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§1. Introduction

We shall investigate a system of spin configurations S = {S(t, x); £ > 0,
x€Z} on a one-dimensional lattice Z changing randomly in time. The
evolution law is described by an infinite-dimensional stochastic differential
equation (SDE):

dS(t, x) = {U(S@, x + 1)) — 2U(S(, x)) + U(S@, x — 1))}dt
+V2(dpt, x + 1) — dp(t, %), xeZ

where {8(¢,x); t >0, xeZ} is a family of independent standard Wiener
processes and U’ is the derivative of a self-potential U: R — R. Throughout

1.1

this paper we are assuming that U has two times continuous derivatives
and

1.2) a—A<U'(x)<a+ A

with some constants ¢ > 0 and A > 0. The system (1.1) is called one-
dimensional Ginzburg-Landau lattice model (cf. [1], [2]), which has a unique
strong solution in a certain class of configuration spaces (see Section 2,
Theorem 2.1).

The purpose of the present paper is to investigate the hydrodynamical
behavior, especially the equilibrium fluctuation problem, for (1.1). We
introduce the space-time scaling:

(1.3) x—[xfe], t—tld, ¢>0

for the equation (1.1). Here [u] denotes the integral part of u e R. After
this scaling the process S.(¢, x) = S(t/¢% [x/e]) solves the following scaled
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equation:

(1.4)  dS.(¢ x) = 4.U(S.(¢, x))dt + V2 . dw,.(t,x), t>0, xeR
where w,(t, x) = « ¢ B(t/&*, [x/e]) and

d.o(x) = e'[p(x + &) — o(x)]

(1.5)
d.p(x) = e [p(x + ) — 20(x) + o(x — ¢)]

for functions ¢ of x. The operations V, and 4, are the lattice approxi-
mations of step size ¢ to the differential operators 9/0x and ¢%/dx* respec-
tively. We are interested in the asymptotic behavior of S,(¢, x) as ¢ tends
to 0.

Two kinds of problems are formulated concerning the hydrodynamical
limit: the law of large numbers and the central limit theorem. For the
lattice model (1.1), Fritz [2] proved the law of large numbers in the non-
stationary case (in fact, he investigated more general lattice system) and
Guo, Papanicolaou and Varadhan [3] gave a quite different approach to
the same problem but in a finite volume case. It is known that S,(¢, x)
converges as e—0 to a deterministic limit 7(¢, x) which satisfies a diffusion
equation

or 0 or
a0 e LUk
with a certain diffusion coefficient D(7).

On the other hand, the equilibrium fluctuation problem which is the
main problem of this paper is to investigate the asymptotic behavior of
V.(t, x) = (S.(t, x) — 7)/v ¢ for lattice model (1.1) in the stationary case,
where 7 = E[S.(t, x)] is independent of (¢, x). The result will be formulated
as the central limit theorem for the SDE (1.1). We shall prove that
V.= (V. x);t>0,xeR) converges as ¢ —0 to a generalized Ornstein-
Uhlenbeck process V(t) characterized by an SDE

1.7 dV(@t) = DM AV@E)dt + v 2V dw(z)

where the constant D(7) is the same one as in (1.6) (see Section 2, Theorem
2.2 and Remark in detail), 4 = ¢*/0x?, V = 9/ox, and w(t) is a cylindrical
Brownian motion on L*R). Spohn [10] investigated the equilibrium
fluctuation problem for an interacting Brownian particles’ model. In this
paper we shall follow the method due to Rost [7] and Spohn [10].
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§2. Main result

Let RZ={¢=(---,0_4,00,0, ---);0,€R, ke Z} the space with usual
product topology and denote its Borel field by #Z(R?).
Define product measures g, 1€ R, on (R? #(R?) by

@) wm(do) = [1_qio)da,
where

(2.2) (%) = M(2)'exp[ix — U(x)]
and

2.3) M@) = IR explix — U(x)]dx.

The probability measure y, can be regarded as a Gibbs state associated
with the (formal) Hamiltonian:

2.9 H(o) = kZ'é Uloy) — Zkzéo'k .
We develop some more notation

(2.5) p(2) = log M(2),

(2.6) h@r) = 5111p[(27’ — 0], TeR.

Then A(,) and p(,) are a pair of conjugate convex functions and
2.7 2= HK() if and only if 1 = p'(2).

Elementary calculation shows
@8) [ra@ds = 0 0.

Moreover, p’(2) is the variance of g,(x)dx i.e.

2.9 [ - dra@ds = o@.

One knows also that o’ and A’ are smooth strictly increasing functions.

Let r>0 be fixed throughout this paper. Let &(x)e C*(R) be a
positive function such that &(x) = |x| if |x|> 1. We define a Hilbert
space as
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k+1
2.10) L= {oeRZ; lof = 3" IG,M exp[— ré@)]dx < oo} .
kEZ k
One can check that (L) = 1.

Now we turn to the study of the SDE (1.1). In view of (1.2), the
drift term of (1.1) is linearly bounded and uniformly Lipschitz continuous
in the space L!. Therefore, a standard argument yields the existence and
uniqueness of strong solutions to (1.1) in L2 (cf. [9]):

THEOREM 2.1. For each o e L%, the SDE (1.1) has a unique L:-valued
continuous strong solution S, starting from ¢ (i.e. S, = o).

Let T, ¢t >0 be defined by
(T.F)(o) = E,[F(S)], FeC(L})

where E,[ ] means the expectation under the probability law of (1.1)’s
solution S, starting from ¢ ¢ L. Then we can easily extend {T}},», to a
self-adjoint strongly continuous contraction semigroup on L*RZ u;) and
check that the Gibbs states p;, 4€ R, are reversible measures of T,.

Let &, = % exp[— ré(x)] the nuclear space with a topology introduced
from &, where & = #(R) is Schwartz space. Let &, be the dual space
of &, with the strong topology and ¢ = C([0, «); &;). Let {S(t, x);¢> 0,
x € Z} be the solution of (1.1) with initial distribution g, Then by Theorem
2.1, we know S.(t, x) = S(¢/é, [x/e]) is in € (a.s.). Now we can state our
main result:

TrEOREM 2.2. Let V. (t, x) = ¢ %(S.(t, x) — 0'(2)) and P, be the proba-
bility distribution of V, on . Then P, converges as ¢— 0 to a distribution
of a generalized Ornstein-Uhlenbeck process V = {V,},», weakly on ¥. The
process {V,} satisfies the following equation

(2.11) dV, = ¢"(Q)'4V,dt + v 2Vdw,

where 4 = #[ox*, V=03/0x and w, is a cylindrical Brownian motion on
L¥R).

