modes in a two-layer fluid by considering a
rigid lid [13] and an ice-cover [14] at the upper surface. To the best of our knowledge,
none of the work documented above for a two-layer fluid takes into account the effect
of surface tension when studying the existence of trapped modes.

In the present problem, we consider the case in which two trapped waves develop at
the free surface and the interface of a two-layer fluid of finite depth and include surface
tension effects at both the surface and the interface, by introducing a surface-tension
parameter for each of them. Third-order boundary conditions are satisfied both at the
mean free surface and at the mean interface, which makes the problem more complex.

In Section 2, the problem is formulated for a cylinder placed in either of the
layers. The velocity potentials for the progressive waves along with the dispersion
relation are determined using all the boundary conditions and the governing equation.
Section 3 describes a solution based on the multipole expansion method adopted by
Linton and Cadby [9], in which the singular solutions of the modified Helmholtz
equation are modified to include all the prescribed boundary conditions. The total
potential is expressed as the sum over all the relevant multipoles. Then, by using no-
flow conditions on the cylinder surfaces, an infinite system of homogeneous linear
equations is obtained whose nontrivial solutions for a truncated system correspond to
the trapped modes. Subsequently, the frequencies for which trapped modes exist are
numerically found by locating the zeros of the suitably truncated determinant of this
infinite system of homogeneous linear equations. Finally, the effect of variation of
both of the surface tension parameters on the values and patterns of the trapped modes
is examined. Then, we conclude that the exclusion of surface tension in formulating
the problems is justifiable. The type of trapped mode that is being investigated here
is more straightforward to investigate, because a cut-off value can be introduced and
those modes whose frequencies are below that cut-off, can be located. Hence, these
discrete trapped-mode frequencies are outside the continuous spectrum. The paper
concludes with a brief discussion in Section 4.

2. Mathematical formulation of the problem

Cartesian coordinates are chosen such that the xy-plane coincides with the
undisturbed interface between the two fluids. Each fluid is assumed to be of infinite
horizontal extent in the plane of the x- and y-directions, while the finite depth is
along the z-direction which is considered to be positive vertically upwards. The
upper fluid layer (−∞ < x < ∞, −∞ < y < ∞, 0 < z < d) is of constant density ρI

in the presence of surface tension T1, with z = d as the mean free surface. The
lower fluid (−∞ < x < ∞, −∞ < y < ∞, −h < z < 0) is assumed to be of constant
density ρII in the presence of surface tension T2, with the mean interface at z = 0,
and the bottom surface is considered to be at z = −h (Figure 1). Assuming that the
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Figure 1. Schematic diagram for a two-layer fluid with surface tension at free surface and interface.

fluids are inviscid, incompressible and immiscible, and their motions irrotational, the
fluid motion is described by the two velocity potentials Φ j(x, y, z, t), j = I, II. Let
η(x, y, t) and ζ(x, y, t) be the small displacements at the free surface and the interface,
respectively. The governing equation for the boundary value problem involving the
potential Φ j(x, y, z, t), j = I, II, is the Laplace’s equation

∇2Φ j = 0 in the respective fluid regions. (2.1)
The linearized kinematic conditions at the mean free surface and the mean interface

are, respectively, given by
∂η

∂t
=
∂ΦI

∂z
on z = d and (2.2)

∂ζ

∂t
=
∂ΦI

∂z
=
∂ΦII

∂z
on z = 0. (2.3)

In the presence of surface tension, the general relations connecting surface tension
and pressure gradient are given by

P0 − pI =
T1

R
for the free surface, and

pII − pI =
T2

R
for the interface,

where 1/R is the mean curvature, P0 is the constant atmospheric pressure and p j,
j = I, II, is the hydrodynamic pressure in fluid region j. In Cartesian coordinates, the
mean curvature is

1
R

=


ηxx + ηyy

(1 + η2
x + η2

y)3/2 for the free surface, and

ζxx + ζyy

(1 + ζ2
x + ζ2

y )3/2 for the interface.
(2.4)

