
JFP 18 (1): 47–86, 2008. c© 2007 Cambridge University Press

doi:10.1017/S0956796807006478 First published online 1 August 2007 Printed in the United Kingdom

47

An operational semantics for Scheme1

JACOB MATTHEWS and ROBERT BRUCE FINDLER

University of Chicago

(e-mail: {jacobm,robby}@cs.uchicago.edu)

Abstract

This paper presents an operational semantics for the core of Scheme. Our specification

improves over the denotational semantics from the Revised5 Report on Scheme specification

in four ways. First, it covers a larger part of the language, specifically eval , quote, dynamic-

wind , and the top level. Second, it models multiple values in a way that does not require

changes to unrelated parts of the language. Third, it provides a faithful model of Scheme’s

undefined order of evaluation. Finally, we have implemented our specification in PLT Redex,

a domain-specific language for writing operational semantics. The implementation allows

others to experiment with our specification and allows us to build a specification test suite,

which improves our confidence that our system is a faithful model of Scheme. In addition

to a specification of Scheme, this paper contributes three novel modeling techniques for

Felleisen Hieb-style rewriting semantics. All three techniques are applicable to a wider range

of problems than modeling Scheme, and they combine seamlessly in our model, suggesting

that they would scale to complete models of other languages.

1 Introduction

The Revised5 Report on Scheme (Kelsey et al. 1998), hereafter referred to as the

Report, provides an informal, English specification of Scheme and a denotational

model of a core Scheme language. The denotational specification is more precise

than the informal specification, but is also incomplete. For instance, the formal

specification does not include the top level, and is missing key procedures such as

dynamic-wind and eval whose inclusion would probably require significant changes

to the formalism. While that is not necessarily a problem—the measure of a model

is not its completeness but its ability to clearly and accurately explain its subject—

Gasbichler et al.’s (2003) recent explanation of the difficulties involving dynamic

contexts and threads, for instance, demonstrates that the formal model is insufficient

for some important questions. Furthermore, denotational semantics have fallen out

of favor among programming language researchers in recent years; it is just too dif-

ficult to specify nondeterministic language features and establishing theorems about

particular semantics, such as type-soundness (Wright & Felleisen 1994), has proven

to be much easier in an operational setting. In addition, denotational semantics

1 All of the systems presented in this paper (and test suites for them) are available as PLT Redex
implementations at http://www.cs.uchicago.edu/~robby/r5rs-jfp/

https://doi.org/10.1017/S0956796807006478 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796807006478

48 J. Matthews and R. B. Findler

requires much more mathematical sophistication than an operational semantics,

making it less appropriate for a standard intended for use by working programmers.

In this paper we give a new treatment of Scheme’s formal semantics that models

more of the language described in the informal semantics section than the formal

semantics section in the Report document does. It is also executable by design

and comes with an implementation as a program in PLT Redex, a domain-

specific language for context-sensitive rewriting (Matthews et al. 2004). PLT Redex

provides facilities for modeling nondeterminism and nonconfluence, both of which

are necessary for modeling Scheme, and provides a graphical browser for exploring

reduction graphs. Modeling Scheme in this manner also allowed us to build a large

test suite of terms and their expected normal forms that we run whenever we change

any reduction rules; this test suite increases our confidence that our model is a

faithful representation of Scheme (see section 19 for more about the test suite).

This paper consists of two parts. Part 1 introduces small models that explain

particular features of Scheme, and part 2 combines them. Before part 1 begins,

section 2 discusses related work, and section 3 provides a brief overview of the

formalism we use. In section 4, the first section in part 1, we show how to use

a controlled form of nondeterminism to model Scheme’s unspecified application

order; in section 5 we show a novel technique for modeling multiple return values;

in section 6 we give a model for quote and eval that exploits a technique for reduction

semantics with multiple phases. Section 7 gives a model for Scheme’s top level that

illustrates a subtle interaction between top-level expressions and continuations and

section 8 gives a model for call/cc in the presence of dynamic-wind . In part 2, we

combine all those models along with several other more straightforward features:

if and begin, cons and cons-cell mutation, variable-arity procedures, and an object-

identity-sensitive notion of eqv? equality.

This work extends the first author’s master’s paper (Matthews 2005) and a paper

that appeared at the Scheme and Functional Programming workshop (Matthews &

Findler 2005).

2 Related work

Reduction semantics has been used to model large programming languages many

times and in many different ways. Felleisen’s dissertation (1987), which introduced

context-sensitive reduction semantics, gives a formulation of a substantially smaller

language than the one we present here that he calls “idealized Scheme,” and

Felleisen (1988) extends that model into the λ-v-CS calculus in later work. Since

then, reduction semantics have been used to model the cores of many languages

including SML (Harper & Lillibridge 1993; Wright & Felleisen 1994; Harper &

Stone 1996), MultiLisp (Flanagan & Felleisen 1999), Concurrent ML (Reppy 1999),

Java (Flatt et al. 1999), and Emacs Lisp (Neubauer & Sperber 2001) among others.

There has also been extensive work on the semantics of Scheme. Clinger (1998)

presented an operational semantics for a core Scheme for his work on tail recursion.

Gasbichler, Knauel, Sperber, and Kelsey (2003) have presented operational and

denotational semantics for dynamic-wind . Ramsdell (1992) presented a structural

https://doi.org/10.1017/S0956796807006478 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796807006478

An operational semantics for Scheme 49

operational semantics for Scheme aimed at fixing the unspecified order of argument

evaluation problem we discuss in subsection 4. His model is less complete than

ours; it matches more closely the language of the denotational semantics from

the Report. Also, he considers a program whose results depend on the order of

evaluation to be invalid. As we discuss in section 4, that is not the intent of the

Report’s authors. Van Straaten (2002) has developed a definitional interpreter that

is syntactically very similar to the denotational semantics in the Report, although

we know of no formal correspondence between them. Our work does not have any

formal connection either, but our language is much larger and our semantics, being

small-step and executable, allows us to provide programmers with a stepper that

rewrites object programs to object programs.

There have also been other efforts to work with large semantics. Oliva et al. (1995)

proved a VLISP compiler correct, and Lee et al. (2006) have also implemented

Harper and Stone’s semantics using Twelf. The latter is the largest example of a

programming language semantics given in a variant of reduction semantics we have

found in the literature (with the possible exception of this one).

3 Preliminaries

As a rough guide, we define the operational semantics of a language via a relation

on program terms, where the relation corresponds to a single step of an abstract

machine. The relation is defined using evaluation contexts, namely terms with a

distinguished subterms in them, called holes, where the next step of evaluation

occurs. We say that a term e decomposes into an evaluation context E and another

term e′ if e is the same as E but with the hole replaced by e′. We write E [e′] to

indicate the term obtained by replacing the hole in E with e′ and we write [] to

indicate the hole.

For example, assuming that we have defined a grammar containing nonterminals

for evaluation contexts (E), expressions (e), variables (x), and values (v), we would

write

E [((lambda (x · · ·) e) v · · ·)] → E [{x · · · �→ v · · · }e] (#x = #v)

to define the βv rewriting rule (as a part of the → single-step relation). We use the

names of the nonterminals (possibly with subscripts) in a rewriting rule to restrict

the application of the rule, so it applies only when some element produced by that

grammar appears in the corresponding position in the term. If the same nonterminal

(with an identical subscript) appears multiple times, the rule applies only when the

corresponding terms are structurally identical. Thus, the occurrence of E on both

the left-hand and right-hand sides of the rule above means that the context of the

application expression does not change when using this rule. The ellipses are a

form of Kleene star, meaning that zero or more occurrences of terms matching the

pattern proceeding the ellipsis may appear in place of the the ellipsis and the pattern

preceding it. Note that, for example, (x1, . . .) is not a short-hand for (x1, x2, x3, x4,

. . .). Instead it means that the meta-variable x1 is used to match an entire sequence.

The meta-variables x2, x3, and x4 are all independent of this.

https://doi.org/10.1017/S0956796807006478 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796807006478

50 J. Matthews and R. B. Findler

We use the notation {x · · · �→ v · · · }e for capture-avoiding substitution; in this

case it means that each x is replaced with the corresponding v in e. Finally, we write

side conditions in parenthesis beside a rule; the side condition in the above rule

indicates that the number of xs must be the same as the number of vs. Sometimes,

we use equality in the side conditions; when we do it merely means simple term

equalitys i.e., the two terms must be syntactically identical.

Making the evaluation context E explicit in the rule allows us to define relations

that manipulate their context. As a simple example, we can add another rule that

signals an error when a procedure is applied to the wrong number of arguments by

discarding the evaluation context on the right-hand side of a rule:

E [((lambda (x · · ·) e) v · · ·)] → error: wrong argument count (#x �= #v)

Later we show how to take advantage of the explicit evaluation context in more

sophisticated ways.

To learn more about this style of semantics, we refer readers to Felleisen and

Flatt’s monograph (2006).

PART ONE

Small Reduction Systems

This part introduces smaller reduction systems that explain the details of particular

features of the Report and how we model them. In each case, the modeling techniques

are the same as in the full semantics, but we hope that seeing them in isolation

makes them easy to understand later. Since the models are just intended to be

illustrative, we include only the a minimal amount of detail in each. For example,

each of the systems contains stuck states that would correspond to errors in a more

fleshed out semantics.

Section 4 illustrates how we model the Report’s underspecification of the order of

evaluation for application expressions. Section 5 shows how we model multiple val-

ues. Section 6 demonstrates quoted constants and eval and the interplay between the

two of them. Section 7 contains a model of the top level and explains a subtle interac-

tion with call/cc, and finally our model of dynamic-wind in section 8 concludes part 1.