Remark. From the relationship (2.7), we have p"(2)~! = h"(o'(2).
However, it is known that A”(7) = D(7); the diffusion coefficient appearing
in (1.6) (cf. 1] (2] [3D).
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§ 3. Sketch of the proof and Boltzmann-Gibbs principle

Let V. be the stationary process defined as in Section 2. From (1.4),
we get an equation for V. (¢, x)

AVt %) = AU V(t, %) + ¢W)dt + V2V dw,(t, v),
(3.1) Ve
xeR, t>0.

Tending ¢ to 0 in (3.1), the second term converges to v 2 Vdw(f) (at least
formally). The difficulty in the proof of Theorem 2.2 lies in the compu-
tation of the first term. Although it is nonlinear, Rost [7] and [8] suggest
that it should converge to a linear term p”(1)!'4V(f); precisely saying,
our goal will be the following:

ProrositioN 3.1 (Boltzmann-Gibbs principle). For each t > 0 and fe &,

(32) E[([ ds [, dx— (U566, 9) — 078,65, 1) | >0,

as e —0.

In the rest of this section, we give an outline of the proof of this
proposition. For convenience, we intrdoce some notation:

O(x) = U'(x) — o"(D'x, xeR,
fP(x) = ™(4.f)(ex), for feé,,
0N = [ Veuf@dx, for fes,, oeLi,
O(f, ) =0(f)(S), S,={S(tx);xecZ}el(as), t=>0,
r@ = E[([ aso(rp, s1e9) ]
It is easy to check that R(e) = the Lh.s. of (3.2). Hence our goal is

to show that lim,_,R(¢) = 0. We define a class of shift operators {r },cr
as follows: For qeR, oe L, and any functional F of g,

(TqO')_.,; = 0[:4-(1] )

(z,F)(0) = F(z,0).

Now take g e Cy(R) satisfying Ig(x)dx =1land fix t>0, fe &, For

every T, e > 0, choose N = [T~'¢~?t], then we have from the stationarity
of S(¢, x):
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R() = E[(sz j dsd(F$, s)ﬂ
< 254E[(”“1 " ds (0, s))z] ¥ 28*5[( f NT‘ dsd(F$, s))z]

n=0 J nT

< 254E[N.’:z‘1 (f("“” dsd (S, s))z] + Ry®)

=0 nT

- 254N2E[<LT dsd(f$, 3))2] + Rye)

< 2t2T~2EUOT ds f: dud (9, $)O(F, s)] + Re)

< Ry(e) + Rye) + Ry(e),
where

R = 467 " ds [ QT DO,
Rife) = 4t2T-Zf: ds j BU(T o p L) — Ty n D PN,
Ry(e) = 25E[(J0” dsd(f$, s))z] ,

and (-) stands for the expectation with respect to y;; it will be sometimes
denoted by {-»; to be made its dependence on A clear (Section 6). These
three terms can be estimated as follows.

LemMma 3.2.

(1) IF | _dal<0@)eT.0(@)) — (P(@)y| < o, then

(33  Lm(T0( N = | 4fF [ dalc@(@) Lu0(e)) — (2@}
(2) Hm(T0(g+f?) — TOFP)D = 0, for all ¢> 0.
(3) limRi) =0,

Proof. (1) By the uniqueness of solutions of eq. (1.1), it is easy to
see that T(c,0(g)) = = (T.9(g)). Thus

T.0(g+f$)(0) = | dafP@)e- T0G).
Noting that (T.®(g+f{)> = 0, we have
UTD(f P> = (TDEN> — (THgnf )’
= [ dp@.n®) [ _dad.p)ea + DOz Tub(&)) — (D@}
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Therefore (3.3) is established by letting ¢ — 0.
(2) We compute

UTD(g+f) — TNy < LD(g+fP) — WP
= {P(a0)*) f dxdy Ly (8xf P — ) (@) (gxf — ) ()

Besauce the r.h.s. tends to 0 as ¢ — 0, the assertion is proved.

e~ 24—

(3) Ry < Ze‘TE[ j

0

NT e =2t ~NT
ds0¥f,9)| =21 [ dsconfen)
< 27 00)) [ dixdy Lo )

Taking the limit ¢ — 0 proves the conclusion. O
This lemma shows

o 7 /g
lim R < 46T 47 [ ds [ du [ dalcog)e, T, 0(&)) — <02
Hence, it is sufficient to show that

(34)  lim T f : ds j’ du J dq{{P(&)e, T, D(g)> — (D(2)D?) = 0.

T —co

Clearly, this is equivalent to the following statement:

(35) lim | da{(P(@)e L0(e)) — 0@} = 0.

However a simple calculation proves

[ daicoter 00 — W@y} = T (e TaE) - (W), 120

Therefore (3.5) is equivalent to its lattice form:

(3.6) lim 3 (W) Th(g)) — (B} = 0.

120 M= — 00

Now, we introduce a Hilbert space # with inner product (F|G) =
> A FT,GY — (FYGHY, F, Ge#. This space will be discussed in detail
in Section 4. By Proposition 6.2, T, is ergodic in 2, and

(3.7) lim T\F = p"(A) X F | F(g))Fy(g) in #, for Fe#

where Fi(g) = f(a(x) — () g(x)dx. Therefore
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lim il {(0(@)2. T(8)) — KD(8))"} = " (A~ D(8)| Fi(8))" -

—00 P=—oc0

A simple calculation shows that (@(g)|F(g)> = 0. Consequently, we es-
tablish (3.6). Thus Boltzmann-Gibbs principle is shown.

The definition of the Hilbert space s# and the ergodicity of T, in 4#
will be dealt with in Sections 4, 5 and 6. The martingale approach will
be applied for showing the main theorem in Sections 7 and 8.

§4. Construction of the Hilbert space #

As explained in Section 3, we want to introduce a Hilbert space s# with
the inner product {-|-)>. In this section, we shall define the space # by
completing a class of local functions and investigate the relation between
the L:norm approximation and the s#-norm approximation.

