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On the period of Li, Pertusi, and Zhao’s
symplectic variety
Franco Giovenzana , Luca Giovenzana , and Claudio Onorati
Abstract. We extend classical results of Perego and Rapagnetta on moduli spaces of sheaves of type
OG10 to moduli spaces of Bridgeland semistable objects on the Kuznetsov component of a cubic
fourfold. In particular, we determine the period of this class of varieties and use it to understand
when they become birational to moduli spaces of sheaves on a K3 surface.

1 Introduction

The theory of moduli spaces of sheaves on algebraic surfaces is arguably one of the
most important and fruitful research areas of the last decades. In particular, moduli
spaces of sheaves on K3 surfaces have been extensively studied in relation to the
geometry of irreducible holomorphic symplectic manifolds, i.e., simply connected
compact Kähler manifolds with a unique up to scalar non-degenerate holomorphic
two-form.

Let (S , H) be a polarized K3 surface, let v = v(F) be the Mukai vector of a coherent
sheaf F on S , and let M be the moduli space of Gieseker semistable sheaves on S
of Mukai vector v. It is known that when v is primitive, i.e., not of the form v = kw
with k ≠ ±1, and v2 ≥ −2 and H is generic with respect to v, then the moduli space is
nonempty, irreducible, and symplectic (see [Yos01] for the final statement of a long
list of works). In this case, any semistable sheaf is stable. On the other hand, if the
Mukai vector is not primitive, then the singular locus of M coincides with the strictly
semistable locus, which may be nonempty. By the seminal work of Mukai [Muk84],
the stable locus always carries a holomorphic symplectic form, but in general, there
are no symplectic resolutions of singularities. More precisely, if the polarization is
v-general, we have that (see [KLS06, LS06]):
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On the period of Li, Pertusi, and Zhao’s symplectic variety 1433

• if v = 2w with w2 = 2, then there exists a symplectic resolution of singularities;
• if v = kw with w2 ≠ 2 or w2 = 2 and k ≥ 3, then there are no symplectic resolutions

of singularities.
In the former case, which we are interested in, the desingularization M̃ is an irre-
ducible holomorphic symplectic manifold of type OG10. Its geometry is quite well
understood nowadays, in particular, its Hodge structure is abstractly described by
Perego and Rapagnetta [PR14]. We recall these works in Section 2.

The first aim of this paper is to generalize these results to the noncommutative
case. Since Bridgeland’s work on stability conditions (see [Bri07]), the realm of
moduli spaces welcomed more general objects, namely, moduli spaces parametrizing
semistable objects in the derived category of coherent sheaves on a K3 surface.
Even more generally, stability conditions have been recently constructed on some K3
categories (often called noncommutative K3 surfaces). Examples of these are given
by the Kuznetsov component of a smooth cubic fourfold. This level of generality is
the one we consider in this paper. The machinery to study these objects has been
rigorously developed in [BLMNPS21], where the case of a primitive Mukai vector is
comprehensively analyzed.

Recently Li, Pertusi, and Zhao studied moduli spaces of Bridgeland semistable
objects in the K3 category of a cubic fourfold with a nonprimitive Mukai vector of
the form v = 2w, with w2 = 2 (see [LPZ20]; we recall some of their work in Section 3).
These varieties are called LPZ varieties in the following. As in the classical case, they
show that a symplectic resolution of singularities exists and the resulting manifold
is an irreducible holomorphic symplectic manifold of type OG10. Paralleling the
classical works of Perego and Rapagnetta [PR13, PR14], we determine the periods
of both the singular moduli space and its desingularization (see Propositions 3.8
and 3.15).

As a first corollary, we get a Torelli-like statement that compares the birational
geometry of LPZ varieties with a particular Mukai vector (see Example 3.6) with
the geometry of the cubic fourfold. More precisely, in Theorem 3.14, we prove
that the existence of a birational morphism between two such varieties, satisfy-
ing two additional assumptions, implies that the underlying cubic fourfolds are
isomorphic.

As a second corollary, we get the following analog of the main result of [PR14]:

An LPZ variety is either locally factorial or 2-factorial.

See Corollary 3.16 for the precise statement.
In the rest of the paper, we use the results of Section 3 to investigate the following

natural question.

Q: When is an LPZ variety birational to a moduli space of sheaves on a (twisted) K3 surface?

We give a complete answer to this question in the non-twisted case in Theorem 4.2.
As expected, such a birational isomorphism exists as soon as the cubic fourfold has an
associated K3 surface. When the K3 surface is twisted though, we need to rigidify our
hypothesis, and we prove a similar statement under the assumption that the birational

Downloaded from https://www.cambridge.org/core. 11 Jan 2025 at 19:41:32, subject to the Cambridge Core terms of use.

https://www.cambridge.org/core


1434 F. Giovenzana, L. Giovenzana, and C. Onorati

map is stratum preserving in Proposition 4.1. Here, a stratum preserving birational
map is a birational map that is well-defined at the generic point of the singular locus
of the first variety and maps it to the generic point of the singular locus of the second
variety.

The same question for Fano varieties of lines of cubic fourfolds and for the so-called
Lehn–Lehn–Sorger–van Straten symplectic eightfolds has been previously answered,
by similar methods, in [Add16, AG20, Huy17, LPZ18]. From this point of view, the
present work can be thought as a natural continuation of the aforementioned works.
Recently, similar results of the ones in the present paper appeared in [FGG23].

Finally, in [LPZ20, Theorem 1.3], it is proved that certain LPZ varieties are bira-
tional to an irreducible holomorphic symplectic manifold of type OG10 that com-
pactifies the twisted intermediate Jacobian fibration associated with a cubic fourfold
(see [Voi18]). Using this remark, in Theorem 5.3, we give an answer to the following
question.

Q: When is an LPZ variety birational to an LSV variety?

An LSV variety is an irreducible holomorphic symplectic manifold of type OG10
that compactifies the intermediate Jacobian fibration associated with a cubic fourfold
(see [LSV17, Sac20]; see also Section 5).

2 Moduli spaces of sheaves on a K3 surface

2.1 Classical theory

Let S be a projective K3 surface, and let v ∈ Ktop(S) be a positive Mukai vector (see
[Yos01, Definition 0.1]). For a choice of an ample divisor H, we consider the moduli
space Mv(S , H) of Gieseker–Maruyama H-semistable sheaves on S of class v. When
v is primitive and H is chosen generic with respect to v (see [PR13, Section 2.1]), the
space Mv(S , H) is a nonempty smooth and projective variety deformation equivalent
to a Hilbert scheme of points of a K3 surface (see [Yos01, Theorem 8.1]). Here, we are
interested in the case v is nonprimitive as described in the following theorem.