4 Unspecified evaluation order for applications

In evaluating a procedure call, the Report document deliberately leaves unspecified

the order in which arguments are evaluated, but in section 4.1.3 specifies that

the effect of any concurrent evaluation of the operator and operand expressions is constrained to

be consistent with some sequential order of evaluation. The order of evaluation may be chosen

differently for each procedure call.

In the formal semantics (section 7.2), the authors explain how they model this

ambiguity:

[w]e mimic [the order of evaluation] by applying arbitrary permutations permute and unper-

mute . . . to the arguments in a call before and after they are evaluated. This is not quite right

since it suggests, incorrectly, that the order of evaluation is constant throughout a program . . .

https://doi.org/10.1017/S0956796807006478 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796807006478

An operational semantics for Scheme 51

Fig. 1. Core Scheme with mutation.

In this section we present an operational technique that captures the intended

semantics faithfully. We begin by considering a core Scheme with arbitrary arity

procedures, set!, sequencing, conditionals, booleans, and numbers, but with a fixed

left-to-right order of evaluation for applications, as shown in Figure 1. It is a

variation of Felleisen and Hieb’s ΛS (1992). A program consists of a store that

associates variable names to values and an expression, where expressions are

built up of numbers, arbitrary-arity lambda terms and applications, set!, if, and

begin expressions, and a built-in negation operator (in order to facilitate a coming

example).

The [MApp] rule gives the rule for application of a procedure to fully evaluated

arguments: make one fresh identifier x′
2 for each formal parameter x2, introduce a

new binding in the store for each x′
2 associating it with the corresponding argument

in the application, and then rewrite the application as the procedure’s body with

each occurence of an x2 replaced by the corresponding x′
2. The [MSet] rule replaces

the value associated with the given identifier in the store with the given replacement.

The Report does not specify the result of a set! operation, so we follow the lead

of many Scheme implementations and rewrite to a special value called unspecified .

The [MLookup] rule corresponds to the evaluation of an variable, replacing it with

its associated value in the store.

The rules for begin expressions exploit the definition of the evaluation contexts

(E) for begin expressions, which allow evaluation only in the first subexpression

of a begin and only when there are at least two subexpressions. [MSeq] drops the

https://doi.org/10.1017/S0956796807006478 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796807006478

52 J. Matthews and R. B. Findler

first subexpression in a begin when there are more expressions to evaluate, and

[MTrivSeq] drops the begin when there is only one expression to evaluate. The rules

[MIfT] and [MIfF] handle if expressions and the last rule, [MNeg], simply negates its

argument (the notation �n� indicates the syntactic representation of the mathematical

number n).

The order of evaluation is determined by the grammar for evaluation contexts.

The first production of the grammar specifies that evaluation of a subexpression of

an application takes place only when all of the subexpressions to its left are values.

If we replace that first production with this one:

E ::= (e · · · E v · · ·) | . . .

the semantics would specify a right-to-left order instead.

Either of these choices results in a system with unique decomposition. That is, each

noncanonical term can be split into exactly one evaluation context and reducible

subexpression. Accordingly, there is at most one way to reduce any expression.

To model a language with unspecified order of operations, like that in the Report,

we can use a reduction system with nonunique decomposition to model the choice

of which argument to evaluate. We might be tempted to use this definition of

evaluation contexts:

E ::= (e · · · E e · · ·) | . . .

Since this definition allows the hole to appear in any subexpression of an application,

this simple program

((lambda (x y) y) (− 1) (− 2))

which negates 1, negates 2, and then applies a trivial procedure to the results, can be

split into an evaluation context with either (− 1) or (− 2) as the reducible expression.

Although, this might appear to be a faithful model of the Report, it is flawed.

Consider the application of two set! expressions in a store binding x to 1:

(store ((x 1))

((set! x (− x))

(set! x (− x))))

This program should always reduce to the application of the unspecified value to

itself with x set to 1 in the store because, according to the Report, no matter which

of the application’s subterms is reduced first, the result should be that x is negated

twice. If we just modify evaluation contexts as above, however, we allow different

arguments of the same application to alternate steps of computation. This, in turn,

may produce an outcome that could not be reached by any sequential ordering.

We discovered this problem while experimenting with that reduction system in PLT

Redex. We encoded the erroneous reduction system in PLT Redex and automatically

generated the reduction sequence for the above term, shown in Figure 2. The first

term is shown at the top. The outermost paths correspond to the two sequential

orderings and result in the proper store. In the middle section, the two assignments

are interleaved, resulting in −1 being left in the store.

https://doi.org/10.1017/S0956796807006478 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796807006478

An operational semantics for Scheme 53

(store ((x 1))
((set! x (- x))
(set! x (- x))))

(store ((x 1))
((set! x (- x))
(set! x (- 1))))

(store ((x 1))
((set! x (- 1))
(set! x (- x))))

(store ((x 1))
((set! x (- 1))
(set! x (- 1))))

(store ((x 1))
((set! x (- x))
(set! x -1)))

(store ((x 1))
((set! x -1)
(set! x (- x))))

(store ((x 1))
((set! x (- 1))
(set! x -1)))

(store ((x 1))
((set! x -1)
(set! x (- 1))))

(store ((x -1))
((set! x (- x))
unspecified))

(store ((x -1))
(unspecified
(set! x (- x))))

(store ((x -1))
((set! x (- 1))
unspecified))

(store ((x 1))
((set! x -1)
(set! x -1)))

(store ((x -1))
(unspecified
(set! x (- 1))))

(store ((x -1))
((set! x (- -1))
unspecified))

(store ((x -1))
(unspecified
(set! x (- -1))))

(store ((x -1))
((set! x -1)
unspecified))

(store ((x -1))
(unspecified
(set! x -1)))

(store ((x -1))
((set! x 1)
unspecified))

(store ((x -1))
(unspecified
(set! x 1)))

(store ((x -1))
(unspecified
unspecified))

(store ((x 1))
(unspecified
unspecified))

Fig. 2. Interleavings possible with an erroneous unspecified-application-order model.

With that in mind, we can design a more sophisticated strategy that captures

unspecified evaluation order but allows only sequential orderings. The basic idea is

to use nondeterministic choice to pick a subexpression to reduce only when we have

not already committed to reducing some other subexpression. To achieve that effect,

we introduce the notion of a marked expression, denoted with the � superscript.

(These marks are not an extension to the general term-rewriting framework—the

mark is simply a term constructor, albeit typeset specially.) Marks identify chosen

expressions: only marked expressions may be reduced, and only one reducible

marked expression may appear in any application at one time.

Figure 3 shows the necessary revisions to core Scheme to support the Report’s

style procedure applications. The E nonterminal replaces the one from Figure 3

and we add application expressions that contain marked subexpressions to e. The

two rules [Mark] and [Unmark] are added to the existing rules in Figure 3. The

[Mark] reduction rule marks an arbitrary unmarked expression in an application on

the condition that the expression under the mark is not already a value, and the

[Unmark] rule removes the mark when the marked expression is fully reduced. The

https://doi.org/10.1017/S0956796807006478 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796807006478

54 J. Matthews and R. B. Findler

Fig. 3. Unspecified application order semantics, as an extension of Figure 1.

(store ((x 1))
((set! x (- x))
(set! x (- x))))

(store ((x 1))
((set! x (- x))◊

(set! x (- x))))

(store ((x 1))
((set! x (- x))
(set! x (- x))◊))

(store ((x 1))
((set! x (- x◊))◊

(set! x (- x))))

(store ((x 1))
((set! x (- x))
(set! x (- x◊))◊))

(store ((x 1))
((set! x (- 1◊))◊

(set! x (- x))))

(store ((x 1))
((set! x (- x))
(set! x (- 1◊))◊))

(store ((x 1))
((set! x (- 1))◊

(set! x (- x))))

(store ((x 1))
((set! x (- x))
(set! x (- 1))◊))

(store ((x 1))
((set! x -1)◊

(set! x (- x))))

(store ((x 1))
((set! x (- x))
(set! x -1)◊))

(store ((x -1))
(unspecified◊

(set! x (- x))))

(store ((x -1))
((set! x (- x))
unspecified◊))

(store ((x -1))
(unspecified
(set! x (- x))))

(store ((x -1))
((set! x (- x))
unspecified))

(store ((x -1))
(unspecified
(set! x (- x))◊))

(store ((x -1))
((set! x (- x))◊

unspecified))

(store ((x -1))
(unspecified
(set! x (- x◊))◊))

(store ((x -1))
((set! x (- x◊))◊

unspecified))

(store ((x -1))
(unspecified
(set! x (- -1◊))◊))

(store ((x -1))
((set! x (- -1◊))◊

unspecified))

(store ((x -1))
(unspecified
(set! x (- -1))◊))

(store ((x -1))
((set! x (- -1))◊

unspecified))

(store ((x -1))
(unspecified
(set! x 1)◊))

(store ((x -1))
((set! x 1)◊

unspecified))

(store ((x 1))
(unspecified
unspecified◊))

(store ((x 1))
(unspecified◊

unspecified))

(store ((x 1))
(unspecified
unspecified))

Fig. 4. Evaluation in the unspecified-application-order model.

new evaluation contexts E ensure that evaluation inside an application expression

can occur only inside a marked expression.

Figure 4 shows how our new system evaluates the term from Figure 2. The initial

term appears at the top. That term is an application, so the first reduction marks

either the first subexpression or the second. If the first subexpression is marked,

evaluation continues down to the right of the figure, and back up to the middle. If

the second is marked, evaluation proceeds down to the left and back up the middle.

https://doi.org/10.1017/S0956796807006478 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796807006478

An operational semantics for Scheme 55

Eventually, all of the terms join back together and the final result in the store is 1,

as shown in the center just under the initial term.

One should not take that example to mean that this language has any kind of

confluence property, however. Consider this program:

((lambda (choice)

((lambda (x y) choice)

(set! choice 1)

(set! choice 2)))

0)

It will return either 1 or 2, depending on the order of evaluation, and this result is

desirable. The model’s nonconfluence precisely reflects the underspecification of the

Report’s informal language.