According to the linearized theory of water-waves, the hydrodynamic pressure p j
in the corresponding fluid region is given by Bernoulli’s equation [1]

p j = −ρ jg
(
z +

1
g
∂Φ j

∂t

)
for j = I, II, (2.5)

where g is the acceleration due to gravity.
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Hence, from equations (2.4) and (2.5), the linearized dynamic free-surface
boundary condition in the presence of surface tension T1 at the mean free surface
z = d is given by

ρI

(
gη +

∂ΦI

∂t

)
− T1

(
∂2η

∂x2 +
∂2η

∂y2

)
= 0. (2.6)

Further, from equations (2.4) and (2.5), the linearized dynamic condition at the
mean interface z = 0, in the presence of interfacial surface tension T2 is given by

ρII

(
gζ +

∂ΦII

∂t

)
− T2

(
∂2ζ

∂x2 +
∂2ζ

∂y2

)
= ρI

(
gη +

∂ΦI

∂t

)
. (2.7)

Here the domain is infinite along the y-direction, and an infinite horizontal circular
cylinder with its generator running along the y-direction is to be considered in
Section 3 to find the trapped modes. These trapped modes can be recognized only
if we restrict our study to some finite length of the axis of the cylinder (for instance,
if the cylinder is placed between two vertical walls at y = 0 and y = π/l). Assuming
that the fluid motion is harmonic in time and in the y-direction, the velocity potential,
free surface and interface elevations can be written in the form given by Mohapatra
and Sahoo [12] as

Φ j(x, y, z, t) = Re[φ j(x, z) cos ly e−iωt],
η(x, y, t) = Re[η̄(x) cos ly e−iωt],
ζ(x, y, t) = Re[ζ̄(x) cos ly e−iωt],

where Re denotes the real part of the quantity in the bracket, l is the wavenumber
along the y-direction and ω is the radian frequency (both l and ω are taken to be real
and positive so that the solution stays bounded for all y and t).

In this case, each φ j(x, z) for j = I, II, satisfies the modified Helmholtz equation
(∇2

x,z − l2)φ j = 0. By combining the kinematic and dynamic boundary conditions (2.2),
(2.3), (2.6) and (2.7), the linearized boundary conditions at the mean free surface and
mean interface can be written as

∂φI

∂z
− KφI − M1

∂

∂z

(
∂2

∂x2 − l2
)
φI = 0 on z = d,

∂φII

∂z
− KφII − M̃2

∂

∂z

(
∂2

∂x2 − l2
)
φII = ρ

(
∂φI

∂z
− KφI

)
on z = 0, (2.8)

where M1 = T1/(ρIg), M̃2 = T2/(ρIIg) and ρ = ρI/ρII with 0 < ρ < 1. An equivalent
form of the interface condition (2.8) is given by

∂φII

∂z
− KφII − M2

∂

∂z

(
∂2

∂x2 − l2
)
φII = ρ

{
∂φI

∂z
− KφI − M2

∂

∂z

(
∂2

∂x2 − l2
)
φI

}
,

where M2 = T2/{(ρII − ρI)g}.
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The impermeable bottom boundary condition is

∂φII

∂z
= 0 on z = −h.

Within this framework, progressive waves or incident waves take the form (up to an
arbitrary multiplicative constant)

φI = exp(±ix
√

u2 − l2){F+(u)eu(z−d) + F−(u)e−u(z−d)}, (2.9)

φII = exp(±ix
√

u2 − l2) cosh u(z + h)F(u), (2.10)

where

F(u) =
F+(u)e−ud − F−(u)eud

sinh uh
,

F±(u) = (1 + M1u2)u ± K,

and u satisfies the dispersion relation

{u(1 + M2u2) + Kσ}F+(u)e−2u(d+h) + {u(1 + M2u2) − Kσ}F−(u)
− {u(1 + M2u2) − K}F+(u)e−2ud − {u(1 + M2u2) − K}F+(u)e−2ud = 0,

where σ = (1 + ρ)/(1 − ρ).
This equation has exactly two positive real roots u1 and u2 (u1 < u2, say). A detailed

analysis of the roots of the dispersion relation is given in the Appendix of the article by
Bhattacharjee and Sahoo [2] and a similar derivation can be produced for the case when
the surface tension parameters are taken into account. For the existence of trapped
modes, it is required that