First we define the classes of local functions:

k
yZ,[-—k,k] —_ {F(O'_k, ctty (T],;): FG Lz(R2k+1, ==1—Ik Q1(0'i)d0'i)}

I~ —_ I
Foie = U Foreiia
keZ+

LemmaA 4.1. Assume F,e F, . satisfy (F,>) =0, i =1, 2. Then,

@) O 3 KEoFY < (e + DEFD <o, if FieForng acZ

42 @ 3 (Fir,Fy =lim - <( s T,GFI)(ki ko2)>

nE—oo n-w 2R +1 ke—n =—n

@3) 3 3 (Fie.FD>>0

N= o0

Proof. (1) Since Fy(o) = F(0_, «+,04,) € Fy(a .3y We have

3 IFeFY = 3 K+ 0P 0w 5 0us)]

N=—00

S % <F1(0-—a7 Tty O'a)2>1/2<F1(0.—a+m Tt Ty o'm+n)2>ll2

n=-—2a

= (da + DFD

(2) First we note

where
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(4.5) R(n) = @n + 1) ;v__jlk«fkﬂm + (FieF) .

However, since F,, Fy, € %, _ 5 With some pe Z*, (t,F\F,) = (F\t,F,) =
(F\y{F;) =0 for k> 2B. Therefore

IR < — L S k(e + (FirFy| >0,  as n—oo.
2n+ 1 =1

Taking the limit n — oo in (4.4), we prove (4.2).
(8) is consequence of (4.2). 0

Lemma 4.1 enables us to define the Hilbert space #:

DeriNITION. For F), Fy, € %, 1., set

(4.6) (F|Fy = 31 (Fie,Fyy — (FXXEY).

n=-—

We define the Hilbert space s as the completion of &%, with inner
product {-|-> modulo {F: (F|F) = 0}. We shall denote the norm cor-
responding to {-|:> by ||'|..

Finally, we discuss the relationship between the convergences in two
spaces LYR?, y,) and .

LEmMA 4.2. Suppose F, e F, _,, . Satisfies

4.7 limndF2y =0.
Then
(4.8) lim{F,|F,>=0.

n— 00

Proof. The conclusion follows since Lemma 4.1 (1) implies

0 (FyFD = 55 ((Fy = F)alFa — F)))
< (4n + I(E — B < (n + 1K O

LeEmmA 4.3. Suppose F,, Fy e o satisfy (Fy = (Fyy =0 and
S —wn|(Fir Fyy| < 0. Then

1 1 n n
(4.9) E|Fy =lim L 1<(kz ko><kz TEF2>>.
Proof. This is a consequence of (4.4) and (4.5). O
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Lemma 4.4. Let Fe LXRZ% 1) and assume there exists F, € 5y a1
satisfying (F,> =0, n=1,2, ---, and 4 > 2 such that

(4.10) {(F,— Fy» < Cn?
with C independent of n. Then
(4.11) [KFo )| < C'(L+ k), keZ

where C’ is independent of k. Moreover if 6 > 4, F = lim,_., F, in & and
therefore F e .

Proof. LetG,=F,and G,=F,—F,_,, n=2,3,--.-. Then by (4.10)
F=3,G, in L(R? u) and there exists a constant C; > 0 such that
(4.12) (G L Cin~ .

Note that m + n < |k| implies {G,7.G,> = {G.){t:Gr> = 0. We can there-
fore compute by Schwarz inequality and (4.12)
KFel)| < 5 3 KGelad| < CF 30 mo*tne
n=1m=1 n+m>
< O+ [R)

where C’ is independent of k. Thus (4.11) is established and we also have

Ms

(4.13) mi KGariGnd| < C'(1 + R

1

3
Il

Finally, by (4.12) and (4.13) we have

IFy—FL< 5 3 2 KGmGudl+ X 33 KGeGrdl
k]| <N n=N+1 m=N+1 1E]|ZN+1 n=1m=1

(4.14) : ,
=ZN:+1 n—&/Z) + Cll Z (1 _|__ lkl)l—i/z .

k2N +1

< c;zN(

7

If 6> 4, then limy N3 57 v n =0 and > ;.1 + k)" < oco. Con-
sequently, the r.h.s. of (4.14) tends to 0 as N—oo. Therefore limy_,Fy, = F
in # and Fe . O

§ 5. Semigroup and its generator in ¥

In this section we shall discuss properties of the semigroup 7, and
its generator L, which will be defined in s#. We define a class of nice
functions, which will be the core for L:

5.1) 2y={F(@)=F-n ***»0m) € F o, (-m,m: FeC7(R™"), meN}.
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LemMma 5.1. 9, is dense in .

Proof. Since 2, is dense in L* = L*(R%, y;), we have
(5.2) DNF g tomm™ = F o tomml» for each meN.
By Lemma 4.1(1)

(F|FYy < (d4m + 1){(F*), for Fe 4 -nm -
Hence, (5.2) implies that
m* =Foommls for each meN.

Thus
D, = U @NZ s tenn) DU D2NF s tcmm = U Foromm
meN meN meN
==3r%m¢ in .
Therefore, # = F 4,100 C Dy = Do O

Now we discuss the properties of T, and L. First, we show that the
function T.F with Fe 2, is in #. To this end, consider the following
local SDE’s on [— n, n]: For each neN,

dS(t, —n) = {U'(S(t, —n + 1)) — 2U'(S(t, —n)) + U'(S(, n))}dt
+ V' 2(dB@t, —n + 1) — dB(t, —n)),
(5.3) {dS(t, k) = 4,U'(S(t, k)dt + ¥/ 27,dp(t, k), k= —n+1,---,n—1,
dS(t, n) = {U' (S, —n)) — 2U'(S(t, n)) + U'(S(t, n — 1)}dt
+v2(d, —n) — dB(t, n)),
where 4,0, = 0.1 — 20, + @, and V,q, = a4, — 0, for sequence {a}.
The generator of the process determined by the SDE (5.3) is denoted by
L, with domain 2(L,) and the corresponding semigroup by T, , = e™.
Then
(5.4) L= > (V1%>2 S AR A
in .

i=-n 601
where 0/d0,,, = 0/00_,, and ¢,,, =0d.,. Note that u"(do_,---ds,) =
112, q:(ox)dox, 2€ R, are the reversible measures of the SDE (5.3).

LeEmMA 5.2. Let Fe 2, satisfy (F) =0. Then, for every t,> 0 and
0 > 0, there exists a constant C such that

(5.5) KFuTF)| < CA+ kD, for keZ, tel0,t].
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Moreover, T, ,F — T,F is 5# as n— oo and especially T,F ¢ #.