This technique of using evaluation contexts to partially control where evaluation

occurs has other uses besides giving semantics for unspecified application evaluation

orders. In general, it is useful for modeling any kind of delimited nondeterminism,

where evaluation may proceed arbitrarily but only at certain points in a program

and only in certain ways. Threads and futures are good examples of this kind of

language feature.

5 Multiple return values

The Report specifies a facility for expressions to evaluate simultaneously to multiple

or no values rather than just a single value. The procedure values introduces multiple

values and call-with-values eliminates multiple values. Unlike tuples in SML and

Haskell, however, a collection of multiple values is not itself a value. For example,

this program

(define (f x) (values (+ x x) (∗ x x)))

(define (g x y) y)

(g (f 3))

produces an error, since procedure application expects each of its arguments to be

a single value (and the result of f is two values). Instead, the programmer must use

call-with-values to eliminate multiple values. It expects a thunk as its first argument,

applies the thunk, catches any number of values that thunk produces, and applies

them to its second argument. So, a programmer could supply f ’s results to g like

this:

(call-with-values (lambda () (f 3)) g)

In addition, there is no difference between values applied to a single argument and

that argument by itself, so (g (values 6) (values 9)) is the same as (g 6 9).

To model multiple values, the Report’s formal semantics uses functions from

an arbitrary number of values to a final answer as continuations. In section 6.4,

the Report says that “[e]xcept for continuations created by the call-with-values

procedure, all continuations take exactly one value.” Perhaps surprisingly, though,

the formal semantics ensures that by checking the opposite property: in every context

https://doi.org/10.1017/S0956796807006478 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796807006478

56 J. Matthews and R. B. Findler

Fig. 5. Core Scheme with multiple values.

that accepts only a single value, it uses a helper function, single, to ensure that only

a single value appears.

Our semantic model captures the difference between contexts that accept multiple

values and contexts that reject multiple values directly. The basic strategy is to add

a rule that demotes (values v) to v and another rule that promotes v to (values v),

but to only allow demotion in a context expecting a single value and only allow

promotion in a context expecting multiple values. We obtain this behavior with a

https://doi.org/10.1017/S0956796807006478 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796807006478

An operational semantics for Scheme 57

small extension to the Felleisen–Hieb framework. We label holes to distinguish them

from each other, written as subscripts (for instance []� or []◦). We also extend

the context-matching operation so it may demand a hole of a particular name, also

written with a subscript. For example E [e]� would be a legal decomposition only

if the hole in E is []�; neither [] nor []◦ would be allowed. The extension allows

us to give different names to the holes in which multiple values are expected and

those in which single values are expected, and structure the grammar of contexts

accordingly.

Figure 5 shows the extension of core Scheme to support multiple values. []◦
indicates a hole in which any expression should reduce to an element of v , []�
indicates a hole in which any expression should reduce to (values v · · ·), and the

subscript-less [] indicates a hole in which either result is acceptable. There are also

three context nonterminals. The final result of a program in the context E ◦ produces

an element of v , E � produces (values v · · ·), and E might produce either.

The definition of E follows the informal specification of the Report, using E �

when multiple values are expected and E ◦ when single values are expected. Since

the thunks passed to call-with-values are allowed to produce multiple values, we use

E � there. Similarly, since the final result of a program may be multiple values, we

use E � in the definition of P , and everywhere else we use E ◦.

The first five rules are new, beyond the rules for core Scheme. [VPromote] promotes

a single value v to (values v). Because of the subscript � on the hole, it applies only

when multiple values are expected. [VDemote] demotes a single value inside values

to just the value, and [VDemoteErr] signals an error if values does not return

exactly one value. These two rules apply only when a values expression appears

where a single value is expected. The [VCwv] rule reduces a call to call-with-values

when the body of the thunk passed to call-with-values has been fully evaluated.

The [VCwvApp] adds a thunk wrapper around the first argument to call-with-values

when it is not already a thunk. For example, (call-with-values values values) reduces

to (values) by first using [VCwvApp].

All reductions take place in E �, allowing the final result of any program to be

multiple values. If we wanted to allow only a single values as the final result of a

program, we could replace E � with E ◦ in all of the rules and in P .

To get a sense of how evaluation proceeds, consider this reduction sequence

(shown here without the store):

(− (call-with-values (lambda () 1)

(lambda (x) (values x))))

→ (− (call-with-values (lambda () (values 1))

(lambda (x) (values x))))

[VPromote]

→ (− ((lambda (x) (values x)) 1)) [VCwv]

→2 (− (values 1)) [VApp],[VLookup]

→ (− 1) [VDemote]

→ −1 [VNeg]

→ (values −1) [VPromote]

The first term helps illustrate how the labels on the evaluation contexts ensure that

https://doi.org/10.1017/S0956796807006478 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796807006478

58 J. Matthews and R. B. Findler

only appropriate promotion and demotion occur. Consider this evaluation context

from the first term:

(− (call-with-values (lambda () []�)

(lambda (x) (values x))))

Since it has []� in it, the [VPromote] rule applies to turn 1 into (values 1),

producing the second term. At this point, the [VDemote] rule does not apply to that

same context, because it requires the hole in the context to be []◦. If it were to

apply, the term would have to decompose into this evaluation context:

(− (call-with-values (lambda () []◦)

(lambda (x) (values x))))

but that evaluation context is not generated by E .

Instead, [VCwv] applies, passing the results of the first argument of call-with-values

to the second argument to call-with-values . After that, the application occurs, using

rules [VApp] and [VLookup]. Then the term (values 1) is used as an argument to

a procedure, so [VDemote] converts it to the single value 1. Next, [VNeg] negates

1, producing −1. Finally, [VPromote] applies (since the outermost context for each

rule is E �) and the final result is (values −1).

The erroneous expression from the beginning of this section signals an error due

to the [VDemoteErr] rule.

(g (f 3))

→∗ (g (values 6 9))

→ error: context received wrong # of values

In general, this strategy can be used whenever the notion of a fully evaluated

subterm is different in different parts of a program. For instance, it can be used

to model embedded sublanguages such as regular expressions, format strings, and

SQL commands, which could help develop theoretical underpinnings for work like

Herman and Meunier’s (2004) static analysis of embedded languages. It also can be

used to model interoperability (Matthews & Findler 2007).

6 Quote and eval

Scheme inherits the meta-programming facilities eval and quote from Lisp (Sussman

& Guy Lewis Steele 1975). The quote operator turns program code into a datum

and the eval procedure turns that datum back into code. When quoted, a program

is represented as a list of lists and symbols, where lists represent parenthesized

sequences and symbols represent identifiers. For example, (quote (lambda (x) x)) is

a three element list whose first and third elements are symbols and whose second

element is a list of one element:

(list (quote lambda) (list (quote x)) (quote x))

Because of the presence of both quote and eval , the process of turning quoted

program text into a datum and then back into program text is interleaved with

https://doi.org/10.1017/S0956796807006478 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796807006478

An operational semantics for Scheme 59

ordinary evaluation. For example, this program

(define (f x y)

(eval (list (quote /) x y)))

(f (quote (+ 2 3 4))

(quote (eval (quote (+ 5 6)))))

first turns the arguments to f into data, and then calls f , which constructs a quotient

expression and passes it to eval . To continue evaluation, eval turns the datum back

into program text and we are left with this program:

(/ (+ 2 3 4)

(eval (quote (+ 5 6))))

At this point, however, the sum of 5 and 6 must be turned into a datum before

proceeding, since it is quoted. Once that happens, the remaining call to eval turns it

back into program text, and the program evaluates to 9/11.

The Report suggests (but does not require) that quoted data be allocated only

once, before the program runs. In systems with that behavior, including all Scheme

implementations we tested, this program returns #t:

((lambda (f) (eqv? (f) (f)))

(lambda () (quote (x))))

since the thunk passed as f returns the same pointer each time it is called.

Our core Scheme calculus for modeling eval and quote is shown in Figure 6,

extending Figure 1. It adds quoted expressions, pointers, null, and the primitive

functions: eval , cons , car , cdr , and eqv?. The ptr nonterminal generates pointers,

which are used indicies into the store and are compared for equality.

To ensure that a datum behind a quote is inserted into the store only once, the

rewriting system is structured in two tiers roughly corresponding to “compile-time”

and “run-time.” Initially, programs are just viewed as uncompiled s-expressions,

i.e., terms generated by the s nonterminal,2 which in particular include programs

with quoted lists. Reduction rules that apply to these uncompiled expressions do

not evaluate them, but instead compile them into program expressions that do not

contain quoted lists (elements of the e nonterminal). Evaluation reductions apply to

a program only after it has been completely compiled.

The first group of evaluation rules (from [ECons] to [EEqv2]) corresponds to the

language’s runtime semantics, and shows how the list primitives behave. [ECons]

models the application of cons to arguments by allocating a new pair in the store;

car and cdr select the first and second values in a pair by the rules [ECar] and

[ECdr]. The [EEqv1] and [EEqv2] rules give eqv?’s semantics; it compares pointers

for literal syntactic equality (and, for this language, operates only on pairs). Since

each of these reduction takes place in an evaluation (rather than compilation) context,

they apply only to programs that are completely compiled.

2 We write dotted pairs with dot rather than a period to avoid metacircular confusion in our PLT Redex
implementation.

https://doi.org/10.1017/S0956796807006478 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796807006478

60 J. Matthews and R. B. Findler

Fig. 6. Eval and quote semantics, as an extension of Figure 1.

The second group of rules (from [EQSeq] to [EQPair]) apply at compile-time

and show how to compile a program by rewriting quoted constants into locations

in the store. If these rules used the E context and quoted s-expressions were legal

expressions, quote would merely be a short-hand notation for building lists at

run-time and the above program would return #f.