φI , φII , |∇φI |, |∇φII | → 0 as |x| → ∞,

and since we are interested in discrete trapped modes that exist below a cut-off value,
we, therefore, consider the cut-off value as l, and hence restrict l to be in the range
l > u2 > u1, which ensures that no wave propagation to infinity takes place at the
interface or near the free surface. In the far-field form of the potentials given by
equations (2.9) and (2.10), we have exp(−

√
l2 − u2|x|), which reduces to zero if l is

greater than both of the wavenumbers. Therefore, there will be no propagation of
waves along the x-direction.

3. Solutions by multipoles

In this section, we discuss the effect of surface tension on trapped waves. The
structure considered here is an impermeable, horizontal circular cylinder of radius a,
having its axis along z = f , with | f /a| > 1 such that the cylinder is totally submerged in
either of the layers of the two-layer fluid and its generator runs parallel to the y-axis. If
f > 0, the cylinder is in the upper fluid, whereas for f < 0, the cylinder is in the lower
fluid. Polar coordinates (r, θ) are defined in the xz-plane centred at (0, f ) as

x = r sin θ and z = f − r cos θ. (3.1)
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Kassem [7] elaborated on different types of multipoles describing the velocity
potentials, when each layer of a two-layer fluid was of constant depth. Following his
method, we construct multipoles which are singular at (0, f ) and symmetrical about
x = 0. The trapped mode potential is then constructed from a linear combination of all
possible multipoles. Moreover, application of the body boundary condition results in
an infinite system of homogeneous linear equations.

3.1. Cylinder submerged in the upper layer Since the singularity is in the upper
fluid,

φI
n ∼ Kn(lr) cos(nθ) as r =

√
x2 + (z − f )2 → 0; n = 1, 2, 3, . . . ,

because these are the solutions of (∇2 − l2)φ(r, θ) = 0 and are singular at r = 0. Here
Kn(.) denotes an nth order modified Bessel function of the second kind having the
integral representation [17]

Kn(lr) cos nθ =


∫ ∞

0
cosh nu cos(lx sinh u)ev(z− f ) du for z < f ,

(−1)n
∫ ∞

0
cosh nu cos(lx sinh u)ev( f−z) du for z > f ,

where v = l cosh u.
Using this integral representation, we try the following multipoles which satisfy the

modified Helmholtz equation [9]

φI
n = Kn(lr) cos nθ +

∫ ∞

0
cosh nu cos(lx sinh u)[AU(v)evz + BU(v)e−vz] du, (3.2)

φII
n =

∫ ∞

0
cosh nu cos(lx sinh u)CU(v) cosh v(z + h) du. (3.3)

With the help of the boundary conditions at the free surface, the interface and the
bottom, the coefficients AU(v), BU(v) and CU(v) in equations (3.2) and (3.3) are

AU(v) =
F+(v)e−2vd

F−(v)
[BU(v) + (−1)nev f ],

BU(v) =
(−1)nF+(v)ev( f−2d) + F−(v)e−v f

G(v)
× [v(1 + M2v2) − K − e−2vh{v(1 + M2v2) + Kσ}],

CU(v) =
2K(1 − σ)BU(v)

{v(1 + M2v2) − K}evh − {v(1 + M2v2) + Kσ}e−vh ,

where

G(v) = {v(1 + M2v2) − K}F+(v)e−2vd + {v(1 + M2v2) + K}F−(v)e−2vh

− {v(1 + M2v2) + Kσ}F+(v)e−2v(d+h) − {v(1 + M2v2) − Kσ}F−(v). (3.4)
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The multipoles can be expanded in polar coordinates. If we first put X = −lr and
T = exp[i(θ + iu)] in the well-known generating function for modified Bessel functions
(see [19]), then

exp
[1
2

X(T + T−1)
]

