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COMPLETE SPACELIKE HYPERSURFACES IN A DE SITTER SPACE

SHU SHICHANG

In this paper, we characterise the n-dimensional (n ^ 3) complete spacelike hyper-
surfaces Mn in a de Sitter space S^+1 with constant scalar curvature and with two
distinct principal curvatures. We show that if the multiplicities of such principal
curvatures Eire greater than 1, then Mn is isometric to if*(sinhr) x Sn~fc(coshr),
1 < fc < n — 1. In particular, when Mn is the complete spacelike hypersurfaces in

. 5]*+1 with the scalar curvature and the mean curvature being linearly related, we also
obtain a characteristic Theorem of such hypersurfaces.

1. INTRODUCTION

Let /?"+2 be the (n+2)-dimensional Lorentz-Minkowski space, that is, the real vector
space Rn+2 endowed with Lorentzian metric (,) given by

(P. 9> = ~P090 + Pl9l H 1" Pn+l9n+l,

for p,q £ Rn+2. We define the de Sitter space by

In this way, S"+1 is a Lorentz manifold with constant sectional curvature 1. A hypersur-
face Mn of 5"+1 is said to be spacelike if the induced metric on M" from that of ambient
space is positive definite. There are many interesting results in the study of spacelike
hypersurfaces with constant mean curvature, one can see [6, 2, 13, 9]. It is well-known
that the investigation on spacelike hypersurfaces with constant scalar curvature is also
important and interesting. Zheng [14, 15] proved that when Mn is an n-dimensional
compact spacelike hypersurface with constant scalar curvature immersed in a de Sitter
space 5"+1, if K > 0 and R ^ 1, then Mn is totally umbilical and is isometric to a
sphere, where K and n(n - l)R are the sectional curvature and the scalar curvature of
M", respectively. If Mn is the complete spacelike hypersurface with constant scalar cur-
vature, Liu [8] recently obtained a characteristic Theorem of such hypersurfaces in terms
of the squared norm of the second fundamental form of Mn. In [10], Nomizu classified
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the isoparametric hypersurfaces in a de Sitter space. He proved that these hypersurfaces
are totally umbilical or have two distinct principal curvatures. Hence, it is natural and
important to investigate the spacelike hypersurfaces with two distinct principal curva-
tures. In this paper, we characterise all complete spacelike hypersurfaces of constant
scalar curvature with two distinct principal curvatures whose multiplicities are greater
than 1.

In order to represent our theorems, we need some notations (see [7] or [8]). The
well-known complete spacelike hypersurfaces with constant mean curvature are given by

Mn = {pe Sr1 I Pl+l + • • • + Pn+i = cosh2 r},

with r G R1 and 1 < k < n, where R1 is the set of all real numbers. We can prove that
M" is isometric to the Riemannian product i7*(sinhr) x 5n~*(coshr) of a fc-dimensional
hyperbolic space and a (n — A;)-dimensional sphere of radii sinh r and cosh r, respectively.
M" has k principal curvatures equal to coth r and (n — k) principal curvatures equal to
tanh r, so the mean curvature is given by

nH = k coth r+(n — k) tanh r.

If k — 1, the Riemannian product /^(sinhr) x 5n~1(coshr) is called a hyperbolic cylin-
der.We obtain the following:

THEOREM 1 . 1 . Let Mn be an n-dimensional complete spacelike hypersurface in
S"+l with constant scalar curvature and with two distinct principal curvatures. If the
multiplicities of these two distinct principal curvatures are greater than 1, then Mn is
isometric to the Riemannian product if* (sinh r) x S"~fc(coshr), 1 < k < n — 1.

Let Mn be the complete spacelike hypersurfaces in 5"+1 with scalar curvature
n(n — 1)R and the mean curvature H being linearly related, that is, we may assume
n(n - 1)R — k'H(k' = constant ^ 0). Cheng [4] proved that if the sectional curvatures
are nonnegative and H obtains its maximum on M, then Mn is isometric to an Euclidean
space Rn or a sphere Sn(ci),0 < C\ < 1. In this paper, we also obtain a characteristic
Theorem of such hypersurfaces in terms of H. We have the following:

THEOREM 1.2 . Let Mn be an n-dimensional (n ^ 3) complete spacelike hyper-
surface with n(n — 1)R = k'H in a de Sitter space 5™+1, wiere A;' is a positive constant.
If the mean curvature H is non-negative and obtains its maximum on Mn, then

(1) IfH2 < (4(n - l))/n2 on Mn, then Mn is totally umbilical.

(2) If H2 = ( 4 ( n - l))/n2 on Mn, then Mn is totally umbilical, or Mn is
isometric to a hyperbolic cylinder H1(sinhr) x S^^coshr).

(3) If (4(n — l)/n2) < H2 < 1 on M" and the squared, norm of the second
fundamental form \h\2 satisfies \h\2 < nH2 + [B^)2 or \h\2 > nH2 + (B£)2

on Mn, then M" is totally umbilical, or M" is isometric to a hyperbolic
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cylinder # l ( s inhr ) x 5n"1(coshr), where B% axe the two real roots of the

polynomial

_ , . , n(n — 2)H ,„ „.>.
PH(x) = x2 - ) ' x + n(l - H2).