Theorem 2.2 ([O’Gr99] and [LS06, Théorème 1.1]) Suppose that v = 2w, where w is
primitive and w2 = 2. If H is generic with respect to v, then Mv(S , H) is a nonempty
projective singular symplectic variety of dimension 10. Moreover, there exists a symplectic
desingularization

π∶ M̃v(S , H) �→ Mv(S , H),

where M̃v(S , H) is a smooth and projective irreducible holomorphic symplectic variety.
Moreover, M̃v(S , H) is obtained by blowing up Mv(S , H) at the singular locus with
reduced scheme structure.

Any irreducible symplectic manifold that is deformation equivalent to M̃v(S , H)
is said to be of type OG10. Any singular symplectic variety that is locally trivially
deformation equivalent to Mv(S , H) is said to be singular of type OG10. (This
makes sense since, by [PR13, Theorem 1.6], the moduli spaces and the respective
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desingularizations obtained in the theorem are all deformation equivalent to each
other.)

Recall that Ktop(S) is a unimodular lattice of rank 24, where the pairing is given
by the opposite of the Euler pairing. For v ∈ Ktop(S), we denote by v⊥ the sublattice
of Ktop(S) of vectors that are orthogonal to v. Recall also that Ktop(S) ≅ Heven(S ,Z),
and it comes with a pure Hodge structure of weight 2 obtained by declaring

Heven(S ,C)2,0 ∶= H2,0(S), Heven(S ,C)0,2 ∶= H0,2(S),

and

Heven(S ,C)1,1 ∶= H0(S) ⊕ H1,1(S) ⊕ H4(S).

In particular, v⊥ inherits a Hodge structure of weight 2 as well.
Notice also that the free Z-module Heven(S ,Z) inherits a lattice structure from

Ktop(S), and from now on, we use the more common notation H̃(S ,Z) in order to
explicit this lattice structure.

Finally, we say that two lattices, both with a Hodge structure, are Hodge-isometric
if there exists an isometry that is also an isomorphism of Hodge structures.

Proposition 2.3 (See [PR13, Theorem 1.7] and[PR14, Theorem 3.1]) Let S, H and v
be as in the theorem above, and let π∶ M̃v(S , H) �→ Mv(S , H) be the desingularization
morphism.
(1) The pullback

π∗∶H2(Mv(S , H),Z) �→ H2(M̃v(S , H),Z)

is injective. In particular, H2(Mv(S , H),Z) has a pure Hodge structure of weight
two and inherits a non-degenerate lattice structure.

(2) The lattice H2(Mv(S , H),Z) is Hodge-isometric to the lattice v⊥.
(3) The Beauville–Bogomolov–Fujiki lattice H2(M̃v(S , H),Z) is Hodge-isometric to

the lattice

Γv = {(x , k σ
2
) ∈ (v⊥)∗ ⊕Z

σ
2
∣ k ∈ 2Z⇔ x ∈ v⊥} ,(2.1)

where σ 2 = −6 and corresponds to the class of the exceptional divisor of π. Here, the
Hodge structure of Γv is defined by the Hodge structure on v⊥ and by declaring the
class σ to be of type (1, 1).

Remark 2.4 Note that item (1) holds true for any singular symplectic variety by the
work of Bakker and Lehn (see [BL21, Lemmas 2.1 and 3.5] and, more generally, [BL18,
Section 5]).

2.5 Moduli of objects in the derived category

As before, let S be a projective K3 surface, and let Db(S) be its derived category of
coherent sheaves. By [Bri07, Theorem 1.2], there exists a complex manifold Stab(S) of
Bridgeland stability conditions on Db(S) and, as customary, we denote by Stab†(S)
the distinguished connected component containing geometric stability conditions
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(see [Bri08, Theorem 1.1]). If v ∈ Ktop(S) is a Mukai vector, then Stab†(S) is decom-
posed in walls and chambers with respect to v, and we say that a stability condition
is generic if it belongs to one of the (open) chambers. By [BM14a, Theorem 1.3]
and [BM14b, Theorem 2.15], if τ ∈ Stab†(S) is generic, then there exists a nonempty
coarse moduli space Mv(S , τ), parametrizing S-equivalence classes of objects that are
semistable with respect to τ. Moreover, Mv(S , τ) is a normal projective and irreducible
variety with Q-factorial singularities, and if v is primitive, then Mv(S , τ) is smooth
and deformation equivalent to a Hilbert scheme of points on S.

Theorem 2.6 [MZ16, Proposition 2.2 and Corollary 3.16] Let τ ∈ Stab†(S) be generic
and v = 2w, with w primitive and w2 = 2. Then Mv(S , τ) is singular, the singular locus
being the locus of strictly semistable objects, and there exists a symplectic resolution of
singularities

π∶ M̃v(S , τ) �→ Mv(S , τ).

Moreover, M̃v(S , τ) is a projective irreducible holomorphic symplectic manifold of type
OG10.

Under the genericity assumption of the stability condition, the singular locus of
Mv(S , τ) is isomorphic to Sym2 Mw(S , τ). (This classical result is usually referred to
[O’Gr99, Lemma 1.1.5], by using the tools developed in the proof of [BM14a, Theorem
1.3].)

As before, let us describe the second cohomology groups of the singular and
the smooth moduli spaces. The following result is due to Meachan and Zhang, we
only prove the third statement, since it is not written anywhere, but all the tools are
contained in [MZ16].

Proposition 2.7 [MZ16, Theorem 2.7] Let S, v = 2w and τ be as above, and let
π∶ M̃v(S , τ) �→ Mv(S , τ) be the desingularization morphism.
(1) The pullback

π∗∶H2(Mv(S , τ),Z) �→ H2(M̃v(S , τ),Z)

is injective. In particular, H2(Mv(S , τ),Z) has a pure Hodge structure of weight
two and inherits a non-degenerate lattice structure.