Instead, the second group of rewriting rules eliminate quote before any other

evaluation happens, turning s-expressions into Scheme programs. Although we have

presented them second, these rules actually come first in reduction sequences, making

reduction sequences follow a two-phase pattern where the [EQ...] rules apply in the

https://doi.org/10.1017/S0956796807006478 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796807006478

An operational semantics for Scheme 61

first phase and the evaluation rules apply in the second phase. Intuitively, programs in

this first phase are arbitrary s-expressions and values are Scheme programs, whereas

second-phase programs are Scheme expressions and values are Scheme values. This

parallelism can be seen particularly clearly in the definition of the evaluation

contexts for application expressions. In S , a rewrite step takes place once all of the

s-expressions to the left have become Scheme programs. In E , a rewrite step takes

place once all of the expressions to the left have become values. So, for the program

above, the only rewriting rules that apply are those that rewrite the thunk’s body.

Once it contains only a pointer to a store value, the outer application may proceed.

To model eval , we use a technique similar to Muller’s reify (1992). The R

metafunction accepts a value and turns it back into a program. The C function

(used by R) is the syntactic analogue of cons; the first case applies whenever the

second argument has parenthesis (i.e., both proper and improper lists), otherwise the

second case applies. Once R completes, evaluation continues as usual. Of course,

reification may produce an s-expression containing quote. In that case, the quote

rules apply and put quoted data into the store before evaluation continues.3

The eval we present here and in part 2, we should point out, is not as fully-

featured as the eval of the Report’s informal description because it does not accept

an environment argument. It does, however, behave most like the eval from the

report where the second argument is the result of (interaction-environment) where

that environment contains the parts of the language that the semantics models.

The technique used in this section applies generally to languages in which

computation of a term proceeds in multiple phases that must be considered

together—it is not sufficient in our case to write a preprocessor that moves quoted

data in a program into the store because that program could call eval at runtime.

Scheme’s macro systems are similar in this respect, so the technique shown here

could be used as a basis for modeling them. Staged and partial evaluation could

also be modeled using this technique.

7 Top-level program structure and call/cc

Section 5 of the Report specifies that the top level of a Scheme program is a mixture

of definitions and expressions, and that “[a]t the top level of a program (begin

<form1> · · ·) is equivalent to the sequence of expressions, definitions, and syntax

3 Most Scheme systems share quoted data even across calls to eval. For example, our semantics produces
#f for the following program, but most Schemes produce #t.

((lambda (f)
(eqv? (f)

(eval (cons ’quote (cons (f) null)))))
(lambda () ’(x)))

We can adapt R to match these implementations via special handling of quoted forms during reification:

R � S , p1 � = v if S maps p1 to (cons (quote quote) p2) and maps p2 to (cons v null).

which would cause our semantics to produce #t for the above example. This technique does not scale to
a full Scheme that includes macros, however.

https://doi.org/10.1017/S0956796807006478 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796807006478

62 J. Matthews and R. B. Findler

definitions that form the body of the begin.” Although that section of the report

does not discuss call/cc,4 the equivalence has subtle implications for the semantics

of call/cc at the top level.

Nearly all of the implementations we tried treat continuations as delimited

by a top-level expression.5 That is, the continuation of one top-level expression

does not contain the evaluation of any subsequent top-level expressions. In these

implementations, however, the continuation of one of the expressions in a top-level

begin contains all of the following expressions in the begin, violating the Report’s

mandate that removing top-level begins does not change the program’s behavior.

For example, this program

(define k #f)

(define x 1)

(begin (call/cc (lambda (k2) (set! k k2) 1))

(set! x (+ x 1)))

(k 1)

finishes with x bound to 3 when the begin is present, but with x bound to 2 when

it is not present.

The source of the inconsistency between continations inside and outside of a

begin is probably caused by the implementation of the loop that iterates over and

evaluates the subexpressions of a begin. It appears that the loop variable holding

the current subexpression to evaluate is a function parameter, and so its value is

held in the continuation and returning to an earlier continuation returns the loop

variable to its old value. In contrast, expressions at the top level are probably being

read imperatively from a port, so continuations do not return the state of the port

to earlier states. To make the continuations consistently delimited, implementations

could use an eval function like the one given in Figure 7. It defines b-eval in terms

of eval , the implementation’s original evaluator. The essence of the fix is in the body

of evals . It does not recur with the cdr of exprs to continue evaluating the body of

the begin. Instead, it uses a set! so that a continuation that jumps back to an earlier

iteration of the loop does not see the earlier value of exprs . The variable answers

and the call to call-with-values are only there to cope with multiple values that may

4 The authors’ intent seems to be to ensure that the scope of a top-level definition that occurs inside a
begin expression does not change when the surrounding begin is removed.

5 We tried Bigloo version 2.8b (Serrano 2006), Chicken version 2, build 41 (Winkelmann 2006), Gambit
version 4.0 beta 17 (Feeley 2006), Guile version 1.6.8 (Project GNU 2005), MIT Scheme release 7.7.9
(GNU 2006), MzScheme version 352 (Flatt 2006), Petit Chez Scheme version 7.0a (Dybvig 2005),
Petit Larceny version 0.92 (Clinger & Hansen 1994), Scheme 48 version 1.3 (Kelsey et al. 2005), and
SISC version 1.51.1 (Miller & Radestock 2006). With the exception of MIT Scheme, they all behave
as explained in the text above. MIT Scheme suffers from a related, but not identical problem. In
particular, this program

(begin (define k (call-with-current-continuation (lambda (x) x)))
(define y 1))

(set! y 2)
(k (lambda (x) x))

finishes with y bound to 1 in MIT Scheme. Without the begin, the program finishes with y bound to 2.

https://doi.org/10.1017/S0956796807006478 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796807006478

An operational semantics for Scheme 63

Fig. 7. Top-level-begin sensitive evaluator.

be produced by the expressions being evaluated. If we were not interested in the

result from eval , but only its effects, we could have used this simpler evals function:

(define (evals exprs)

(let loop ()

(if (pair? exprs)

(let ((expr (car exprs)))

(set! exprs (cdr exprs))

(b-eval expr)

(loop)))))

Aside from the constraint on top-level begin expressions, the Report allows many

different semantics for top level. Over time, the implementors of Scheme systems have

essentially converged on a consensus semantics. Ironically, this consensus disagrees

with the Report on the one element for which it had fixed the interpretation. In

this paper, we base our model of the top level on the implementor’s consensus, but

adjust it so that our model also satisfies the Report.

Figure 8 contains our semantics, as an extension of figure 1. Programs consist of a

store and a series of definitions and expressions, where beginD marks a top-level begin,

distinguishing it from an internal begin in order that they might behave differently

(note that top-level beginD expressions can be nested). While the semantics needs

two different forms of begin, the surface language that an implementation provides

does not need to. Instead, it can compile begins that appear at the top level into

beginD expressions, before evaluation.

The reduction rules from Figure 1 also apply to this system, but where the

first three rules use the evaluation context E , they must use D here. The rules

[TlDef] and [TlReDef] handle definitions, either allocating a new place in the store

for undefined variables, or updating the store for redefinitions. The [TlToss] rule

discards a completed expression, unless it is the last one. The [TlBegin] rule just

erases beginD expressions, before any evaluation of the beginD’s arguments occurs.

Finally, the last two rules, [TlCallcc] and [TlThrow], handle continuations. A

call/cc expression packages up the context into a throw expression in the body of

a lambda expression and passes that into call/cc’s argument. When that function is

https://doi.org/10.1017/S0956796807006478 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796807006478

64 J. Matthews and R. B. Findler

Fig. 8. Top-level semantics, as an extension of Figure 1.

applied, its argument is substituted into the hole in the context where call/cc was

originally invoked, and then the [TlThrow] rule replaces the current context with the

context saved from the point where call/cc was invoked.

Because this system splits each beginD expression into its constituent pieces (via the

[TlBegin] rule) before evaluating their bodies, it guarantees that the continuations

grabbed by call/cc do not include beginD expressions and thus evaluating the

example program from the beginning of this section results in a store that binds x

to 3.

8 Dynamic wind

Scheme’s dynamic-wind allows for annotating the dynamic extent of a procedure call

with entry and exit code that runs whenever the program flows into or out of that

extent, either through normal program evaluation or through the invocation of the

procedures made by call/cc. For example, a programmer may wish to ensure that

a log file is always open during logging and properly closed when the program is

not logging, even if the computation uses a continuation to jump in and out of the

logging extent. The with-logging procedure provides this functionality:

;; with-logging : (((string → unspecified) → any) → any)

;; calls to-log-proc with a function that logs its argument

(define (with-logging to-log-proc)

(let ((port #f))

(dynamic-wind

(lambda () (set! port (open-output-file “logfile” ’append)))

(lambda () (to-log-proc (lambda (x) (write x port) (newline port))))

(lambda () (close-output-port port)))))

https://doi.org/10.1017/S0956796807006478 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796807006478

An operational semantics for Scheme 65

If no continuation jumps occur, dynamic-wind just calls its three thunks in order, so

with-logging would first open an output file,6 then call to-log-proc with a function

that writes to the port, and finally close the port. If, however, a continuation jump

does occur during the call to dynamic-wind ’s second argument, dynamic-wind would

call its third argument as the continuation jumps out. Similarly, if a continuation is

captured during the call to the second thunk, and is later used to jump back into

the dynamic extent of to-log-proc’s application, dynamic-wind invokes the first thunk

as control transfers back into the body of the second thunk. Taken together, this

behavior ensures that port is always an open file during the call to to-log-proc and

is closed otherwise.