/ { 1)

2. PRELIMINARIES

Let Mn be an n-dimensional spacelike hypersurfaces in S"+ 1 . We choose a local field
of semi-Riemannian orthonormal frames eu • • • , en +i in Sf+1 such that at each point of
M n , ei, • • • , en span the tangent space of Mn and form an othonormal frame there. We
use the following convention on the range of indices:

l^A,B,C,--^n+l; 1 < t, j,k, • • ^ n.

Let w\, • • • ,tjn+i be the dual frame field so that the semi-Riemannian metric of S"+1 is

given by ds2 = ^ w ? - w^+1 = Y,£AU\, where et = 1 and £n+l = - 1 .
i A

The structure equations of S"+1 are given by

(2.1) duA = ^ eBuAB A cjB, wAB + wBA = 0,
B

(2.2) du^s = ^ £CUAC A WCB + O/iB,

c

where

(2.3) Q,IB = - - ^ KABCDUC A W D ,

(2.4) KABCD =

Restricting these forms to Mn, we have

(2.5) wn+1 = 0.

Cartan's Lemma implies that

(2.6) wn + l i

The structure

(2.7)

(2.8)

(2.9)

equations of M"

diJi =

dujij =

are

i

5 3 W
k

ly A U)j , Ulij + 1

'ik A Wfcj - - 5 3 i
k,i

i - 6u5jk) - (hikh

up = 0,

i,i - huhjk),
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where Rijti are the components of the curvature tensor of Mn and

(2.10)

is the second fundamental form of Mn.

From the above equation, we have

(2.11) n(n - 1)R = n(n - 1) - n2H2 + |/i|2,

where n(n— l)R is the scalar curvature of M", H is the mean curvature, and |A|2 = ]T A?.

is the squared norm of the second fundamental form of M".

The Codazzi equation and the Ricci identity are

(2.12) hijk = hikj,

(2.13)

where hijk and /iyW denote the first and the second covariant derivatives of htj.

3. P R O O F OF THEOREMS

In order to prove Theorem 1.1,we firstly need the following Proposition 3.1 from [7],
(originally due to Otsuki [12]) for Riemannian space forms.

PROPOSITION 3 . 1 . ([7]) Let Mn be a spacelike hypersurface in 5[*+1 such that
the multiplicities of the principal curvatures are constant. Then the distribution of the
space of principal vectors corresponding to each principal curvature A is completely inte-
grable. In particular, if the multiplicity of a principal curvature is greater than 1, then
this principal curvature is constant on each integral submanifold of the corresponding
distribution of the space of the principal vectors.

From Proposition 3.1, it is easy to prove Theorem 1.1.

P R O O F OF T H E O R E M 1.1: Let A,// be the principal curvatures of multiplicities k
and n — k respectively, where 1 < k < n - 1. By (2.11) we have

(3.1) n{n -l)(l-R) = k(k - 1)A2 + 2Jfc(n - k)Xn + (n - k)(n - k - I)/*2.

Denote by Dx and D^ the integral submanifolds of the corresponding distribution of the
space of principal vectors corresponding to the principal curvature A and n, respectively.
From Proposition 3.1, we know that A is constant on D\. Since the scalar curvature is
constant, (3.1) implies that fj. is constant on D\. Making use of Proposition 3.1 again, we
have n is constant on D^. Therefore, we know that fi is constant on Mn. By the same
assertion we know that A is constant on M". Therefore M" is isoparametric. By the
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congruence theorem in [1], A/n is isometric to i/*(sinhr) x 5n~*(coshr), 1 < k < n - 1.
This completes the proof of Theorem 1.1.

In order to prove Theorem 1.2, we introduce an operator • due to Cheng and Yau
[5] by

(3.2) • / =

where / is a C2-function on Mn, the gradient and Hessian (/y) are defined by

(3.3) df
i } j

The Laplacian of / is defined by A / = Yl fa-
i

We choose a local frame field e\, • • • , e n at each point of Mn, such that Ay = Aj<5y.
Prom (3.2) and (2.11), we have

D(nH) = nHA(nH) -

(3-4) = \&{nHf

= -\n{n - 1)AR + ±A\h\2 - n2| V H\2

i

From (2.12) and (2.13), by a standard and direct calculation, we have

where i^j-y = 1 — AjA7-(i ^ j) denotes the sectional curvature of the section spanned by

From (3.4) and (3.5), we get

(3.6) U{nH) = -\n{n - 1)AR + \ V h\2 - n2\ y H\2 + - V ( 1 - AjAi)(Ai - A,)2.

We need the following Lemma 3.2 original due to Cheng [4].