(2) The Mukai morphism defines a Hodge isometry

θv ∶ v⊥ �→ H2(Mv(S , τ),Z)

that is invariant under Fourier–Mukai equivalences.
(3) The Beauville–Bogomolov–Fujiki lattice H2(M̃v(S , τ),Z) is Hodge-isometric to the

lattice Γv defined in (2.1).

Proof The only statement that is not contained in [MZ16, Theorem 2.7] is the last
one: its proof is essentially implicit in loc. cit., so we quickly recall the main ideas.
By [BM14a, Lemma 7.3], the moduli space Mv(S , τ) is isomorphic to a moduli space
Mṽ(S′ , α, H) of H-Gieseker semistable α-twisted sheaves on a (possibly different)
twisted K3 surface S′; the vector ṽ = 2w̃ is a Fourier–Mukai transform of v = 2w.
Therefore, it is enough to prove the claim in this case. As recalled in the proof of
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[MZ16, Proposition 2.2] (see [Lie07]), moduli of twisted sheaves are constructed
as GIT quotients and have the same deformation theory as untwisted sheaves. In
particular, M̃ṽ(S′ , α, H) is constructed by blowing up the singular locus (which,
under our genericity assumptions, is isomorphic to Sym2 Mw̃(S′ , α, H)) with its
reduced scheme structure. We first claim that the exceptional divisor Σ̃ṽ(α) of this
resolution is an element of square −6 and divisibility 3 in the Beauville–Bogomolov–
Fujiki lattice H2(M̃ṽ(S′ , α, H),Z). In order to prove this, we start by noticing that
by [MZ16, Lemma 3.3 and Propositions 3.7 and 3.9], one can locally trivially deform
Mṽ(S′ , α, H) to a moduli space of untwisted sheaves (notice that [MZ16, Proposition
3.7] holds conditionally to some technical assumptions, which we can always assume
by performing a first general deformation of the twisted K3 surface). More precisely,
there exists a curve B and a locally trivial family

p∶M�→ B,

such that Mb1 = Mṽ(S , α, H) and Mb2 = Mv′′(S′′ , H′′) for some polarized K3 surface
(S′′ , H′′). If

p̃∶ M̃�→ B(2.2)

is the induced family of the desingularizations (i.e., the relative blow-up of the singular
loci), then by the proof of [PR13, Proposition 2.16], we get that the exceptional divisors
of the fibers form a flat section σ̃ of the local system R2 p̃∗Z. (Here and in the following
all the local systems, we consider come with a distinguished connection, the Gauss–
Manin connection, and flatness of a section has to be interpreted with respect to this
connection.) Therefore, the claim follows from the untwisted case (see [Rap08]).

Now, define the homomorphism

fṽ(S′ , α, H)∶ Γṽ �→ H2(M̃ṽ(S , α, H),Z)

(x , k σ
2
) ↦ π∗(θ ṽ(x)) + k

2
Σ̃ṽ(α),

where π∶ M̃ṽ(S′ , α, H) �→ Mṽ(S′ , α, H) is the desingularization map and Σ̃ṽ(α) is the
class of the corresponding exceptional divisor. Let p̃∶ M̃�→ B be a family as in (2.2).
If Γ̃ṽ is the trivial local system on B with stalk Γṽ , then fṽ(S′ , α, H) extends to a
morphism of local systems

fB ∶ Γ̃ṽ �→ R2 p̃∗Z.

The proof is concluded as soon as fb is a Hodge-isometry for one point b ∈ B. By defi-
nition of p̃∶ M̃�→ B, there exists b ∈ B such that the fiber M̃b is isomorphic to a moduli
space of untwisted sheaves; and hence, the claim follows from Proposition 2.3. ∎

Remark 2.8 The main tool in the results above is [BM14a, Lemma 7.3], which
translates problems on Mv(S , τ) to problems on Mṽ(S , α). Hidden in the proof of
Proposition 2.7 (more precisely in the proof of [MZ16, Proposition 2.2]), there is the
statement that everything we said so far holds for moduli spaces of twisted sheaves
on a K3 surface. (For primitive Mukai vectors, the analogous statement is [BM14a,
Theorem 6.10].) In particular, for a generic choice of the polarization, Mṽ(S , α)
admits a symplectic desingularization M̃ṽ(S , α) obtained by blowing up the singular
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locus (identified with Sym2Mṽ/2(S , α)) with its reduced scheme structure. Moreover,
M̃ṽ(S , α) is an irreducible holomorphic symplectic manifold, H2(Mṽ(S , α),Z) is
Hodge-isometric to ṽ⊥ and H2(M̃ṽ(S , α),Z) is Hodge-isometric to Γṽ . We will use
this remark later in the proof of Theorem 4.1.

3 LPZ varieties

Let V be a smooth cubic fourfold, and let AV be the Kuznetsov component defined
by the semi-orthogonal decomposition

Db(V) = ⟨AV ,OV ,OV(1),OV(2)⟩.(3.1)

The category AV is a CY2-category (see [Kuz04, Corollary 4.3]; see also [Kuz19] for a
general account about Calabi–Yau categories). The Mukai lattice H̃(AV) introduced
in [AT14, Definition 2.2] is defined as

H̃(AV) ∶= ⟨[OV ], [OV(1)], [OV(2)]⟩⊥ ⊂ Ktop(V).

Here, Ktop(V) is the topological K-theory of V equipped with the Euler pairing.
The Mukai lattice is equipped with a pure Hodge structure of weight 2 induced by
the Hodge structure on H∗(V ,Z). More precisely, if v∶Ktop(V) �→ H∗(V ,Q) is the
morphism associating to a sheaf F the vector v(F) = ch(F)

√
tdV , then

H̃(AV)2,0 = v−1 (H3,1(V)) .

As an abstract lattice, H̃(AV) is isometric to U⊕4 ⊕ E8(−1)⊕2, where U is the uni-
modular hyperbolic plane and E8(−1) is the negative definite lattice associated with
the Dynkin diagram E8 (see [AT14, Section 2.3]). Notice that if AV ≅ Db(S), for some
K3 surfaces S, then there is a Hodge-isometry

H̃(AV) ≅ H̃(S ,Z).