Proof. Let S(t,0) = {S(t, k, 0)}1cz be the solution of (1.1) with initial
value ¢ = {o,}rez and S™(t, a) = {S™(, &, 0)}i-_, the solution of (5.3) with
initial value {o}}{-_,. Since Fe 9, has a form F(¢) = F(o_,, ' - -, 0,), With
some a e N, we see for n> «

\T,,.F — T.F| = |E[F(S™(, 0))] — E[F(S(t, o))
< Cer?up : E[|S™(t, k, s) — S(t, k, o)l

—aya

oF
aﬂi

where Cp = i} Now we set

i=—a

o

L) =  sup B US™@E &k, 0) — S@ ko).

{~a-m,a+m

Then for every m: 0<m<n—a — 2 and ¢,: 0<¢, <¢,

L) = sup ]E[U"‘ (LU(S™ (.0, &, 0)

kE€[—a—mya+m

- AIU,(S(tm-H’ k, 0'))}dtm+1

]
tm

S 16((1 + A)th dtm+1 m+1(tm+1) .
0

Consequenly,

tn—a—2

I(f) < (16(a + A))-=-! L dt, fo diy- - - f AbysiTwiltn ) -

0

Noting that

Twak < [din 3 2EISGs, b, o) + S(s, b, o]
= 4My(D)(2n — 1),
where M,(2) = JR x*q(x)dx, we have
(T, .F — T.F)) < CiKI()
<ACEM(D)(2n — 1)(16(a + A 't (n — a — 1)!
This implies that there exists a constant C; such that
(T, .F — T.,F} < Cn™?, for each 6eZ*.

Lemma 4.4 gives an estimate on (T,Fr,T,F) and therefore on (Fr,T,F)
by replacing ¢ by ¢/2. This completes the proof. O
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Since (5.5) verifies that > 7. _. kKT Fr,T.F)|<c for Fe2, by
Lemma 4.3, we obtain the following form of {(T.F|T.F):

(5.6) (T.F|T.F) = lim 2,,1+ 1 <<Z nllF )>

ProposITION 5.3. T, can be extended uniquely to a strongly continuous
self-adjoint contraction semigroup on #.

Proof. By (5.6), for each ¢ >0 and Fe 9, satisfying (F) =0,

2
< lim
n-w 21 + 1

ZT,CF

k=-n

ITFIE = lim-~ + ; “ (kinr_kF) \ = | FIL, .

Thus ||T,F|, < |F|, for all Fe2, We can therefore extend T, from 2,
to o in such a manner that

6.7 IT.Fl,, < |IF|, for all Fes.
It is easy to check that for F, G e 92,,
(5.8) (FIT.G) =<T.F|G).

This implies the symmetry of 7, with the help of (5.7).
Finally we show the strong continuity of T, i.e.

(5.9) |\T.F — F|,—0, ast—0, for all Fes.

In fact, it is enough to show that (5.9) holds for F e 2,; use (5.7) noting
that 9, is dense in #. We see from (5.5) that for each Fe 9,

K(TF — F)o.F)| < KT FrF| 4 [(Fr )
< CA + k) + KFoF)|, keZ,

and the r.h.s. is summable in k. Moreover, we know that {(T,F — F)z,F)
—0 as ¢t —0 by the fact T, is L*-strongly continuous. Thus Lebesgue’s
dominated convergence theorem proves

(T.F — F)|F> = ki (T.F — F)e,Fy >0, ast—0.

Consequently, we obtain (5.9) for F e 2, by noting
|T.F — Fl, = (ToF|F) — 2T\ F|F) + (F|F). O

Let L be the generator of T, in s#. Its domain is denoted by 2(L).
We shall see that L has the same form on 2, as the generator of T, in L%
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LemMA 5.4. We have 2, C 2(L) and, for every F(¢)=F(o_,, - - -, d,) € Dy,

(610 (LF)0) = — Fevew O feven( I _p 0 _ OF )}

oo 00 41 00, 001

Proof. Let L’ be the generator of T, in L*. We know 2, is in the
domain of L’ and on 2, L’ is given by (5.10). Thus L'Fe %, ., C # for
Fe 9, and |T.L'F — L'F||,—0 as t—0. Moreover,

T.F—F = '[ "dsT.L'F, 1 —ae.
0

Therefore
” (T,F — F) — LF” - ” 1 j ds(T,L'F — I/F) N
< %L ds| T,L'F — L'F|, —0 as {—0.
This means that LF = L'F. O

We shall see that 9, is a domain of essential self-adjointness for L
in the following weak sense:

ProposrrioN 5.5. Let Fe 2(L). Then there exist F, e 9, such that

(5.11) limF, =F in X
and
(5.12) lim {F,|LF,> = (F|LF).

The first task for the proof of this proposition is to derive the following
estimates.

LEMmA 5.6. Let F=F(_,, --,6,)€2D, Then for n>a
(5.18) ‘ oT,,.F ‘ < {Cre"‘““)‘ l:f lllga,
Cpet@*di(4(a + A/l — &)! if «a <|l|<n

a

where Cr = >,

k=—a

oF

004

oo

Proof. For every ¢ > 0 and ¢ = {o,} € L%, set a(l, &) = {0} + 8x,¢} and
Ot-n,n) = {0_n, -+ +, 0,}. Then
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iTt,nF(g(l, E)E—n,n]) - Tt,'n.F(o[-—n,n])l

(6.14) = |E[F(8™(, a(l, ) — F(S™(, o))
<Cr sup E [S™(, &, a(l, &) — S™(, &k, 0))]

where S™ is defined as in the proof of Lemma 5.2. To get further esti-
mates on the r.h.s. of (5.14), set
Jn(®) =  sup E (8™, k, a(l, ) — S™(2, k, a))]

ke m,

[—a—mya+

(5.15)
for m=20,1,.---,n—«a.

We have, from the SDE (6.3), for m =0,1, -, n —a —1

Ji () = sup ]E[

E€[~a—m,a+m]

due + [ (4TS, b, o(l, )

— AU(8™(, k, o))}ds {]
(5.16)

<

4(a + A) L dsds, () i > a+m,
{e + 4(a + A) j:dsJ:m(s), iflll<a+m.
For m = n — «, similarly, we have
(5.17) Tii®) <o+ 4a+ 4) [ dsi o).