=

∞∑
m=0

1
2
εm(T m + T−m)Im(X),

where In(.) are modified Bessel functions of the first kind of order n, and ε0 = 1, εm = 2
for m ≥ 1. Then, by taking the real and imaginary parts, the resulting expressions can
be substituted into (3.2), using (3.1), to give

φI
n = Kn(lr) cos nθ +

∞∑
m=0

AmnIm(lr) cos mθ,

where

Amn = εn

∫ ∞

0
cosh mu cosh nu[(−1)nAU(v)ev f + BU(v)e−v f ] du. (3.5)

We note that, since v > l > u2 > u1 > K > 0, there will be no singularity of the
integrand on the real axis. Now, the total velocity potential is

φI
tot =

∞∑
n=0

αnφ
I
n. (3.6)

Applying the body boundary condition ∂φ/∂r = 0 on r = a to the infinite series (3.6),
we obtain the infinite system of homogeneous linear equations in the unknowns αn

given by

αn +
I′n(la)
K′n(la)

∞∑
m=0

αmAmn = 0, n = 0, 1, 2, . . . , (3.7)

where ′ denotes differentiation with respect to r.
For the existence of trapped modes, we require nontrivial solutions to the infinite

system of equations (3.7). Hence, for a fixed geometrical configuration along with a
fixed density ratio, we need to find the values of Ka or la (assuming Ka to have a
fixed value while computing la and vice-versa) for which the truncated determinant
vanishes. For the sake of our numerical computation, we truncate the system to a
32 × 32 system. The convergence of this system has been derived in one of our
earlier works [14]. As discussed previously in Section 2, since we are interested in
those trapped modes that occur below a cut-off value of la, we consider a fixed value
of la and then take into account different values of Ka up to that fixed value. The
bisection method is used to find the values of frequency Ka for which the truncated
determinant vanishes. Then, corresponding to those values of frequency, the value of
the wavenumbers u1a and u2a can be determined by using the dispersion relation. To
compute the determinant, we need to calculate Amn from equation (3.5) for different
values of m and n. Since there is no singularity on the real axis of the integrand on the

https://doi.org/10.1017/S1446181115000188 Published online by Cambridge University Press

https://doi.org/10.1017/S1446181115000188


[9] Effects of surface tension on trapped modes in a two-layer fluid 197

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.5

1

1.5

2

2.5

3

3.5

4

la

Figure 2. Dispersion curves for a cylinder of radius a in the upper layer for different values of M2/a2;
ρ = 0.5, d/a = 3, f /a = 1.01, h/a = 6 and M1/a2 = 0. (Colour available online.)

right-hand side of equation (3.5), we first break the integral into four convergent
integrals and then apply the command nintegrate in Mathematica. Subsequently, we
find out the values of Amn. The results presented below are correct to three decimal
places. The effects of submergence depth and the depths of each fluid layer have
already been covered by the work of Linton and Cadby [9]. We now specifically
investigate the effects of variations in both of the surface tension parameters on the
dispersion and density plots of trapped modes (if any exist).

3.1.1. Numerical results Figures 2–4 show the results obtained for trapped modes
above a horizontal circular cylinder of radius a, submerged entirely in the upper layer
of a two-layer fluid with a free surface, with the inclusion of surface tension at both the
free surface and the interface. For all these cases, the depth h/a of the lower layer is
taken as 6.0. For the dispersion curve, u2a = la is the upper bound for the trapped mode
wavenumber u2a (Figure 2). With the given set of parameter values, we observed that,
when there was no surface tension at the interface, there did exist two trapped modes
as seen by Linton and Cadby [9]. However, with the consideration of a nonzero value
of nondimensionalized surface tension parameter M2/a2 at the interface, there exists
only one trapped mode. This mode is little affected by an increase in the parameter
M2/a2.