If pr∶Db(V) �→ AV denotes the projection functor with respect to the decompo-
sition (3.1), we define the elements λ1 , λ2 ∈ H̃(AV) as the classes of pr(Ol(1)) and
pr(Ol(2)), respectively. Here, l ⊂ V is a line. The classes λ1 and λ2 are algebraic,
i.e., λ1 , λ2 ∈ H̃1,1(AV), and they generate a lattice isometric to A2, the rank 2 lattice
associated with the Dynking diagram A2. More precisely, λ2

i = 2 and (λ1 , λ2) = −1
(see [AT14, (2.5)]). Notice that the lattice A2 is always contained in the algebraic part
of H̃(AV) by construction, and they coincide for the very general cubic fourfold.
Moreover, the orthogonal complement A⊥2 in H̃(AV) is Hodge isometric to the
primitive cohomology group H4(V ,Z)prim (see [AT14, Proposition 2.3]).

Stability conditions on AV have been constructed in [BLMS23, Theorem 1.2]. Let
λ ∈ H̃(AV)1,1 be a Mukai vector, and let us suppose that λ = 2λ0, where λ0 is primitive
and λ2

0 = 2. For example, we can take λ0 = λ1 + λ2. For a generic stability condition τ,
we consider the moduli stack Mλ(V , τ) of τ-semistable objects in AV . Here, generic
means that any strictly semistable object of class λ is S-equivalent to the direct sum
of two stable objects of class λ0. The moduli stack Mλ(V , τ) has a good moduli space
Mλ(V , τ) that exists as a proper algebraic space (see [BLMNPS21, Theorem 21.24]).
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Theorem 3.1 [LPZ20, Theorem 1.1] Under the hypothesis above, there exists a smooth
and projective variety M̃λ(V , τ) and a symplectic resolution

π∶ M̃λ(V , τ) �→ Mλ(V , τ).

Moreover, M̃λ(V , τ) is an irreducible holomorphic symplectic manifold of type OG10.

As in the classical case, the singular locus of Mλ(V , τ) is identified with the
symmetric product Sym2 Mλ0(V , τ), and the morphism π is the blow-up of Mλ(V , τ)
at the singular locus (with its reduced scheme structure).

Let us recall the main features of Mλ(V , τ) and M̃λ(V , τ).

Lemma 3.2 Mλ(V , τ) is a normal and projective variety.

Proof This is explained in the proof of [LPZ20, Theorem 3.1] (see [LPZ20, Section
3.7]). First of all, Li, Pertusi, and Zhao prove that there exists an ample line bundle L
on Mλ(V , τ), giving an embedding of Mλ(V , τ) into a projective space. By [SP18,
Lemma 0D2W], one concludes that Mλ(V , τ) is a scheme. Now, as explained in
[LPZ20, Remark 3.6], Mλ(V , τ) has a local description in terms of nilpotent orbits
as in the classical case, from which it follows at once both the normality and the fact
that Mλ(V , τ) is a variety. ∎

Lemma 3.3 Mλ(V , τ) is a singular symplectic variety, in particular, it has rational
singularities.

Proof This follows from the fact that Mλ(V , τ) admits an irreducible symplectic
resolution. Thus, it has canonical singularities, hence rational singularities [Elk81] (see
also [Bea00, Proposition 1.3]). ∎

Lemma 3.4 Hi(Mλ(V , τ),Z) has a pure Hodge structure of weight i, for i = 1, 2.
Moreover, the pullback map

π∗∶H1(Mλ(V , τ),Z) �→ H1(M̃λ(V , τ),Z)

is an isomorphism and the pullback map

π∗∶H2(Mλ(V , τ),Z) �→ H2(M̃λ(V , τ),Z)

is injective.
In particular, H2(Mλ(V , τ),Z) is endowed with a non-degenerate symmetric bilin-

ear form induced by the one on M̃λ(V , τ) via π∗, turning it into a lattice of signature
(3, b2(Mλ(V , τ)) − 3).

Proof As we already noticed in Remark 2.4, since Mλ(V , τ) is a projective variety
with rational singularities, this is [BL21, Lemmas 2.1 and 3.5]. ∎

Remark 3.5 Since Mλ(V , τ) is a singular symplectic variety, H2(Mλ(V , τ),Z) has
an intrinsic non-degenerate symmetric bilinear form turning it into a lattice by [BL18,
Section 5] and the references therein. This intrinsic lattice structure coincides with the
one induced by the irreducible symplectic desingularization as in the Lemma 3.4.

Example 3.6 (The vector λ = 2λ1 + 2λ2) Let V be a smooth cubic fourfold, and let
Y ⊂ V be a smooth linear section. Let E be a rank 2 vector bundle on Y with trivial
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first Chern class and second Chern class of degree 2. This is called an instanton
bundle of charge 2 on a smooth cubic threefold (see [Dru00] for a detailed study
of the corresponding moduli space). Let i∶Y �→ V be the closed embedding and set
F = i∗E; it is easy to see that F ∈ AV . Li, Pertusi, and Zhao prove in [LPZ20] that
there exists a stability condition τ̄ such that F is τ̄-stable (this stability condition is
the one constructed in [BLMS23] when V is very general). Moreover, by a direct
computation, one can see that the Mukai vector of F is λ = 2λ1 + 2λ2. The stability
condition τ̄ is generic with respect to λ and the moduli space Mλ(V , τ̄) admits a
desingularization M̃λ(V , τ̄) that is an irreducible holomorphic symplectic manifold
of type OG10. Moreover, in [LPZ20, Section 6], the authors construct a birational
Lagrangian fibration structure on M̃λ(V , τ̄) and show that M̃λ(V , τ̄) is in fact
birational to the twisted intermediate Jacobian fibration constructed in [Voi18] (cf.
Section 5).

The generality assumption can conjecturely be made more precise by saying that V
does not contain a plane or a rational cubic scroll (see [LPZ20, Section 5.7] for the case
of a rational cubic scroll—the case of a plane is expected to behave similarly), and in
these two cases, one expects to find examples of the walls of the Kähler cone described
in [MZ16] (in the singular setting) and [MO22] (in the desingularization).

Denote, by M s
λ(V , τ) ⊂ Mλ(V , τ), the open subset consisting of stable objects and

take a quasi-universal family F ∈ D(M s
λ(V , τ) × V)perf of similitude ρ (see [BM14a,

Definition 4.5 and Remark 4.6]). Consider the induced map

θ′∶ H̃(AV) �→ H2(M s
λ(V , τ),Q), x ↦ 1

ρ
[pM s∗ (ch(F).p∗V (x∨

√
tdV))]1

,

where pV ∶V × M s
λ(V , τ) �→ V and pM s ∶V × M s

λ(V , τ) �→ M s
λ(V , τ) are the projec-

tions and x∨ is the dual class to x in Ktop(V). In the following, we work with the
restriction

θ′λ ∶ λ⊥ �→ H2(M s
λ(V , τ),Q),

which do not depend on the choice of the quasi-universal family. Our first remark is
that this morphism extends to a morphism to H2(Mλ(V , τ),Z).