This implies with the help of Gronwall’s lemma
(5.18) Ji_(t) < eetlerdt

Therefore, combining (5.14), (5.16) and (5.18), we can easily show that the
Lh.s. of (5.14) divided by ¢ is bounded by the r.h.s. of (5.13) for every [;
1< n. O

Proof of Proposition 5.5. Since the space (5, T.9, is a core for L
(see Reed and Simon [6], II. Th. X. 49), the proof is completed if for every
F=F@w., ,0)€9, and t >0, we can find functions F, € 2, such that

limF, =T,F in &#

N—oo
and

lim(F,|LF,> = (T.F|LT.F.

n-—>00

Take F, =T, ,.F. Then, although T, .F may not be in 2, there exist
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functions G, € &, such that G, — T, .,F and LG, — LT, ,F as m— oo in
L*(R**!, p) and therefore in #; remind Lemma 4.1(1). Thus, it is suffi-
cient to show that

lim<T,, ,F|LT,  Fy =T, F|LT.F),

o0

since Lemma 5.3 proves T, ,F— T,F in ##. Noting that L,F = LF for n
large enough, we have
KT, . F|LT, Fy — (T,F|LT,F>| < KT, ,F|LT,,,F — L,T,, ,F>|
+ 1T, Lo Fl || T,, o F — T.F|, + || T.F|,| T, .LF — T,LF|, .

Here, the second and third terms tend to 0 as n-—>c by Lemma 5.2.
For the first term, noting the facts:

(5.19) FILG = — 3 . ({p,  aF p 3G\

{ez ez 00, 00;

(FILGY = -3, 5 {(m oF, OB

k€Z i=—n 00; Vl,i 00
+ << 80, oo., do, > ’

we can use Lemma 5.6 to obtain

(5.20)

KT, .F|LT, ,F — L,T, ,.F|
_W oT,. aT, F o 0T F aTt F
‘ o 00p41-% >+ k=—2n ao'—n—lc >

+§ o, T aTt F> k=_1 <¢ T, .F aTmF>l

aO'"k 60'_ kaﬂ'n1k aan

2n—-1

2n+1 /. aTz " , T, 17
o ( k=1 agnﬂ % > + k“_2"<T 00_n_s > + 00,1
= aTt,nF ) 8(a+4)t n-a
+ k=§z—1 <Tk 00 _p_1-% > Cre (n @)! (e + At
—<_ 8616(a+A)t(a _ % + e4(a+A)t>( )' (4(a + A)t)n a .
This tends to 0 as n— oo. [

We conclude this paragraph by showing the following lemma which
will be used in Section 6.

LemMmA 5.7. Let F,e 2(L) and F,e 2,N2(L,). Then
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(F | L Fy)* < C(n){F,|LFY{F,L F,y.
where C(n) = 2(2n + 1)(4n* + 2n + 1).

Proof. First, assume that F,e 2, with (F,> = 0. Notice (5.19) and
use the fact that for a sequence {a;};cz,

Z a, = Z Z Qs @nitym s
icz

l=—n m€

if @, =0 for all /e Z but finite I’s. Then some tedious but straight-
forward calculations prove that

1 aTkFl aTzF1 —
G2 11&;“;&;"7 B, >_ (F,|LF,>.

i

By (5.20) and (5.21) we have for

<F1]L’nF2>2= (Z i Vl ZaTkFl V+ aF2>

i€z i==n 00; 00;
oy ar,,F,)( oF, an) )2
+ 1§z<( do_, 00,41 d00_, 00, >

<2 [Vn.'__, (Z V,,aTkFl)V+ 3F2>

i=—-n \KEZ aai 60'7;
z aTkFl)( =1 aFg ) 2
T 2<(Z=Z—n k;le e z;n Vi da; >

aTkFl aTLF ( + aFZ )2
S213221 Zi;—: <V1' 00, V >w=-n Vi 00, >

+anen (5 (57 a”‘F‘) NE (5ar))

t=—n\kEZ ao‘i 30‘1

< 2(2n + 1)(4n? + 2n + 1)(F,|LF,>{(F,L,F,>,

where V} is defined by (FiyG)@G) =V,GGE), —n<i<n-—1and F{G(n)
= G(— n) — G(n). Consequently, the desired inequality is verified for
F e 2, and F,e 2,N2(L,). However, this concludes the proof with the
help of Proposition 5.5. O

§ 6. Invariant subspace

In this section, we show the ergodicity of T, in #. Denote by Ps#
the subspace of s invariant under {7.}. Then the spectral theorem
implies that

(6.1) lim T\F = Ge P#

t—oo

https://doi.org/10.1017/5S0027763000001811 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000001811

80 MING ZHU

exists for every Fes#. What we prove is that Ps# is one-dimensional
subspace of #. Let us denote the conditional expectation under p{ of
Fe%y-nn, n€Z* on the hyperplane {¢|1/(2n + 1) > 2__, 0, = ¥} by

1 n
6. ) — —
©2) W0E) = w(F| o tp e =3), yer,
and
©3) (TF)(0) = Wl z3_olF) -

Note that v is determined independently of A.
First, we show the following property of Ps#:

ProprosITiON 6.1, Let GéPaf. Then for every F e 2,0\ Fs ton n
(6.4) (G|I'WF) = (G|F.

Proof. Proposition 5.3 veriﬁes‘ Ge2(L) and LG =s-lim %(T,G -G
t—0
=0 in #. Moreover by Lemma 5.7

(6.5) (G|L,F) < C(m)<G|LGY<FL,F)  for Fe2,N9(L,),
and therefore o i e
(6.6) (G|L,F>=0 for each Fe2,N2(L,).

For every Fe 2,N\Fy -0, noting T, . FeP(L,) for t>0, we choose
F.e2,Nn2(L,) such that F, —T, . F and L,F,—L,T, ,F as m—co in
LA(R*™*, p). This is actually possible because 2,N2(L,) is a core for
L, in LR, u{®). However, Lemma 4.1(1) proves that F, — T, ,F and
L.,F,—L,T,,F as m —oo also in #. 'Hence, from (6.6), we have

(6.7 {G|L,T, ., F>=0 for each t > 0 and Fe g,.

Lemma 4.1(1) verifies also that T, ,F is strongly differentiable in 4 as
well as in LA(R*™*!, p) and (d/d))T,,,.F = L, T, ,F. We therefore have

6.8) %<G|TM,F> —0 for each ¢>0 and Fe9,.
This implies

(6.9) (G|T.,..F>=<(G|F> for each t>0.