Trapped mode wavenumbers are plotted against density ratio in Figures 3–4 for
different values of the surface tension parameters M1/a2 and M2/a2, assuming that
one parameter is zero and the other varies. The submergence depth f /a is taken
as 1.05 and the depth of the upper layer as 2.10. In Figure 3, for both of the
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Figure 3. Trapped mode wavenumbers plotted against ρ for a cylinder of radius a in the upper fluid layer
for different values of free surface tension M1/a2; la = 2, d/a = 2.1, h/a = 6, f /a = 1.05 and M2/a2 = 0.
(Colour available online.)

wavenumbers, different pairs of curves correspond to four different values of surface
tension parameter: M1/a2 = 0, 0.005, 0.007 and 0.01. It is observed that there are two
curves for each of the wavenumbers u1a and u2a, corresponding to each value of the
surface tension parameter, showing that two modes exist. For the wavenumber u1a, the
first modes (lower ones) correspond to the lines of constant u1a, which are solutions
to the single-layer fluid problem. These first modes appear to cross the second modes,
but with closer inspection we can observe near-crossing points or diabolical points.
These points have also been observed by Linton and Cadby [9]. If the density ratio
increases further, the second modes remain constant and terminate at a certain value of
ρ corresponding to different values of the surface tension parameter, whereas the first
modes decrease to zero. For the wavenumber u2a, the first modes increase, and the
second modes decrease with an increase in density ratio and they come very close to
each other at near crossing points. As ρ increases further, the modes interchange their
properties: that is, the second modes increase and then terminate when u2a = 2 = la
is reached, corresponding to a fixed value of ρ for all values of M1/a2, while the first
mode decreases to some fixed value for each value of M1/a2. The second mode for the
wavenumbers u1a and u2a terminates at some small nonzero value of ρ. The presence
of near-crossing points shows that at those specific values of density ratio ρ, the free
surface and interfacial modes interchange their properties. More detailed explanation
on near-crossing points can be found in the literature (see, for example, [9]). Also, in
Figure 4, exactly the same behaviour is observed for different values of the interfacial
surface tension parameter M2/a2. In contrast to what was found by Linton and
Cadby [9], we did not observe that inclusion of surface tension at the free surface
and the interface had a very significant effect.

3.2. Cylinder submerged in the lower layer Now consider the problem with the
cylinder placed in the lower layer. The multipoles that are singular at z = f (< 0) are
required to be modified. This can be done by the same method as used previously
when the cylinder was placed in the upper layer ( f > 0). The suitable symmetrical
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Figure 4. Trapped mode wavenumbers plotted against ρ for a cylinder of radius a in the upper fluid layer
for different values of interfacial tension M2/a2; la = 2, d/a = 2.1, h/a = 6, f /a = 1.05 and M1/a2 = 0.
(Colour available online.)

multipoles are

φI
n =

∫ ∞

0
cosh nu cos(lx sinh u)[AL(v)evz + BL(v)e−vz] du,

φII
n = Kn(lr) cos nθ +

∫ ∞

0
cosh nu cos(lx sinh u)[CL(v)evz + DL(v)e−vz] du,

where the integrals are Cauchy principal value integrals with

AL(v) =
F+(v)
F−(v)

BL(v)e−2vd,

BL(v) =
K(1 + σ)F−(v)

G(v)
{(−1)n+1ev f − e−v( f +2h)},

CL(v) =
BL(v)

K(1 + σ)F−(v)
[{v(1 + M2v2) + Kσ}F+(v)e−2vd{v(1 + M2v2) + K}F−(v)],

DL(v) = (CL(v) + e−v f )e−2vh,

and where G(v) is given by equation (3.4). Due to the trapped mode condition, there are
no singularities on the real axis. Following the previous procedure, the polar expansion
of the multipoles is

φII
n = Kn(lr) cos nθ +

∞∑
m=0

BmnIm(lr) cos mθ,

where

Bmn = εn

∫ ∞

0
cosh mu cosh nu[(−1)nCL(v)ev f + DL(v)e−v f ] du.