Lemma 3.7 The following pullback morphism is an isomorphism:

i∗∶H2(Mλ(V , τ),Q) �→ H2(M s
λ(V , τ),Q).

In particular, there exists a canonical morphism θλ making the diagram

λ⊥

θ′λ ����
���

���
���

�
θ λ �� H2(Mλ(V , τ),Q)

i∗������
���

����
���

H2(M s
λ(V , τ),Q)

commutative.

Proof First of all, notice that the claim is topological in nature, and that the variety
Mλ(V , τ) is a locally trivial deformation of a singular moduli space Mv(S , H), where
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S is a K3 surface, v = 2w with w2 = 2 and H is generic with respect to v. Therefore,
it is enough to prove the claim for M = Mv(S , H). This is essentially done in [PR13,
Lemma 3.7] (see also the second paragraph of [PR13, p. 18]), let us briefly explain why.
In the proof of [PR13, Lemma 3.7], Perego and Rapagnetta prove that there exists a
commutative diagram with exact rows

0 ��

��

H2(M ,Z) ��i∗ ��
� �

π∗
��

H2(M s ,Z)

≅

��
Z
� � c̃ �� H2(M̃ ,Z) “̃ �� �� H2(π−1(M s),Z),

where π∶ M̃ �→ M is the symplectic resolution and c̃(1) = Σ̃ is the exceptional divisor.
Notice that the image of c̃ is not contained in π∗(H2(M ,Z)), so that eventually
the defect of surjectivity of i∗ is contained in the torsion part of the quotient
H2(M̃ ,Z)/H2(M ,Z). Since the latter is a finite group, the claim follows. ∎

Proposition 3.8 The homomorphism θλ is integral, i.e.,

θλ(λ⊥) ⊆ H2(Mλ(V , τ),Z).

Moreover,

θλ ∶ λ⊥ �→ H2(Mλ(V , τ),Z)

is a Hodge-isometry.

Proof The claims follow at once via a deformation argument.
Let V�→ (B, 0) be a deformation of V over a curve B such that for a point b ∈ B

the cubic fourfold Vb has an associated K3 surface S with Db(S) ≃ AVb . By [LPZ20,
Proposition 3.7], the relative moduli space

p∶M�→ B

exists and is a locally trivial deformation of M0 = Mλ(V , τ) with Mb isomorphic to
Mλ(S , τ) for some stability condition τ on Db(S).

Since θ′λ ,Q is defined via a quasi-universal family, it also deforms: there exists a
well-defined morphism of local systems

θ̃∶ λ⊥Q �→ R2 p∗Q.

Now, over the point b, the map θ̃b coincides with the map θλ ∶ λ⊥ �→ H2(Mλ(S , τ),Q)
which is integral and a Hodge-isometry by item (2) of Proposition 2.7 (more precisely,
[MZ16, Theorem 2.7]). Since B is connected, the same must be true for any other point
of B, in particular for 0. ∎

Remark 3.9 If the Mukai vector v is primitive, the same result is [BLMNPS21,
Theorem 29.2].

Corollary 3.10 Under the hypotheses above, one has that

Pic(Mλ(V , τ))= H1,1(Mλ(V , τ),Z)= H1,1(Mλ(V , τ))∩ H2(Mλ(V , τ),Z)≅(λ⊥)1,1 .
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Proof Straightforward (see [MZ16, Corollary 2.8] for the analogous result in the
commutative case). ∎

Corollary 3.11 Suppose that λ ∈ A2. Then there exists an isometric embedding of Hodge
structures

ξλ ∶H4(V ,Z)prim �→ H2(Mλ(V , τ),Z).(3.2)

Proof Since λ ∈ A2 ⊂ H̃(AV ,Z) and A⊥2 = H4(V ,Z)prim by [AT14, Proposition 2.3],
we have a natural inclusion

H4(V ,Z)prim ⊂ λ⊥

that preserves both the lattice and the Hodge structures. Then, ξλ is defined as the
restriction of θλ and the claim follows from Proposition 3.8. ∎

Remark 3.12 (The Donaldson morphism) Let S be a projective K3 surface and
v = (2, 0,−2). The moduli space Mv(S , H) is the singular variety studied in the
original paper [O’Gr99]. For what follows, we refer to the book [FM94]. A general
point in Mv(S , H) corresponds to a slope-stable rank 2 vector bundle E on S whose
first Chern class vanishes and whose second Chern class has degree 4. The underlying
complex vector bundle of E has the structure of a SU(2)-principal bundle and it
admits an anti-self-dual connection of charge 0. In fact, more precisely, the open
locus M lf

v (S , H) of locally free sheaves is isomorphic (as a real analytic space) to
the corresponding moduli space of anti-self-dual connections (see [FM94, Theorem
IV.3.9]). By Uhlenbeck’s Weak Compactness Theorem (cf. [FM94, Theorem III.3.15]),
the space of anti-self-dual connections admits a natural compactification that we
denote by MU

S . By [Li93, Corollary 4.3], the Uhlenbeck space MU
S has an algebraic

structure and there exists a divisorial contraction ϕ∶M(2,0,−2)(S , H) �→ MU
S (see also

[O’Gr99, Section 3.1]). The Donaldson morphism is the morphism

δ∶H2(S ,Z) �→ H2(MU
S ,Z)

defined by taking the slant product with a universal bundle (see [FM94, Theorems
III.3.10 and III.6.1]). Notice that it is injective (cf. [FM94, Proposition VII.2.17]).
Pulling back via ϕ gives an injective morphism

ξS = ϕ∗ ○ δ∶H2(S ,Z) �→ H2(M(2,0,−2)(S , H),Z).

If U ⊂ Heven(S ,Z) is the hyperbolic plane generated by H0(S ,Z) and
H4(S ,Z), then v = (2, 0,−2) ∈ U and H2(S ,Z) = U⊥ ⊂ v⊥. By definition, the
Donaldson morphism coincides with the restriction to H2(S ,Z) of the morphism
v⊥ �→ H2(Mv(S , H),Z) (see Proposition 2.3).