Since the diffusion process with generator L, is ergodic on every hyper-
plane {¢|1/(2n + 1) > %__, 0, = ¥}, we have for each Fe 2,
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(6.10) lim7, ,F =I,F

t—oo

strongly in LAR*™*', u™). Lemma 4.1(1) again implies that (6.10) holds in
#. Letting t— oo in (6.9) establishes the conclusion. O

For ge Cy(R) such that fg(x)dx =1, we define

(611) Fi&)0) = [ (o0 — /Mg (x)dx .

Remark. (1) The definition of Fy(g) is independent of the choice of
g, ie. for g, g, C3(R) such that f g(x)dx = f g(x)dx = 1, Fyg) = Fyg)
in #.

(2) Particularly, we can take g = 1/(2n + 1)X_,, »; in (6.11), although
this g is not in C°(R). We therefore have

(6.12) Fy(g) = Z (00 — PI(X» in o

2+1

for each ne Z* and ge C3(R) satisfying I g(x)dx = 1.
The purpose of this section is to show the following.

ProposiTioN 6.2. Let Ge P#. Then
(6.13) G = p"(D)"{G|F(8)>Fi(8) -
Proof. For every Fe 2,NF, _, ., We have by Proposition 6.1
(GII'.F) =(G|F)
and, therefore, by (6.12) and Lemma 6.3 which will be stated later
(G|F) = lim{G|T'" ,F)

T=s 00

(6.14) = }Lljg <G|PU(1)_1-(%— (F >1( Z Gy — 0 (2))>

2n + 1 &
M -1 d
= 0"(3) ax (FH{G|Fy(8))-

Here we remind the notation: [-], = E“[-]. It is, however, easy to check
that

(6.15) %(F)l — (F|F(g)) for every Fe9,.

Combining (6.14) nad (6.15), we obtain
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(GIF) = p" (D) (F|F((8)y{G|F(g)) .
Consequently,
(G — "N YG|Fg)F(g)|Fy =0  for all Fe9,.
Since 9, is dense in s#, we have the conclusion. O
We have used the following lemma for the proof of Proposition 6.2.

Lemma 6.3. Let Fe2, Then

(6.16)

— WA 3 e - e@)| =0

2n + 1«

Proof. By Lemma 4.2, it is sufficient to show that

(617) lim n{L(r) + Tm)} = 0,
where
L(n) = K(TF = (Frpasann gy o0
5(m) = 2 (Fdwaonn 5. o0 — F

""<*>"5;<F>*(2n D e —e®))).

It will be shown later in Lemmas 6.4 and 6.6 that both n-I(n) and n-I(n)
tend to zero as n — o, O

LEMMA 6.4, Let Fe2, Then

(6.18) lim n{(I"F — (Fouaanen st o> = 0.

n—oo

In order to prove this lemma, we use the following local central
limit theorem:

LeMMA 6.5. For peR, let {X,} be a sequence of R-valved independent
random variables with the same distribution q,(x + p'(y))dx. Let f.(x,7) be
the density function of 1/y/n D21 X,. Then, for 2€ R, there exists ¢ >0
such that

(6.19)  fu(x, n) = @mp"(n) 1" exp[ - ] + r(x, Pn" 4+ o(n™"?)

X
2p// ( 77)

uniformly in x € R and n€[2 — &, 2 + &], where
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6:20) s 1) = 67@) 06 MGG ~ 39" @Desn| - ]

62) M) = [wa,x + f)dx.
Proof. The proof is essentially given in Petrov [5]. The only different

point is that, in our case, we need to check the uniformity in 7. But,
since p and h are smooth functions, one can do it easily. |

We notice the following fact:

(622) (G 20— v @), ~ 0™

wichh can be established by a direct computation and will be useful for
the proofs of Lemmas 6.4 and 6.6.

Proof of Lemma 6.4. We assume that F = F(o_,, - -+, a,).

Step 1. We compute for n > a + 1

o) = (Pl ot 3o =)

= Z(n, y)_IJ‘ do—n' ‘ 'don—lF(G—as T 0',,)‘
R2n
(6.23) Xexp ((2n + 1Y, ¥, 6(-n,n-17)
= L, ) M) [ dopo-doFlo_s, -0

xexp| () 3 o0 — 33 UG)|-Lusfo-0 -+,
= Z(n, )"FL v

where

U(x,y,0,) = xh'(y) — U(or) — Ulx — k;:nzo'k) ,

keANZ

for x,ye R and g, = {0;; k€ ANZ}, and
(624) Z(n’ y) = IR‘“‘ do—n' * 'do'n-l exp w«zn + 1)}’7 Y, G[—n,n—l]) )

L, = MR |

R2n—2a—

do_, - -do_, 1 dog. - do,_y-
(6.25) '

X exp W((2n + Dy — kZ Ty Vs 0'[—n.—a—1]U[a+1,n-1]) .
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Let f.(x, 2) be the function defined in Lemma 6.5 and put n = A'(y). Then
it is easy to see by a simple computation

(6.26) fu(x,7) = VM) "Z(n, v nx + np'(n) exp [n(v nx + o' (n)]

where

n—1 n—1
627 20ny) = | doy-dowiexp| - 5 U — U(y - Z o).
Rn—1 k=1
This implies
(6.28) Z(n, yx + ny) = Y M(p)e 150 (x, ) .
Consequently, by (6.24), (6.27) and (6.28)

Z(n,y) = "™ 99Z2n + 1, (2n + 1)y)
= (2n + 1)"?M©n)*"*'f;..(0, n) ,

and by (6.25), (6.27) and (6.28)

(6.29)

I, ,=M@)*'Z@((n—a), 2n+1) y——kf'_,a ) exp[7(@n+1) y—kf] a0l

=— =—a

(6.30)

a

=M =) foneo oy B )7

Take ¢, as in Lemma 6.5. Then, by the continuity of y — 7 = h'(y), there
exists d, > 0 such that

lp — 2 =[A(y) — 2 <&

for every y: |y — p'(D)]| < 5, We set

. 2a+1 ( 1 « )
6.31 e = — .
(6.31) Y, 2= y 2a+1k§aak

By (6.29) ~ (6.31) and Lemma 6.5, we have

A 1/2
Z(n’ .’)’)"1-[11,'41_l = (—27}‘4—__1_—) f2(n—a)(yn,w ”)fz_n1+1(09 77) - 1
2(n — @)