By applying the body boundary condition, a system of equations similar to (3.7) is
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Figure 5. Dispersion curves for a cylinder of radius a in the lower layer for different values of M2/a2;
ρ = 0.5, d/a = 3, f /a = −1.01, h/a = 6 and M1/a2 = 0. (Colour available online.)

obtained for βn, given by

βn +
I′n(la)
K′n(la)

∞∑
m=0

βmBmn = 0, n = 0, 1, 2, . . . . (3.8)

Here, as in the previous case, the zeros of the truncated determinant are conveniently
located by varying the frequencies Ka and fixing the other parameters. The results
presented next are obtained correct to three decimal places, where a 32 × 32 system is
used after truncating the system obtained from equation (3.8).

3.2.1. Numerical results Figures 5–7 show the plots of the nondimensional trapped
mode frequencies for a horizontal circular cylinder of radius a, entirely immersed in
the lower layer of the two-layer fluid with the inclusion of surface tension at the free
surface and the interface. In all cases, the depth d/a of the upper layer is taken as 3.0,
the submergence depth f /a as −1.01 (which means that the cylinder is very close to the
interface), and the depth h/a of the lower layer as 6.0. Figure 5 shows the dispersion
curves for four different values of the surface tension parameter: M2/a2 = 0, 0.005,
0.007 and 0.01. For each set of parameter values, there are two curves corresponding
to two modes, which are displayed in the graphs of Figure 6. We observe that
the trapped mode wavenumber u2a increases when the surface tension value at the
interface increases, the second mode being affected more than the first mode.

When trapped-mode wavenumbers are plotted against density ratio for different
values of surface tension parameter M1/a2 at the free surface, we observe that the
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Figure 6. Trapped mode wavenumbers plotted against ρ for a cylinder of radius a in the lower fluid layer
for different values of M1/a2; la = 2, d/a = 3.0, h/a = 6.0, f /a = −1.01 and M2/a2 = 0. (Colour available
online.)
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Figure 7. Trapped mode wavenumbers plotted against ρ for a cylinder of radius a in the lower fluid layer
for different values of M2/a2; la = 2, d/a = 3.0, h/a = 6.0, f /a = −1.01 and M1/a2 = 0. (Colour available
online.)

modes are unaffected by the variation. But, with the variation of surface tension
parameter M2/a2, as seen from Figure 7, trapped modes for both of the wavenumbers
do get affected. With an increase in M2/a2, the second trapped mode for both of the
wavenumbers u1a and u2a shows a bigger increase as compared to the first mode.

4. Conclusion

We examine the effect on the trapped modes supported by a horizontal circular
cylinder placed entirely in one of the layers of a two-layer fluid, when surface tension
at the free surface and the interface is incorporated. The dispersion curves are analysed
for different values of the interfacial surface tension when the cylinder is placed in each
of the layers. In both cases, the second mode gets affected more than the first mode.
When the cylinder is placed in the upper layer, the second mode does not exist when
an increase in interfacial surface tension takes place. When the cylinder is placed
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in the lower layer, the value of the wavenumbers for the second mode decreases,
corresponding to an increase in the same surface tension parameter. We also plot
trapped mode wavenumbers against density ratio for different values of free surface
and interfacial surface tension when the cylinder is placed in either of the layers (see
Figures 3, 4, 6 and 7). In both cases, we observe that, by varying both surface tension
parameters, the pattern or value of the wavenumbers does not change in a significant
manner.

Hence, it is justified to ignore the effect of surface tension from the free surface or
the interface as the current authors did for the problems in some earlier works [13, 14].
Its inclusion gives rise to a third-order boundary condition, and hence makes the
computation time-consuming. Even after its inclusion, no significant change is
observed on the pattern of trapped modes and values of the frequency.

Therefore, we conclude that inclusion of surface tension at the free surface and (or)
the interfaces, as dictated by the problem, brings no significant change to the trapped
modes. Although the problem carried out in this article is for a two-layer fluid flow
with a free surface, similar observation is expected when the free surface is replaced
by a rigid lid or an ice-cover.
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