Even though dynamic-wind has a large impact on the meaning of continuations,

the Report formal semantics does not model it. Here we present a model of dynamic-

wind that conforms to the Report, but not all implementations conforming to the

Report necessarily match this model. In particular, section 6.4 of the Report says,

“The effect of using a captured continuation to enter or exit the dynamic extent of

a call to [the first thunk] or [the last thunk] is undefined.” Our semantics, however,

follows the working draft of the next version of the Report (Dybvig et al. 2006),

which says that “[t]he in and out thunks of a dynamic-wind are considered ‘outside’

of the dynamic-wind; that is, escaping from either does not cause the [third] thunk

to be invoked, and jumping back in does not cause the [first] thunk to be invoked.”

Our model of dynamic-wind is based on earlier treatments (Haynes & Friedman

1987; Felleisen 1988; Gasbichler et al. 2003).

The language in Figure 9 consists of the core Scheme with mutation as shown in

figure 1 augmented with call/cc and dynamic-wind . The basic strategy is to maintain

a stack of all dynamic-wind calls entered but not yet exited. When a continuation is

captured, the semantics records the current dynamic-wind stack. When throwing to

a continuation, the semantics uses the difference between the current dynamic-wind

stack and the one that is associated with the captured continuation to determine

which thunks need to be called.

That strategy is formally encoded in three parts. First, we add a dynamic-wind

stack to each program context. It contains one dynamic context frame (dws) for each

dynamic-wind that has been entered in the current evaluation. A dynamic context

frame is a triple consisting of a unique identifier and the pre and post thunks of the

corresponding dynamic-wind call. The unique identifier allows us to disambiguate

multiple dynamic evaluations of the same syntactic appearance of a dynamic-wind

expression. Second, we add the primitive procedure value dynamic-wind to the set of

values, which expects each of its three arguments to evaluate to a thunk. Then using

the [DWWind] rule, it invokes its pre thunk, pushes a dynamic context frame onto

the stack with a fresh identifier and its own pre and post thunks, evaluates its second

thunk, pops its dynamic context frame off the stack, evaluates its post thunk, and

finally returns the value its second thunk produced. To allow the program to manip-

ulate the stack, we introduce the push and pop forms and their associated reduction

rules [DWPush] and [DWPop]. The former pushes a new dynamic context frame

onto the end of the stack, and the latter pops the last context frame off the stack.

6 This code uses the ’append mode specifier so the file is not overwritten, but that is not part of the
Report.

https://doi.org/10.1017/S0956796807006478 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796807006478

66 J. Matthews and R. B. Findler

Fig. 9. Call/cc and dynamic-wind semantics, as an extension of Figure 1.

Third, when call/cc is called, the [DWCallcc] rule builds a continuation that

consists of a procedure of one argument, x . That procedure’s body is a throw form

that consists of the current dynamic stack and the expression formed by plugging

x into the hole of the evaluation context where the application of call/cc itself

was found. A throw form is evaluated using the [DWThrow] rule. It discards the

evaluation context in which it was found, replacing the entire program body with

a specially constructed begin expression built by combining the result of the T

metafunction and the body of the throw.

The T function trims away the common context frames leaving only the suffixes

that need to be executed to return the dynamic context to its state when the

continuation was captured. Intuitively, it constructs a sequence of pre and post

thunks that correspond to the shortest path through the state space, in the sense

of Haynes and Friedman (1987). The metafunction compares its first argument, the

dynamic-wind stack of the dynamic context being exited, with its second argument,

the dynamic-wind stack of the context being entered. The first rule in its definition

simply discards any common prefix the two stacks may have, which correspond to

dynamic extents that were not left or entered from the time the continuation was

created to the time it was invoked. Then, once the two stacks have been trimmed,

the metafunction produces a list of expressions consisting of applications of all

https://doi.org/10.1017/S0956796807006478 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796807006478

An operational semantics for Scheme 67

the post thunks from T ’s first argument and pop expressions to erase the current

dynamic context, followed by all the pre thunks from T ’s second argument and push

expressions to restore the old dynamic context. The thunks from T ’s first argument

are invoked in reverse order (which we indicate with the special notation · · ·r) in

order to erase the dynamic context in the opposite order from which it was created.

PART TWO

The Combined Reduction System

This part combines the techniques described in part 1 with standard techniques for

modeling programming languages to define a semantics for the Scheme programming

language of the Report. The semantics covers variable mutation, mutable lists,

µlambda procedures (i.e., procedures that accept extra arguments as a list), apply ,

object identity based equivalence, and all of the features from part 1. There are a

number of parts of the Report that are not covered, but most of them can either

be defined in terms of existing features (e.g., let), are similar to features that are

modeled (e.g., eq?), or would not add anything particularly interesting to the model

(e.g., strings). Beyond those, we do not model Scheme’s numeric tower, macros, or

input and output, partly to keep the model a manageable size.

In general, the Report is not a complete specification, in order to give imple-

mentations freedom to behave differently, typically to allow optimizations. This

underspecification shows up in a number of ways in our semantics, but the primary

technique we use to model it is to have the single-step relation relate one program

to multiple different programs, each corresponding to a legal transition that the

abstract machine might take. Accordingly we use the transitive closure of the single

step relation to define the semantics, S , as a function from programs (P) to sets of

answers (A):

S : P → 2A
S(P) = { A | P →∗ A }

An implementation conforms to the semantics if, for every program P , the

implementation produces one of the results in S(P) or, if the implementation loops

forever, then there is an infinite reduction sequence starting at P . The precise

definitions of P and A are given in section 9.

Our specification is executable, and the contents of all of the figures in this part

were automatically generated from the source code that implements the specification,

with the exception of the R metafunction, which was typeset by hand. Since an

executable specification was an explicit goal of our work, we have made some

modeling choices whose motivations may not be obvious at first. For example, there

are many expressions whose return values are explicitly unspecified in the Report,

such as the result of a set! expression. In part 1, we modeled them with a special

value, called unspecified . A nonexecutable specification might not treat it as a value,

and instead add the rule schema

∀ v. PC [unspecified] → PC [v]

https://doi.org/10.1017/S0956796807006478 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796807006478

68 J. Matthews and R. B. Findler

meaning that the unspecified value reduces to all possible values. In an executable

specification, however, those reductions would overwhelm the ordinary reductions

so we simply leave the value unspecified in our full semantics. Programs that attempt

to inspect it by supplying it to other primitive operations will signal errors in our

semantics, although conformance with the Report does not require these errors to

be signaled (see section 18). Of course, programs that ignore it continue without

incident. We also chose to ignore out-of-memory errors. These would be easy to add

at the expense of a additional clutter when visualizing traces: reductions from each

allocation site to the out-of-memory error would suffice.

While we have not established any precise relationship between our semantics

and the formal semantics in the Report, intuitively our semantics (when trimmed to

the language in the Report’s formal semantics) produces any result that the formal

semantics might produce. The reverse is not true, because of the way we handle

application expressions. As an example, our semantics produces 7, 8, 9, and 10 for

this program:

(define x 1) ((lambda (t) (t) (t))

(lambda ()

((lambda (a b) x)

(set! x (+ x 1))

(set! x (∗ x 2)))))

but the Report semantics can produce only 7 or 10. Fundamentally, the difference

is that our semantics can change the order of evaluation of the two set! expressions

during evaluation, but the Report’s semantics will pick only a single order both

times the thunk is called. For a full discussion of the difference, see section 5.

9 Grammar

The grammar for programs in the Report is shown in Figure 10. In this figure, a

program (given by the nonterminal p) consists of a store, a dynamic-wind stack, and a

series of top-level definitions and expressions. The sf nonterminal generates bindings

for the store. The dws nonterminal corresponds to one frame of dynamic-wind

context information. The d nonterminal produces definitions (using define), top-level

begin expressions (beginD), and expressions. The e nonterminal gives expressions,

which in addition to standard Scheme core forms of application, if, begin, variables,

lambda expressions and values, can be marked applications, as in section 4, and

throw, push, and pop, as in section 8.

Values (v) are either procedures or nonprocedure’s, but lambda terms are not

values themselves—procedure values (fun) can be references to procedures in the

store (ufun), or the built-in procedures, which are further refined into fun1 , fun2

and aop, in order to facilitate the error reductions. The lambda form places new

procedure values into the store when evaluated so that we can specify the behavior

of eqv? on procedures. As in section 6, we write dotted pairs with dot rather than a

period to avoid meta-circular confusion in our PLT Redex implementation, and we

take advantage of that to write arbitrary arity procedures as (lambda (dot x) e e · · ·).

https://doi.org/10.1017/S0956796807006478 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796807006478

An operational semantics for Scheme 69

Fig. 10. Grammar.

https://doi.org/10.1017/S0956796807006478 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796807006478

70 J. Matthews and R. B. Findler

instead of the traditional (lambda x e e · · ·). Nonprocedure values (nonfun) include

pair pointers, numbers, the empty list (null), booleans, and the value unspecified .

Section 6 of the Report indicates that primitive procedures are bound to names

in the initial environment, but that those names can be mutated during the course

of a program. To model that, we use special names with #% prefixes to indicate the

actual built-in primitives, and we bind those values to their #%-less names in an

initial store:

(store ((null #%null) (cons #%cons) (null? #%null?) (pair? #%pair?)

(car #%car) (cdr #%cdr) (set-car! #%set-car!) (set-cdr! #%set-cdr!)

(list #%list) (call/cc #%call/cc) (dynamic-wind #%dynamic-wind)

(eqv? #%eqv?) (values #%values) (call-with-values #%call-with-values)

(eval #%eval) (+ #%+) (− #%−) (/ #%/) (∗ #%∗))

· · ·)

We use four different kinds of contexts: program evaluation contexts (P), dynamic-

wind contexts (W), definition contexts (D), and expression contexts (E , E ◦, and

E �). Program contexts, dynamic-wind contexts, and definition contexts nest inside

each other, and they all accept expressions in their holes. Evaluation takes place

in expression contexts; they allow evaluation in marked subexpressions of an

application, the test positions of if expressions, in set! expressions, in the first

position in a begin, and in the body of thunks passed to #%call-with-values . The

E ◦ context expects a single value and the E � context expects multiple values.