Now, by definition λ ∈ A2 ⊂ H̃(AV) and by [AT14, Proposition 2.3]
A⊥2 = H4(V ,Z)prim. Moreover, when V has an associated K3 surface, then there
is a Hodge-isometric embedding H2(S ,Z)prim �→ H4(V ,Z)prim (see [Huy18,
Proposition 1.25]).

Therefore, we regard ξλ in Corollary 3.11 as a generalized version of the Donaldson
morphism.
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Example 3.13 Let V be a smooth cubic fourfold and consider the LPZ variety in
Example 3.6. There is a Hodge-isometric embedding

H4(V ,Z)prim �→ H2(M̃2λ1+2λ2(V , τ),Z)(3.3)

obtained by composing the Donaldson morphism (3.2) with the pullback by the
desingularization map (see Lemma 3.4). We claim that the orthogonal complement
of H4(V ,Z)prim in H2(M̃2λ1+2λ2(V , τ),Z) is generated by the class of the excep-
tional divisor and by an algebraic and isotropic class. In fact, by [LPZ20, Theorem
1.3], M̃2λ1+2λ2(V , τ) is always birational to an irreducible holomorphic symplectic
manifold having a Lagrangian fibration structure. If bV ∈ Pic(M̃2λ1+2λ2(V , τ)) is the
isotropic movable class corresponding to the pullback of the polarization on the base
of the fibration, then bV remains of type (1, 1) on all the deformations induced by
deformations of the cubic fourfolds. The same holds for the class of the exceptional
divisor. Therefore, the claim follows by deforming to a very general cubic fourfold in
the sense of Hassett.

If we denote by Σ̃V the class of the exceptional divisor, then

Pic(M̃2λ1+2λ2(V , τ)) = ⟨H2,2(V ,Z)prim , Σ̃V , bV ⟩,

where H2,2(V ,Z)prim = H4(V ,Z)prim ∩ H2,2(V).
We finish by noticing that the lattice generated by Σ̃V and bV is isometric to the

non-unimodular hyperbolic plane U(3). In fact, if the cubic fourfold is very general,
then by [LPZ20, Theorem 1.3], we have a chain of equalities

⟨Σ̃V , bV ⟩ = Pic(M̃2λ1+2λ2(V , τ)) ≅ Pic(IJt(V)) = U(3),

where the last equality is [MO22, Lemma 6.2]. Here, IJt(V) is the symplectic compact-
ification of the twisted intermediate Jacobian fibration of V [Voi18] (see also Section 5).

Finally, let us also notice that the lattice generated by Σ̃V and bV is primitively
embedded in Pic(M̃2λ1+2λ2(V , τ)).

As a consequence of Corollary 3.11, we get the following Torelli-like statement for
certain LPZ varieties, namely, the varieties M2λ1+2λ2(V , τ) in Example 3.6. As usual,
we denote by M̃2λ1+2λ2(V , τ) the symplectic desingularization, and we recall that
M̃2λ1+2λ2(V , τ)has a birational Lagrangian fibration structure, i.e., it is birational to an
irreducible holomorphic symplectic manifold having a Lagrangian fibration structure
(see Section 5 or [LPZ20, Theorem 1.3]).

Theorem 3.14 Let V1 and V2 be two smooth cubic fourfolds and consider the desin-
gularized LPZ varieties M̃2λ1+2λ2(V1 , τ1) and M̃2λ1+2λ2(V2 , τ2), where τ i is a 2λ1 +
2λ2-generic stability condition on the Kuznetsov component AVi of Vi . The following
conditions are equivalent.

(1) M̃2λ1+2λ2(V1 , τ1) is birational to M̃2λ1+2λ2(V2 , τ2) such that:
• the birationality preserves the exceptional divisors;
• the birationality commutes with the birational Lagrangian fibration structures.

(2) V1 and V2 are isomorphic.
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Proof Given a birational map

M̃λ(V1 , τ1) �→ M̃λ(V2 , τ2),

there is an induced Hodge-isometry

H2(M̃λ(V1 , τ1),Z) �→ H2(M̃λ(V2 , τ2),Z).(3.4)

Now, as we saw in Example 3.13, there is a primitive embedding

H4(Vi ,Z)prim ↪ H2(M̃2λ1+2λ2(Vi , τ i),Z),

and the orthogonal complement of H4(Vi ,Z)prim in H2(M̃2λ1+2λ2(Vi , τ i),Z) is gen-
erated by the exceptional divisor and an algebraic isotropic class corresponding to the
class of the birational Lagrangian fibration structure.

Since by hypothesis. these two classes are preserved, the Hodge-isometry (3.4)
restricts to a Hodge-isometry

H4(V1 ,Z)prim �→ H4(V2 ,Z)prim

and, by the Torelli theorem for cubic fourfolds (see [Voi86]), V1 and V2 are
isomorphic. ∎

Finally, we give a lattice-theoretic description of the period of the smooth varieties
M̃λ(V , τ). As in the commutative case, we define the lattice

Γλ = {(x , k σ
2
) ∈ (λ⊥)∗ ⊕Z

σ
2
∣ k ∈ 2Z⇔ x ∈ λ⊥} .(3.5)

This comes with a natural Hodge structure given by the Hodge structure on (λ⊥)∗ and
by declaring σ to be of type (1, 1).

Proposition 3.15 The morphism

fV ∶ Γλ �→ H2(M̃λ(V , τ),Z), (x , k σ
2
) ↦ π∗V(θλ(x)) + k

2
Σ̃λ ,

where Σ̃λ is the class of the exceptional divisor, is a Hodge-isometry.

Proof The proof is as in Proposition 2.7. By definition, fV respects the Hodge
structures. Let now p∶M�→ B be a family of singular LPZ varieties induced by a family
of cubic fourfolds as in [LPZ20, Proposition 3.7], and p̃∶ M̃�→ B the associated family
of LPZ manifolds. If Γ̃λ denotes the trivial local system on B with stalk Γλ , then the
morphism fV extends to a morphism of local systems

Γ̃λ �→ R2 p̃∗Z.