=1+ o(n N1 + J,,, + 0" ()" *0(n""?)}-
X{1 + p"(*o(n~™)} " — 1

(6.32)

uniformly in (¢_,, - - -, 0,) € R**' and y € [p'(A) — b, p'(2) + 3], where we
denote

638) .., = exp| — T | = 1+ @0 ) 5 D = )
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Since p”(n)"* is bounded on [A — &, 1 + &,
(6.34) o")*o(n"") = o(n="7.
Combining (6.32) and (6.34),

Z(n, )Ly — 1 = oy 4 Jhy0(n) + o(n) .
Consequently, .
(6.35) (Z(n, )7L, — Doy < K2 dwa + hidwimo®@™) + o(n™).
By (6.20) and (6.31), we have

J’n, — y?t,a -0
v 2p//(7])
0O MG — 30"y, Jexp| — e @(n — )
6 20" (n)

__:_1“)“’-0(_1“)_
{<y ga 1) T T T

(G- g ol -l oo

with some 6 € (0, 5% ./20"(5)). Set

(v gy B+ - gty o))

Then
(6.36) |, < J,0(n™).
However it is easy to see that y — <Jy>,,(,,) is continuous and therefore

(Tdwiy < AyDuo(n™ = o(n™)

6.37
(6:37) uniformly in y € [p/(2) — &, p'(2) + 6] .

Combining (6.35) and (6.37), we have
(Z(n,5) Ty — WDuey = 0(n™)

6.38)
(6.38) uniformly in y € [p'(2) — 8o, p'(2) + 8] .
Step 2. Set
— z. 1 - o l }
(6.39) A, = {aeR g 20— PB|>

By (6.23) and (6.38)
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<(FnF — LD wasaneny 22‘:_”%))2; A5

(6 40) = <(<ZA(n’ y)—lFIn,y - F>h'(y))zly=l/(2n+1) Zz=—n”k; Afr,>
‘ SN FIEKLE R, 3) Ty — DPncy lymssamsny 52 _as AL

= o(n™) as n— oo,
On the other hand, by (6.22)
W F — LF)wasensn Zﬁ__n”k))z' A,y < 4“F[|iﬂl(A,,)

(6.41) < 4]IF||3°53<( Z oy — p'(Z)) > =o(nY) asn—o.

2n+ 1+
The combination of (6.40) and (6.41) proves the conclusion.

LEMMmA 6.6. Let Fe2, Then

lim n<{<F>n1<u<2n+1) 2 — I

N>

(6.42) iy d 1 " ) .
o diin( s Se - @)} ) -
Proof. Set
(6.43) To) = (Fdy — {FY; — p"<z)~ld%<F>z<y — 0.

Then, the conclusion follows if we show that

(6.44) <J,,( P kin ak>2> =o(n™?) as n— oo,

Let A, be the set defined by (6.39). Then, we have by (6.15) and (6.22)

<J (2n +1 lc;n ak) ;A">

< 6| FIL(8s + 3(2a + 1))a2 )<(

=0 (n™).

(6.45)

- p’(l))4>

Noting that

d
dy Foww .

— 7 -1d i
= 0"(2) E<F>“

=p'(2)

we have

(6.46) () = = < P

2 d = =@y
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with some 6€(o’(A) Ny, o(A) V y). Notice that |y — p'(2)| < 8, implies
|0 — 0'(Q)| < 8,. Since the function y— {(F),, belongs to C*R), there
exists C > 0 such that

(6.47)

(Fowapy| < C  for ye[p'(2) — by, 0'(2) + 60] .

dZ
' dy*
By combining (6.46) with (6.47), and using (6.22), we obtain

(6.48) <J(§;T1J;—1 kZ "")2; A$‘> < —2Q<< 2n1+ 1 zczn; Te— 0 /(2))4>

=o(n™").

This establishes (6.44) with the help of (6.45). O

§7. Tightness of {P.: 0 < e < 1}

The Boltzmann-Gibbs principle has been established by combining
the results of Sections 4, 5 and 6. In order to show the tightness of
{P,: 0 < e <1} being defined in Section 2, we first derive the following
estimate. The duality between two spaces &, and &, will be simply de-
noted by (,).

LEmMmA 7.1. For feé&, and F € L*(R, q,(x)dx) satisfying J F(x)g,(x)dx
R
= 0, there exists a constant C = C(F,f) > 0 such that

(71) <(F(a[x/51)7 chcf(x))4>l g 0523 k = O’ 1» 2

where DIf = f, Dif(x) = V¥f(x) = e (f(x — ¢) — f(x)) and Dif = 4.f.
Proof. Set g = Df, k=0,1,2. Noting that (F(s;)) =0 for ieZ,

we have

(Faw @ = (( 5 Foo [ swas))

(1.2) B i» (F (@) f () g dx>4>

+6 ii]w j§m<F(0'i) I:M) g(x) dx)z(F () J‘:_j“) g(x)dx>2>

< T Flzuapllgllie” -

Since fe &, implies supyc.<1,; || D¥flls = C; < o0, (7.2) proves the conclusion
with C = TC7|| FllL.qy - O

ProposITION 7.2. {P,: 0 <e¢ < 1} is tight on .
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Proof. Since &, is a nuclear Fréchet space, by the theorem in [4],
{P,: 0 <e< 1} is tight on ¥ if the family of distribution on C(|0, o°); R)
of Vif) = I V.@t, x)f(x)dx: 0 <e< 1, is tight for each fe&,. However,
Lemma 7.1 implies E[V(f)"] < C for ¢ € (0, 1] with some C > 0. Therefore,
noting the stationarity of Vi(f), it is sufficient for us to show that there
exists constant M > 0 such that

(7.3) E[(Vi(f) — Vi(MNT1 < Me”,  for tel0, 1].

Set I(¢) = E[(Si(f) — Si(f)], where Si(f) = J‘Se(t’ x)f(x)dx. Then, by
1t6’s formula and Hélder’s inequality

1) = 4 [ dsEL(S:(F) — Si(PY(U(Ss, 9, 4.
.9 +12[ as 33 ([ rrf@dx) ELSi() — Si(h)

sk

< 4| st T + 12: [ dsPxf11Gs)
1] 0
where

I(s) = E[(U’(S.(s, %)), 4.1)1 = {(U" (610767, 4. YD -
Notice that

I(s) < 8E[(S:(f) — (W] + 8EI(S5(f) — o' (D)1
= 16<(0[a:/e] - Pl(z), f(x))4> .