Accordingly, top-level expressions may reduce to multiple values, but the expression

on the right-hand side of a definition must be a single value.

Programs with quoted s-expressions are generated by the ds and es nonterminals.

They are just like d and e, respectively, but include quoted expressions and ccons

expressions. S-expressions are generated by the s and the sqv nonterminals. The

sqv nonterminal is named for self-quoting values; i.e., those values where adding or

removing a quote does not change the value. S-expression contexts are generated by

the SP , SD , and S nonterminals and correspond to places where a quoted expression

can be moved into the store. They are larger here than in section 6 because of the

additional syntactic forms in this language.

The sym nonterminal represents symbols, the x nonterminal represents both

program variables and binding locations, and the pp, cp, and mp nonterminals

represent pointers to pairs, fixed-arity procedures, and variable-arity procedures,

respectively.

Finally, the P and A nonterminals specify what complete programs are and help

define the domain of the reduction relation. See section 19 for details.

10 Basic syntactic forms and arithmetic

Figure 11 displays the rules for the basic syntactic forms. For the if form, if

the test position evaluates to anything other than #f, the term rewrites to its

“then” subexpression. If the test position evaluates to #f, it rewrites to its “else”

subexpression, if present, unspecified otherwise. For the begin form, the evaluation

https://doi.org/10.1017/S0956796807006478 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796807006478

An operational semantics for Scheme 71

Fig. 11. Basic syntactic forms.

Fig. 12. Arithmetic.

contexts defined in Figure 10 ensure that the first term of a begin expression is

evaluated fully; then these rules rewrite begin expressions that consist of a value

followed by other expressions to a new begin expression without the initial value.

These rules also specifiy that a begin form with only a single expression reduces

immediately to that expression even if that expression is not yet a value (or if it is

a single value or multiple values).

Because our model does not take into account the Report’s numeric tower, we

express its numeric operations in terms of true mathematical functions, as shown

in Figure 12. We assume that we can identify the true number represented by each

numeric term and model each numeric procedure by performing the appropriate

mathematical operation: + is modeled by summation on the represented numbers,

∗ is modeled by product, and so on. The figures use the notation �n � to represent

the mathematical number n ’s written form.

11 Lists

The rules for lists and operations on lists are given in Figure 13. Since all cons cells

are mutable and therefore can be distinguished even when they hold identical values,

the semantics must be able to reflect such distinctions. So, (#%cons v v) itself is not

https://doi.org/10.1017/S0956796807006478 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796807006478

72 J. Matthews and R. B. Findler

Fig. 13. Lists.

a value; instead, the #%cons rule introduces a new pair into the store and reduces to

a pointer to that new pair. The [5listc] and [5listn] rules rewrites #%list expressions

to a sequence of calls to #%cons. The rules for #%car and #%cdr rewrite calls to

either procedure to the appropriate field of a pair, extracting the field’s value from

the store.

The predicates in the figure are similarly straightforward. The #%pair? procedure

reduces to #t if its argument is identifiable as a pair pointer and #f otherwise. The

#%null? procedure reduces to #t if and only if it is supplied with the built-in null

value.

The #%set-car! and #%set-cdr! rules are similar to the #%car and #%cdr rules;

they update the store and rewrite to the unspecified value.

12 Top-level and variables

Figure 14 gives the reduction rules for top-level definitions and variables in the store.

Top-level definitions reduce either by extending the store with the new definition or,

if the variable is already bound in the store, by updating the store with the new

variable. The side condition on [5def] ensures that the rule applies only when x is

https://doi.org/10.1017/S0956796807006478 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796807006478

An operational semantics for Scheme 73

Fig. 14. Top level and variables.

not already bound in the store. Top-level beginD expressions (see section 7 for a

discussion of beginD) are erased, and their contents are flattened into the sequence

of definitions at the top level. Expressions that have been reduced to values at the

top level are dropped, as long as there are more definitions to evaluate. The values

of the final definition are retained. A reference to a variable in the store is replaced

by its value, and an assignment to a variable in the store updates the store with the

new value.

13 Procedures

The rules for procedure fall into three categories: procedure introduction, application

marking, and procedure application, as shown in Figure 15. Like cons cells,

procedures are not values, but pointers to them are. Procedures are modeled this

way so that we can model eqv?. The rule [5calloc] allocates fixed arity procedures.

The allocation for µlambda procedures always puts two procedures into the store: a

stub µlambda procedure whose body contains a call to an ordinary procedure, and

an ordinary procedure that contains the original µlambda’s body expressions. We

put both procedures into the store so that when a µlambda procedure is applied, we

can rewrite it into a corresponding call to the fixed-arity code pointer and thereby

use the same reduction for both kinds of applications.

The rules [5mark] and [5unmark] show how marks are placed into and removed

from applications, almost as in section 4. The only difference is that thunks that

appear as the first argument to #%call-with-values are not marked (and thus is not

moved into the store) in order to support evaluation in the body of the thunk (see

section 15).

Application of a procedure pointer to arguments is modeled by creating one new

binding in the store per formal argument, replacing the formal parameters in the

https://doi.org/10.1017/S0956796807006478 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796807006478

74 J. Matthews and R. B. Findler

Fig. 15. Procedures.

body with the new variables, and binding these new variables in the store to the

actual parameters. Application of a µlambda, [5µapp], allocates a list for its extra

arguments, applies the initial portion of the arguments as usual, and constructs a

list containing the rest of the arguments to be supplied to cp, the procedure that

contains the actual body of the original procedure.

The last two rules in Figure 15 specify the behavior of Scheme’s apply procedure.

It accepts a procedure and an arbitrary number of arguments, the last of which

must be a list. It calls the procedure with the arguments and the contents of the list

https://doi.org/10.1017/S0956796807006478 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796807006478

An operational semantics for Scheme 75

Fig. 16. Call/cc and dynamic-wind

as subsequent arguments. To specify this behavior, the two #%apply rules flatten out

the argument list and, when the list is exhausted, reduce to a normal application.

14 Call/cc and dynamic-wind

Our technique for modeling call/cc and dynamic-wind in the full semantics, shown in

Figure 16, is essentially the technique from section 8. Apart from the change of using

all function values rather than just (lambda () e) expressions, the only substantial

change concerns the continuation procedures. In the model for the Report language,

they accept any number of arguments, which become multiple return values when

the continuation is invoked. The trimming metafunction T is the same as the

function defined in Figure 9.

The first rule rewrites #%dynamic-wind to an expression that invokes its first argu-

ment thunk, pushes the dynamic context, invokes the second thunk, pops the dynamic

context, invokes the third thunk, and returns the result of the second thunk. To ensure

that the three thunks are invoked in the proper order but that the value of the second

thunk is returned, the rule uses an auxiliary procedure. The idea is that the proced-

ure’s argument holds the value of the second thunk while the third thunk is invoked.

If dynamic-wind only allowed a single value to be returned from its second argument

thunk, an expression similar to the one in the rule from section 8 would suffice.

(begin (v1)

(push · · ·)
((lambda (x) (pop) (v3) x)

(v2)))

https://doi.org/10.1017/S0956796807006478 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796807006478

76 J. Matthews and R. B. Findler

Fig. 17. Multiple values and call-with-values.

To cope with multiple values, however, v2 must be invoked via call-with-values , as

shown in the rule [5dw].

The second and third rules manipulate the dynamic context. The fourth rule

handles #%call/cc; it builds a variable arity procedure whose body throws to a

continuation and then passes that procedure to #%call/cc’s argument. The variable

x2 is used by the throw rule, [5throw]. That rule restores the definition evaluation

context from the point where the continuation was captured and, using the T

metafunction, inserts code at x2 to adjust the dynamic context.

15 Multiple values and call-with-values

Figure 17 shows our treatment of multiple values in the full language. It is nearly

identical to multiple values in section 5, and in particular the context arrangement,

promotion and demotion rules are the same: rule [5promote] promotes a single

value by wrapping it with a call to #%values in a multivalues context, and rule

[5demote] demotes a single value that is wrapped with #%values to a single value

when it occurs in a single-value context.

There is one twist, though, because lambda expressions in this semantics are not

values, but are moved into the store. To support #%call-with-values , the rule for

marking applications ([5mark] in figure 15) treats expressions of the form (lambda

() e e · · ·) as values, when they appear as the second argument to #%call-with-values .

In addition, the evaluation contexts from figure 10 allow evaluation in the body of

such lambda expressions, meaning that the rule [5cwvd] handles the main job of

#%call-with-values , i.e., combining its second argument with the values returned by

its first argument.

The next rule, [5cwvc] supports lambda expressions with multiple body expres-

sions; once an intermediate body expression is evaluated, its result is discarded, and

evaluation continues with the next one. The [5cwvw] handles the situation where

#%call-with-values ’s first argument is already a thunk in the store, or is a primitive

procedure.

https://doi.org/10.1017/S0956796807006478 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796807006478

An operational semantics for Scheme 77

Fig. 18. Eqv and equivalence.

16 Eqv? and equivalence

The Report does not specify the entire behavior of eqv?, but does require conform-

ing implementations of eqv? to satisfy these properties (when supplied with two

arguments):

• eqv? must return #t if its arguments refer to the same locations in the store;

• eqv? must return #f it its arguments are functions that behave differently;

• eqv? may return #t or #f if its arguments are functions that behavfe the same

way for all possible inputs, but have different locations; and

• eqv? must always return and always produce a boolean value.

We capture this behavior with the rules in Figure 18. The first rule corresponds

directly to the first bullet. The second and third rules capture the second and third

bullets above. In particular, when the two arguments are functions at different

locations that behave identically, both [5eqf] and [5eqproof] apply, indicating that

both #t and #f are legal results.