Therefore, it is enough to prove the claim for a point of B. If we choose the family
B such that there exists a point b ∈ B such that the corresponding cubic fourfold is
Pfaffian, then the result follows from Proposition 2.7. ∎

Recall that a locally factorial variety is a variety such that any Weil divisor is Cartier.
If m is an integer, then a variety is m-factorial, if for any Weil divisor D, there exists
k ≤ m such that kD is Cartier.
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Corollary 3.16 The moduli space Mλ(V , τ) is either locally factorial or 2-factorial.
More precisely, if we write λ = 2λ0:
• Mλ(V , τ) is locally factorial if and only if (λ0 , u) ∈ 2Z for every u ∈ H̃(AV)1,1;
• Mλ(V , τ) is 2-factorial if and only if there exists u ∈ H̃(AV)1,1 such that (λ0 , u) = 1.

Proof The proof is the same as the proof of [PR14, Theorem 1.1] (see [PR14, Section
4.1]), using our Propositions 3.8 and 3.15 instead of [PR13, Theorem 1.7] and [PR14,
Theorem 3.1], respectively. Let us recall here the main steps for the reader’s conve-
nience.

First of all, if A1(Mλ(V , τ)) denotes the Weil class group, then we need to compute
the quotient A1(Mλ(V , τ))/Pic(Mλ(V , τ)). Now, by Corollary 3.10, we have that
Pic(Mλ(V , τ)) ≅ (λ⊥)1,1. On the other hand, since the singularities of Mλ(V , τ) are
in codimension 2, we have that A1(Mλ(V , τ)) ≅ Pic(M s

λ(V , τ)). There is a short exact
sequence

0 �→ Z�→ Pic(M̃λ(V , τ)) �→ Pic(M s
λ(V , τ)) �→ 0,

where the first map is defined by mapping 1 to the class Σ̃λ of the exceptional divisor
and the second map is the restriction. Combining this with Proposition 3.15, we get

A1(Mλ(V , τ)) ≅
Γ1,1

λ
Zσ

,

and eventually

A1(Mλ(V , τ))
Pic(Mλ(V , τ)) ≅

Γ1,1
λ

(λ⊥)1,1 ⊕Zσ
.

The proof is now reduced to a lattice-theoretic computation. ∎

Example 3.17 If λ0 = λ1 + λ2, then (λ0 , λ1) = 1. Therefore, the moduli space
M2λ1+2λ2(V , τ) of Example 3.6 is 2-factorial.

4 When is an LPZ variety birational to a moduli space of sheaves?

In the following, we denote byC the moduli space of smooth cubic fourfolds and byCd
the irreducible (Hassett) divisor consisting of special cubic fourfolds of discriminant
d. Recall that Cd is nonempty if and only if d > 6 and d ≡ 0, 2(mod 6) (see [Has00,
Theorem 4.3.1]).

We consider the following two properties for d ∶

(∗∗): d divides 2n2 + 2n + 2 for some n ∈ Z;
(∗∗′): in the prime factorization of d/2, primes p ≡ 2(3) appear with even exponents.

As it has been well summarized in [Huy18, Propositions 1.13 and 1.24 and Corollary
1.26], from the work of Hassett, Addington, Addington and Thomas, and Huybrechts
[Add16, AT14, Has00, Huy17], the first condition is equivalent to the existence of
an associated K3 surface; the second condition is equivalent to the existence of an
associated twisted K3 surface.
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A birational map f ∶X ⇢ Y between singular LPZ varieties is called stratum pre-
serving if it is defined at the generic point of the singular locus of X and maps
it to the generic point of the singular locus of Y. Since LPZ varieties admit an
irreducible symplectic desingularization, this is equivalent to requiring that there
exists a birational map between the desingularizations preserving the exceptional
divisors.

Proposition 4.1 For any smooth cubic fourfold V, we consider the singular LPZ variety
Mλ(V , τ), where λ = 2λ0, λ2

0 = 2 and τ is a generic stability condition on the Kuznetsov
component AV .
(1) The following conditions are equivalent:

(a) Mλ(V , τ) is stratum preserving birational to a moduli space Mv(S , H) of
sheaves on some projective K3 surface S;

(b) V ∈ Cd for some d satisfying (∗∗).
(2) The following conditions are equivalent:

(a) Mλ(V , τ) is stratum preserving birational to a moduli space Mv(S , α, H) of
twisted sheaves on some twisted K3 surface S;

(b) if V ∈ Cd for some d satisfying (∗∗′).

Proof (1) By [Huy18, Propositions 1.13 and 1.24 and Corollary 1.26], if V ∈ Cd with d
satisfying (∗∗), then there exist a polarized K3 surface (S , H) and an equivalence
of categories Φ∶AV �→ Db(S). This induces a Hodge-isometry ΦK ∶Ktop(AV) �→
Ktop(S) ≅ H̃(S ,Z). If v ∶= ΦK(λ), then clearly we have that the restriction

ΦK ∶ λ⊥ �→ v⊥

is a Hodge-isometry as well.
Let us write v = (v0 , v2 , v4) ∈ H̃(S ,Z). Without loss of generality, after possibly

shifting and taking duals, we may assume that v0 ≥ 0 and v2 is a nonnegative multiple
of the ample class H. In particular, v is a positive Mukai vector and, by a result of
Yoshioka (cf. [Yos01]), the moduli space Mv(S , H) is nonempty. By Propositions 3.8
and 2.3, we eventually get an isometry

ϕ∶H2(Mλ(V , τ),Z) ≅ λ⊥ �→ v⊥ ≅ H2(Mv(S , H),Z)

that is an isomorphism of Hodge structures. Now, passing to the symplectic resolu-
tions M̃λ(V , τ) and M̃v(S , H), we get a natural Hodge-isometry

ϕ̃∶H2(M̃λ(V , τ),Z) ≅ Γλ �→ Γv ≅ H2(M̃v(S , H),Z)

obtained by sending the classes of the exceptional divisors into each other. By the
Global Torelli Theorem for manifolds of type OG10 (see [Ono20, Introduction]),
we have then that M̃λ(V , σ) and M̃v(S , H) are birational. Therefore, Mλ(V , τ)
and Mv(S , H) are also birational and, by construction, the birationality is stratum
preserving.