Since I(U’(x) — Nq(x)dx = 0 and f(x — 0’ (A q(x)dx = 0, by Lemma 7.1,
there exist C, and C, > 0 independent of ¢ such that

(7.5) I(s) < C¢,
and
(7.6) I(s) < C¢é*, for 0 <e<1.

Moreover, from the proof of Lemma 7.1, we know that

(7.7 WAl < C,, for 0<e< 1.
From (7.4)~(7.7), we have
(7.8 I(t) < C'te

where C' = 4C¥*CY* + 12C¥*C%. Therefore, combining (7.4) and (7.6)~
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(7.8), we have

(7.9) I(t) < CE(t+** + p+v/7y, for t >0,
where C = 7C"**C}* 4+ 18C"**C%. The desired estimate (7.3) follows from
(7.9). O

§ 8. Proof of main theorem

We are ready to give the Proof of Theorem 2.2. By Proposition 7.2,
from every subsequence {¢ — 0} of {¢}, we can find further subsequence
{¢/ — 0} such that P.. converges weakly to a certain probability distri-
bution P on #. Define g-fields #, and # on ¥ as follows:

M, =0(V(s),f): 0<s<Lt, feé&, Ve¥),
M=0e(A,).

t20

Here V(s) €&, is the evaluation of V at time s. For each feé&, and
t > 0, consider a function M.,(t,f) on €:

M2, (V) = (V(@), ) — (V(0), /)

8.1 _ j: (e~ (U'(e*V(s, x) + 0'(D), 4.f(x))dx, Ve ¥ .

Then, from (3.1), we have

M@t (V) = VE [PH@dw. )
(8'2) S e (k+1)
=vZ 3 j ; 7*f(x)dx Bt/ R) -

This means M.,(t,f) is the Brownian motion with variance

2 2 (77 rrrwas)

k=—oc0 ek

defined on the probability space (%, .#, P,). Consequently,

(k+

MJt,f) and M., f) — %im(jk ? V:"f(x)dx)zt

are (P,, #,)-martingales. Therefore,
(7.3) E™[(M.¢, f) — MJs,f)P(V)] =0,

for 0 <s <t and each #,measurable bounded and continuous function
®: € —> R. Let us denote
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1 = [ {(v. ) - (V@) = [ @V, andujov)],

5o = E*|{[ o (v, of — a.ndufov)],

10 = B*[{[ U v 0 + /@)
— ")V (w, %), AJ(x))du}@(V)] .

Then
(8.4) E? " [(M.At, ) — M.As, NO(V)] = L(e") + L") + L") .

Now take the limit ¢’ —0 in (8.4). For I, since p..->p weakly on %,
we have

(8.5) I(¢") — EP[(M(2, ) — M(s, /) 2(V)]

where M(t,f) = M, (V) = (VO.f) — (VO),/) — oD [ (V(w), 4)du.
For I,, it is easy to check that

L@ < 0D NP1t = 9) [ 1 = Dl dre [ 147 () — 4.f@)|dx

However, since feé&,, s"‘/ZIMf(x) — 4.f(x)|dx — 0 as ¢ — 0. Thus

(8.6) L) —>0.

For I,, we have by Proposition 3.1

8.7 I(e) > 0.

Combining (8.4) ~(8.7) with (8.3), we have
EP[(M(, f) — M(s,fHO(V)] = 0.

Hence, M(t,f) is a (P, #,-martingale. And by the similar method, we
can show that M(¢, ) — 2|V f|* is a (P, #,)-martingale, too. These imply
that M(t,f) is Brownian motion with variance 2||Ff|} for each fe&,.
For any (ay, - -, a,)€R™, meN, t,=0<t < < lp,f1, -, [m€EEs,
a simple computation gives that
> @Mty f) = 3 (Mt aufit -+ +anfa) = Mltsos, aufot - +anfo)}

k=1

Noting that the r.h.s. is a sum of independent Gaussian random variables,
we know that the linear combination > 7, a,M(t.,f,) has a Gaussian
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distribution with respect to P. Therefore, {M(t, f)}is0,rcs, 18 a Gaussian
system and one can check that its mean is zero and covariance is

(8.8) EP[M(t,)M(s, 8)] = 2(Ff, Vg)t N\ s, for t,s>0 and f,geé,.

On the other hand, it is easy to see (cf. [11]) that V(0) is an &;-
valued Gaussian random variable under P with mean zero and covariance

(8.9) E?[(V(0), )(V(0), 8)] = 0"()(f,8), f.g€é,.
For Ve, define Ve% such that
(V(@®), ) = (V(0), e?“f) + M, )(V)
ny L M(s, e)¢-944f)(V)ds, feé&,

where 6 = p”’()~'. Then, from (8.8) and (8.9), {(‘7,, MNhiso,ree, 18 @ Gaussian
system with mean zero and covariance

(8.10) E* (V) N(V(5), )] = o D (f, 17" @ 7%g) .

However, V = V, P-a.s from Lemma 8.1 below and therefore P is inde-
pendent of the selection of {¢'}. This means that P, itself converges to
P weakly. Since the distribution of the solution of (2.11) coincides with
P, we have shown the conclusion of Theorem 2.2.

Finally, we prove the lemma used above.
LemMa 81. P(V=V)=1.
Proof. First we check that V satisfies

VO, F) = (VO + 0@ [ (P, 4N du + M. N(V).

This equality also holds for V() instead of V({). To conclude the proof,
it is sufficient to show that

8.11)  E*F[|(V(®),f) — (V®),/)] =0, for all >0 and fe A,

where A is a dense subset of &,. Set V(¢) = V(t) — V(). Then V satisfies
the following equation with probability one:

Vo), f) = ,//(z)-ij: ds(V(s), 4f), for t>0, feé,.

However, V(¢) is stationary under P and also V(¢); see (8.10). We there-
fore have from (8.9)
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BV @, N1 < oD || dsE?1(V(3), D))

. ¢ t1 bn—1

< Ve[ dn [ du [T dL BV, 41
0 0

< «/?P//(l)_n“/zt"||Anf”Lﬁ(R)/n! .

We take A to be the linear hull of {h,e "*"; me N}, where h,(x) =
@2mmW 7)) e *’H,(x), and H,(x), m =0,1,2, --- are the Hermite poly-
nomials. One can check that C*||4"h,|/n! = o(1) as n — oo for all me N
with some constant C. This implies (8.11). 1
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