Since the Report does not specify how to determine whether two procedures are

equivalent we leave this open as well, but a natural choice for our setting would be

to build on the work of Mason and Talcott (1991) and Felleisen and Hieb (1992).

As a practical matter, our implementation always allows the [5eqproof] reduction

but warns those using our implementation by coloring terms in red when they

are only reachable by paths that use the [5eqproof] rule. For example, when this

program

(define f (lambda (x) x))

(define g (lambda (y) y))

(#%eqv? f g)

is run in our semantics it produces both #t and #f, but #t is only legal if the

procedures (lambda (x) x) and (lambda (y) y) have proven to behave identically.

Accordingly, our tool colors the term with #t in red. Figure 19 shows a screenshot,

starting from the program that the above reduces to, just before the [5eqproof] rule

applies.

It is possible to have multiple paths in the reduction graph that lead to the same

final answer, but where some paths require equivalence proofs and others do not.

https://doi.org/10.1017/S0956796807006478 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796807006478

78 J. Matthews and R. B. Findler

Fig. 19. PLT Redex GUI showing the terms requiring equivalence proofs.

For example, if we replace the final expression above with this one:

(if (#%eqv? f g) (#%+ 2 2) (#%∗ 2 2))

then no matter which way the test of the if expression goes, the final answer is

always 4. In situations like that, the tool colors only those intermediate states on

paths that require the extra proofs; where the paths converge, it drops the color.

17 Quote and eval

The rules for #%eval and quote in Figure 20 are essentially the same as the rules for

eval and quote in section 6. The first rule rewrites a non-empty quoted list into a

compile-time pair allocation and the second rule rewrites an empty quoted list into

#%null. The third rule is a generalization of the rule that drops the quote around

numbers from Figure 20, but here drops the quote around any self-quoting value.

The [5ccons] performs an allocation, replacing a ccons expression with a pointer

into the store. Finally, the [5eval] reifies its argument, leaving behind new program

text to evaluate. Its side condition guarantees that it applies only when the result

of reification is a well-formed expression. The R function is similar to the one in

Figure 6; the only difference is that it operates on programs in this semantics that

have #%cons and #%null instead of cons and null .

18 Errors

Figures 21 and 22 show all of the error reductions for this semantics. Each of the

rules in these figures rewrites a program into an error message and discards the

context, ensuring that no further reduction can take place. The Report, however,

does not specify that any of these errors should be signaled. In fact, it leaves all of

these situations completely unspecified. Accordingly, implementations that conform

to the Report may signal the errors as shown in the figures, or may do anything else

in these situations.

https://doi.org/10.1017/S0956796807006478 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796807006478

An operational semantics for Scheme 79

Fig. 20. Quote and eval.

The first two rules in Figure 21 cover arithmetic errors. The second rule reports

which argument is a nonnumber by counting the number of values in (v1. . .) and then

adding one. The next four cover errors for the pair primitives. The rules [5errvar]

and [5errset] cover free variable errors. The rule [5appe] covers application of

a nonfunction. The rules [5applye] and [5applen] cover abuse of #%apply. The

[5dwerr] covers bad arguments supplied to #%dynamic-wind and [5valerr] signals

an error when a single-value context receives too few or too many values. The last

two rules signal errors when #%eval gets the wrong number of arguments. The

Report says that the argument to eval “must be a valid Scheme expression” but that

“[i]mplementations may extend eval to allow non-expression programs (definitions)

as the first argument.” Rather than extending our #%eval to accept definitions, we

merely identify two different errors, one when #%eval’s argument is a definition and

one when it is ill-formed.

The rules in Figure 22 handle all of the arity error reductions, both for primitive

procedures and for user-defined procedures. The fun1 nonterminal contains all of the

primitive procedures of arity one, and fun2 contains all of the primitive procedures

of arity two. The remaining primitives, #%dynamic-wind , #%−, #%/, and #%apply,

are handled specially.

https://doi.org/10.1017/S0956796807006478 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796807006478

80 J. Matthews and R. B. Findler

Fig. 21. Nonarity errors.

19 Consistency

In an effort to ensure that our semantics is sensible and defines the language we

intend it to define, we have exploited its executable nature to build a test suite for it.

The test suite contains 258 test expressions that together explore more than 14,000

distinct program states. The largest test case requires 1317 states and the test case

with the most nondeterminism visits 71 different states that each have multiple next

states. Each test expression is checked against its expected result (or results), and

each intermediate state is checked to be sure it is an element of P .

https://doi.org/10.1017/S0956796807006478 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796807006478

An operational semantics for Scheme 81

Fig. 22. Arity errors.

As we worked on the semantics, we would often find that seemingly innocuous

changes in one part of the semantics would disrupt other parts. As an example,

when we improved the way that unspecified order of evaluation was handled, the

rules for #%call-with-values broke, without us realizing it until we ran the test suite.

Because we had test cases for #%call-with-values , however, the problem was quickly

identified and fixed. Usually the initial term of the failed test case was enough to

help us identify the problem and fix it. When that was not enough, we would first

try to make the test case as small as possible and then use PLT Redex to visualize

a small graph that had the problem. Understanding the problem via small examples

inevitably led to a solution.

The test suite is the source of most of our confidence that this semantics behaves

as we expect. But, as a further guarantee that the semantics is sensible, we also prove

that well-formed programs cannot get stuck.

Definition 1

A program P is well-formed if every pp, cp, mp that appears in the body of P is

bound in the store.

Theorem 1

For any well-formed program P , either there exists at least one A such that P →∗

A, or for every P ′ such that P →∗ P ′, there exists a well-formed P ′′ such that

P ′ → P ′′.

https://doi.org/10.1017/S0956796807006478 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796807006478

82 J. Matthews and R. B. Findler

Proof

The proof of this theorem is structured like a standard proof of type soundness,

but instead of guaranteeing that programs are well-typed, we only guarantee that

programs are well-formed. Lemma 1 plays the role of the preservation lemma

and lemma 2 plays the role of the progress lemma. Together they establish the

theorem. �

Lemma 1

If there exists some well-formed P ′ that reduces to P , then P is well-formed.

Proof

Follows by inspection of the reduction rules. �

Lemma 2

For any well-formed P , at least one of the following is true:

• P → P ′

• P → error: str for some error message str , or

• P = (store (sf · · ·) (dw (dws · · ·) (#%values v · · ·)))
Note that both the first and the second cases might apply to the same term, due

to the way we model unspecified order of evaluation, as discussed in section 4.

Proof

We proceed by cases on the structure of P . First, assume that P contains some

quoted subexpression or some ccons subexpression. Inspection of the S contexts

shows that, no matter where these expressions might occur, they will reduce either

by [5qcons], [5qnull], or [5qsqv] in the case of a quoted expression or by [5ccons]

in the case of a ccons expression.

To show that the remaining cases of P satisfy the lemma, we rely on lemma 3.

Examination of the top-level program context P and that lemma tells us that

an expression that appears at the top level of a well-formed program reduces

or is (#%values v · · ·). The only other cases are top-level definitions and beginD

expressions, which are covered by the first five reduction rules in Figure 14 and

[5valerr]. �

Lemma 3

Every e is at least one of

• v ,

• (#%values v · · ·),
• E [v]�,

• E [(#%values v · · ·)]◦, or

• E [i]◦

where i is one of the expressions that appears in the context in one of the reduction

rules, excluding [5promote], [5demote], or [5valerr].

Proof

This lemma follows directly from a straightforward inductive argument on the

structure of e, but is the key lemma in the proof of the theorem. It is complicated by

multiple values, but is analogous to a lemma that guarantees that each expression e

is either E [i] or v in more standard reduction systems. �

https://doi.org/10.1017/S0956796807006478 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796807006478

An operational semantics for Scheme 83

20 Conclusions

Our journey into the Report has once again revealed the value of mechanizing a

semantics. In addition to improving our own understanding of operational semantics

through the process of coaxing a machine to behave as the Report decrees, we have

also learned two lessons worth sharing.

First, we learned that the underspecification of the Report goes deep. It is

common knowledge that the Report specifies a family of programming languages

rather than just a single programming language, since implementations can vary on

a myriad of details: the order of evaluation of a function’s arguments, the results of

particular primitives, which errors to report and which to ignore, etc. There are so

many possibilities that writing implementation-independent Scheme code requires

tool support (Sitaram 2003). It is less well-known, however, that the Report is

actually even less specific than that — it specifies an entire family of semantics, due

to the specification of eqv?. The Report specifies that, when eqv?’s arguments are

procedures with different tags, an implementation may produce #t if it can prove that

procedures behave identically when presented with identical inputs (rule [5eqproof]

from Figure 18 in our semantics). Since the truth of this statement is as difficult

to prove as the observational equivalence of two phrases and the Report does not

suggest a specific proof system, the semantics itself must be parameterized over the

possible proof systems to use with this rule.

Second, and perhaps more importantly, we learned the importance of building a

test suite of programs and their expected behavior. Not only does a test suite ensure

that the semantics models the intended behavior, it also cuts down the number

of errors in the semantics. Much of the effort in mechanizing semantics today is

focused on automatically generating or verifying proofs of the meta-theory of a

semantics. While this effort is also clearly important, such proofs do not substitute

for the ability of test suites to ensure that the semantics is modeling what we expect

it to model, nor do they substitute for the understanding gained by exploring the

behavior of examples. This lesson is what has led us to spend significant efforts

on PLT Redex, and we believe its use will benefit the use of other tools for the

mechanization of semantic specifications.

Indeed, a test suite might have helped the authors of the Report discover an

inconsistency in their specification. In section 6.4, The Report’s informal semantics

says that “except for continuations created with the call-with-values procedure,

all continuations take exactly one value.” The formal semantics does not enforce

this restriction on expressions evaluated for their effects. These expressions are

evaluated by C, which does not use single; in contrast, E∗ also evaluates sequences

of expressions but does use single. For that reason, the two definitions of Scheme’s

begin given in Section 7.3 of the Report are subtly incompatible with each other.