LEMMA 3 . 2 . Let M n be an n-dimensional spacelike hypersurface in a de Sitter
space S"+1 with n(n - \)R = k'H (k' = constant > 0). If t i e mean curvature H ^ 0,
fcien t i e operator

L = D + (Jfc72n)A

is elliptic and R > 0, H > 0.

The proof of Lemma 3.2 is similar to that of Proposition 1 in [4], thus will be omitted.
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We also need the following algebraic Lemma due to [11] and [3].

LEMMA 3 - 3 . Let /x,, i = 1, • • • , n be reai numbers, with 52/jj = 0 and £ M? = P2

Ss 0. Then

0.7)

and equality holds if and only if either (n—1) of tie numbers /ij are equaJ to /3/ ̂ /n(n — 1)
or (n — 1) of the numbers /ij are equal to -&/ y/n(n — 1).

D
PROOF OF THEOREM 1.2: From (3.6) we have

nLH = n[OH + (k'/2n)AH]

(3.8) = | V h\2 - n2\ V H\2 + 5 2 J 1 ~ A-A>)(A« " xi)2

= | V h\2 - n2\ V H\2 + n\h\2 - n2H2 + |/i|4 - n f f V A?.

We choose a orthonormal frame field ei, e^, • • • ,en at each point in Mn such that
hij = XiSij. Then we have |/i|2 = £>?, # 0. In fact, if \h\2 = J2 A? = 0 at a point of

Mn, then Aj = 0(t = 1,2, • • • , n) at this point. Therefore H = 0 and i? = 0 at this point.
From (2.11) we have n(n — 1) = 0. This is impossible.

From (2.11) and n{n - 1)R = k'H, we have

k'ViH = -2n2H ViH +

Therefore, we have

(3.9) | V h\* - n2| V H\* > [ ( I + n2//) - n*\h\2] \ V ±

Let |g|2 be a nonnegative C2-function on Mn denned by \g\2 = \h\2 — nH2. Since
- Xi) = 0, E ( ^ ~ *i? = \h? ~ nH2 = \g\2, by Lemma 3.3 we get

(3.10) j2
t >

^ -3ni/2 | f l |
2 - n2i/4 - nH
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Therefore, from (3.8), (3.9) and (3.10), we have

(3.11) nLH>\g\2\\g\2- U{n~2) H\g\ + n-nH2)
{ \/n(n -1) . J

= \9?PH{\9\),

where

(3.12) • ^(|ff|) = |g|2- n.{n'2)H\g\+n(l-H2).
/n{n 1)

The discriminant of PH{\g\) is (n/(n - 1)) (n2H2 - 4(n - 1)).

(1) If H2 < (4(n - l)) /n2 on Mn, then PH(\g\) > 0 on Mn and the right-hand
side of (3.11) is nonnegative. Since the operator L is elliptic and H obtains its maximum
on M", from (3.11) we know that H = const, on Mn. From (3.1.1) again, we get
\9?PH(IffI) = 0 , so \g\2 = 0 and M" is totally umbilical. . .

(2) If H2 = (4(n - l )) /n2 on Mn, then PB(\g\) = (\g\ - (n - 2)/V^)2 ^ 0 on Mn.
We have from (3.11), |s|2Ptf (|ff|) = 0. Hence, we know that |^|2 = 0 and Af" is totally
umbilical; or PH(\9\) = 0 .

If PH{\g\) - 0, then |^| = (n - 2)/y/n. From (3.11) the equality holds in Lemma
3.3. Therefore we know that (n - 1) of the numbers H — A< are equal to

\g\ . n - 2

or equal to the negative of this last expression. This implies that Mn has (n — 1) principal
curvatures equal and constant. As H is constant, the other principal curvature is constant
as well, so M" is isoparametric. Therefore, we know that Mn is isometric to a hyperbolic
cylinder H^sinhr) x 5n~1(coshr) from the congruence theorem in [1].

(3) If (4(n - l)/n2) < H2 < 1 on Mn, then PH (|g|) has two real roots B^ and
by

(3.13) B%

Clearly, B j is always positive, and B^ > 0 if and only if (4(n - l ) ) /n2 < if2 ^ 1. Since
we suppose \h\2 ^ n F 2 + (B^)2, or \h\2 > nH2 + (B^)2 on Mn, which means |s | < B^

or |ff| > B j on Mn. Therefore we know that PH{\9\) > 0 on Mn. Since L is elliptic and
H obtains its maximum on M", we know that H = const, on Mn from (3.11). Thus
we get M2Pff(M) = 0, and so I5I2 = 0 and Mn is totally umbilical; or PH{\g\) = 0. If
PH(|<7|) = 0, then we have

(3-14) \g\ = BH, or \g\ = B+,
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on Mn. If Bg = 0, then we get \g\ = 0 and Mn is totally umbilical. If Bjj > 0, by
(3.14) and (3.11), the equality holds in Lemma 3.3. By making use of the same assertion
as in the proof of (2) above, we infer that Mn is isometric to a hyperbolic cylinder
H^sinh r) x 5n"l(cosh r). This completes the proof of Theorem 1.2. D
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