The first requires (begin (values) 1) to evaluate to the implementation-specific result

of the wrong metafunction, which means that an implementation should signal an

error. The second requires it to evaluate to 1.7

7 Although the Report does not explicitly specify whether the wrong metafunction corresponds to the
“is an error” situation or the “signals an error” situation in the terminology of the informal semantics,

https://doi.org/10.1017/S0956796807006478 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796807006478

84 J. Matthews and R. B. Findler

Beyond test suites, the mechanization of the semantics also makes calculations

simple. As an example, the Report defines values using call/cc, but our semantics

models values directly (as #%values). The definition in the Report is

(define values

(lambda things

(call/cc

(lambda (cont)

(apply cont things)))))

To prove that this definition and the #%values in our semantics are observably

equivalent, one needs a standard lemma about contexts (Felleisen et al., 1987;

Mason & Talcott 1991) to conclude that the only interesting case is when the two

versions of values appear in an application context. So, we plugged the lambda

expression above into PLT Redex in an application context and voilà: 77 steps later,

out popped #%values in that same application context.

Overall, we hope that our experience leads others to provide good support for

experimenting with examples and maintaining test suites.

Acknowledgments

Thanks to Kent Dybvig and Matthew Flatt for helpful discussions and tips

concerning the inner workings of Chez Scheme (Dybvig 2005) and MzScheme

(Flatt 2006). Thanks to Mike Sperber for pointing out a flaw in our dynamic-

wind semantics and providing us with an example that demonstrated the problem,

in addition to other helpful comments about the draft. Thanks to Will Clinger

for enlightening discussions of semantics, Scheme, the Report in general, and the

Report’s specification of eqv? in particular. Thanks also to John Reppy, Dave

MacQueen, Matthias Felleisen, and the anonymous reviewers from ICFP 2005, the

Scheme and Functional Programming Workshop 2005, and JFP for their comments

on earlier versions of this work.

References

Clinger, W. D. (1998, June) Proper tail recursion and space efficiency. In ACM SIGPLAN

Conference on Programming Language Design and Implementation (PLDI), pp 66–67.

Clinger, W. D. & Hansen, L. T. (1994) Lambda, the ultimate label, or a simple optimizing

compiler for Scheme. ACM symposium on Lisp and Functional Programming. SIGPLAN

Lisp Pointers 7(3) (July–September 1994). Available at: http://www.ccs.neu.edu/home/

will/Larceny/. Accessed date: July 6, 2007.

Dybvig, K., Clinger, W., Flatt, M., Sperber, M. & van Straaten, A. (2006, June). The R6RS

status report. Available at: http://www.schemers.org/Documents/Standards/Charter/.

Accessed date: July 6, 2007.

the fact that it does not accept a continuation argument means it must actually be signaling an error.
The inconsistency between the two specifications of begin has been resolved in the working draft of
the Revised6 Report on Scheme, which states that intermediate expressions in begin statements should
be allowed to return multiple values (Dybvig et al. 2006).

https://doi.org/10.1017/S0956796807006478 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796807006478

An operational semantics for Scheme 85

Dybvig, R. K. (2005) Chez Scheme version 7 user’s guide. Cadence Research Systems.

Available at: http://www.scheme.com/. Accessed date: July 6, 2007.

Feeley, M. (2006) Gambit-C, version 4.0 beta 17. Available at: http://www.iro.umontreal.

ca/~gambit/. Accessed date: July 6, 2007.

Felleisen, M. (1987) The Calculi of lambda-v-cs Conversion: A Syntactic Theory of Control and

State in Imperative Higher-Order Programming Languages. Ph.D. thesis, Indiana University.

Felleisen, M. (1988) Lambda-v-CS: and extended lambda-calculus for Scheme. In Proceedings

of the Conference on LISP and Functional Programming.

Felleisen, M. & Flatt, M. (2006) Programming languages and lambda calculi.

Unpublished manuscript. Available at: http://www.cs.utah.edu/plt/publications/

pllc.pdf. Accessed date: July 6, 2007.

Felleisen, M. & Hieb, R. (1992) The revised report on the syntactic theories of sequential

control and state. Theor. Comput. Sci., 102, 235–271. Original version in: Technical Report

89-100, Rice University, June 1989.

Felleisen, M., Friedman, D. P., Kohlbecker, E. & Duba, B. (1987) A syntactic theory of

sequential control. Theor. Comput. Sci., 52(3) 205–237.

Flanagan, C. & Felleisen, M. (1999) The semantics of future and an application. J. Funct.

Program. 9, 1–31.

Flatt, M. (2006). PLT MzScheme: Language manual. Technical Report PLT-TR2006-1-v352.

PLT Scheme Inc. Available at: http://www.plt-scheme.org/techreports/. Accessed

date: July 6, 2007.

Flatt, M., Krishnamurthi, S. & Felleisen, M. (1999) A programmer’s reduction semantics

for classes and mixins. Formal Syntax Semant. Java, 1523, 241–269. Preliminary version

appeared in Proceedings of Principles of Programming Languages, 1998. Revised version is

Rice University technical report TR 97-293, June 1999.

Gasbichler, M., Knauel, E., Sperber, M. & Kelsey, R. A. (2003) How to add threads to a

sequential language without getting tangled up. In Workshop on Scheme and Functional

Programming.

GNU. (2006). MIT/GNU Scheme 7.7.90+. Available at: http://www.gnu.org/software/

mit-scheme/. Accessed date: July 6, 2007.

Harper, R. & Lillibridge, M. (1993) Explicit polymorphism and CPS conversion. In ACM

SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL).

Harper, R. & Stone, C. (1996) A Type-Theoretic Account of Standard ml 1996 (version 2).

Tech. rept. CMU-CS-96-136R. School of Computer Science, Carnegie Mellon University.

Haynes, C. T. & Friedman, D. P. (1987) Embedding continuations in procedural objects. In

ACM Transactions on Programming Languages and Systems, 9(4), 582–598.

Herman, D. & Meunier, P. (2004) Improving the static analysis of embedded languages via

partial evaluation. In ACM SIGPLAN International Conference on Functional Programming

(ICFP). New York: ACM Press, pp. 16–27.

Kelsey, R., Rees, J. & Sperber, M. (2005) Scheme 48. Available at: http://s48.org/. Accessed

date: July 6, 2007.

Kelsey, R., Clinger, W. & (Editors), Jonathan R. (1998) Revised5 report of the algorithmic

language Scheme. ACM SIGPLAN Notices, 33(9), 26–76.

Lee, D. K., Crary, K. & Harper, R. (2006) Mechanizing the Metatheory of Standard ML. Tech.

rept. CMU-CS-06-138. Carnegie Mellon University. Available at: http://www.cs.cmu.

edu/~crary/papers/2006/tslf.pdf. Accessed date: July 6, 2007.

Mason, I. & Talcott, C. (1991) Equivalence in functional languages with effects. J. Funct.

Program. 1(July), 287–327.

https://doi.org/10.1017/S0956796807006478 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796807006478

86 J. Matthews and R. B. Findler

Matthews, J. (2005) Operational semantics for Scheme via term rewriting. Tech. rept. TR-2005-

02. University of Chicago.

Matthews, J. & Findler, R. B. (2005) An operational semantics for R5RS Scheme. In Workshop

on Scheme and Functional Programming.

Matthews, J. & Findler, R. B. (2007) Operational semantics for multi-language programs. In

ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL).

Matthews, J., Finder, R. B., Flatt, M. & Felleisen, M. (2004) A visual environment for

developing context-sensitive term rewriting systems. In Proceedings of the International

Conference on Rewriting Techniques and Applications (RTA).

Miller, S. G. & Radestock, M. (2006) SISC for seasoned schemers. Available at: http://

sisc.sourceforge.net/. Accessed date: July 6, 2007.

Muller, R. (1992) M-LISP: A representation-independent dialect of LISP with reduction

semantics. ACM Transact. Program. Lang. Syst. 14(4).

Neubauer, M. & Sperber, M. (2001) Down with Emacs Lisp: Dynamic scope analysis. In

ACM SIGPLAN International Conference on Functional Programming (ICFP).

Oliva, D. P., Ramsdell, J. D. & Wand, M. (1995) The VLISP verified prescheme compiler.

Lisp and Symbol. Comput. 8(1/2).

Project GNU. (2005) Guile reference manual. Available at: http://www.gnu.org/software/

guile/. Accessed date: July 6, 2007.

Ramsdell, J. D. (1992) An operational semantics for Scheme. Lisp Point. 2(April–June).

Reppy, J. (1999) Concurrent Programming in ML. Cambridge University Press.

Serrano, M. (2006) Bigloo: A Practical Scheme compiler. Available at: http://www-sop.

inria.fr/mimosa/fp/Bigloo/. Accessed date: July 6, 2007.

Sitaram, D. (2003) Porting Scheme programs. In Scheme and Functional Programming

Workshop.

Sussman, G. J. & Guy, L. S., Jr. (1975) Scheme: An interpreter for extended lambda calculus.

Tech. rept. AI Lab Memo AIM-349. MIT AI Lab.

van Straaten, A. (2002) An executable denotational semantics for scheme. Available at:

http://www.appsolutions.com/SchemeDS. Accessed date: July 6, 2007.

Winkelmann, F. L. (2006) Chicken: A practical and portable scheme system. Available at:

http://www.call-with-current-continuation.org/. Accessed date: July 6, 2007.

Wright, A. & Felleisen, M. (1994) A syntactic approach to type soundness. Inform. Comput.

38–94. First appeared as Technical Report TR160, Rice University, 1991.

https://doi.org/10.1017/S0956796807006478 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796807006478