For the converse, assume that Mλ(V , τ) is stratum preserving birational to a
Gieseker moduli space Mv(S , H) on a K3 surface S; in particular, v = 2w with
w2 = 2. The birational morphism from Mλ(V , τ) to Mv(S , H) extends to a birational
morphism between the desingularizations M̃λ(V , τ) and M̃v(S , H). Since the last two
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varieties are smooth symplectic varieties, the birational morphism induces a Hodge-
isometry on the Beauville–Bogomolov–Fujiki lattices, i.e.,

H2(M̃λ(V , τ),Z) ≅ H2(M̃v(S , H),Z),

and by hypothesis, this isometry sends the class of the exceptional divisor to the class
of the exceptional divisor. In particular, it restricts to a Hodge-isometry

H2(Mλ(V , τ),Z) ≃ H2(Mv(S , H),Z)

(cf. Proposition 3.15 and item (3) of Proposition 2.3). By Proposition 3.8 and item (2)
of Proposition 2.3, we get that

Ktop(AV) ⊃ λ⊥ ≃ H2(Mλ(V , τ),Z) ≃ H2(Mv(S , H),Z) ≃ v⊥ ⊂ H̃(S ,Z).

Now, since the lattices λ⊥ and v⊥ have discriminant group isomorphic to Z/2Z, this
Hodge-isometry must act as the identity on the discriminant group and, by [Nik79,
Corollary 1.5.2], it extends to a Hodge-isometry Ktop(AV) ≃ H̃(S ,Z) (sending λ to
v). Finally, V ∈ Cd for some d satisfying (∗∗) by [Huy18, Propositions 1.13 and 1.24].

(2) The proof is very similar to the case before, we only remark on the subtle differ-
ences. First of all, by [Huy18, Propositions 1.13 and 1.24] and [BLMNPS21, Proposition
33.1], Y ∈ Cd with d satisfying (∗∗′) if and only if there exist a twisted K3 surface (S , α)
and an equivalence of categories Φ∶AV �→ Db(S , α). Such an equivalence of categories
induces a Hodge-isometry ΦK ∶Ktop(AV) �→ Ktop(S , α). Put v = ΦK(λ) and consider
the moduli space Mv(S , α, H). For the non-emptiness of Mv(S , α), one uses [Yos06].
The rest of the argument and the reverse implication follow verbatim as in the part (1)
of the proof (cf. Remark 2.8). ∎

Using a lattice-theoretic trick, we can remove the stratum preserving hypothesis,
at least in the untwisted case.

Theorem 4.2 For any smooth cubic fourfold V, we consider the singular LPZ variety
Mλ(V , τ), where λ = 2λ0, λ2

0 = 2 and τ is a generic stability condition on the Kuznetsov
component AV . The following conditions are equivalent:
(1) Mλ(V , τ) is birational to a moduli space Mv(S , H) of sheaves on some projective

K3 surface S;
(2) V ∈ Cd for some d satisfying (∗∗).

Proof One direction follows from Proposition 4.1. So let us suppose that Mλ(V , τ)
is birational to a moduli space Mv(S , H) of semistable sheaves on a projective K3
surface S. In particular, the desingularized moduli spaces M̃λ(V , τ) and M̃v(S , H)
are birational; and hence, we have an induced Hodge-isometry

Γλ = H2(M̃λ(V , τ),Z) ≅ H2(M̃v(S , H),Z) = Γv .

For a lattice L with a weight 2 Hodge structure, we denote by T(L) the induced
transcendental lattice, defined as the smallest sub-Hodge structure containing L2,0.
Then there is an induced Hodge-isometry

T(Γλ) ≅ T(Γv).
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Notice that, by definition, T(Γλ) = T(λ⊥) and T(Γv) = T(v⊥) = T(S), where the
latter is the transcendental lattice of the K3 surface S. Now, the orthogonal complement
T(S)⊥ ⊂ H̃(S ,Z) contains a unimodular hyperbolic plane U, namely, the hyperbolic
plane generated by H0(S ,Z) and H4(S ,Z). Moreover, by construction, we have two
primitive embeddings of T(S):

T(S) ↪ H̃(S ,Z) and T(S) ≅ T(λ⊥) ↪ H̃(AV).

By [Nik79, Theorem 1.14.4], there must exist an isometry

g∶ H̃(AV) �→ H̃(S ,Z)
that preserves the Hodge structures by construction. Then, we can conclude as before
by [Huy18, Propositions 1.13 and 1.24]. ∎
Remark 4.3 Both the proposition and the theorem above should be compared with
the derived Torelli theorems for (twisted) K3 surfaces. More precisely, two K3 surfaces
are derived equivalent if and only if their Mukai lattices are Hodge-isometric if and
only if their transcendental lattices are Hodge-isometric (see [Orl97, Theorem 3.3]).

On the other hand, two twisted K3 surfaces are derived equivalent if and only if
their Mukai lattices are orientation-preserving Hodge-isometric (see [Rei19, Theorem
B] and [HS05, Theorem 0.1]). Here, the orientation chosen is the one with respect
to the positive 4-space. In this case, it seems no longer true that this condition is
equivalent to the existence of an isometry between the transcendental lattices (cf.
[HS05, Remark 4.10]).

Example 4.4 When V is a Pfaffian cubic fourfold, it is known that V has an associated
K3 surface S. In this case, there is natural birational morphism from the manifold
M̃2λ1+2λ2(V , τ) of Example 3.6 and the O’Grady resolution M̃(2,0,−2)(S , H), which
we now recall. First of all, by [LPZ20, Theorem 1.3], the manifold M̃2λ1+2λ2(V , τ) is
birational to a twisted intermediate Jacobian fibration (see Section 5). Moreover, by
[Ono18, Example 4.3.6], in this case, the twisted intermediate Jacobian fibration is
isomorphic to the untwisted intermediate Jacobian fibration constructed in [LSV17].
Finally, in [LSV17, Section 6], the authors construct a birational map between the
intermediate Jacobian fibration and the manifold M̃(2,0,−2)(S , H).

This birational map is explicitly known only at a general point of the smooth locus
and its construction is rather difficult. We are not aware of any known description
of this morphism at a general point of the singular locus. In particular, the question
whether it is stratum preserving is open, and it would be very interesting to have an
answer to it.

5 When is a LPZ manifold birational to a LSV manifold?

Let Y be a smooth cubic threefold. The intermediate Jacobian of Y is defined as

JY = H2,1(Y)∗/H3(Y ,Z),

where H3(Y ,Z) is included in H2,1(Y)∗ via integration. JY is a principally polarized
abelian variety of dimension 5 and it parametrizes dimension 1 cycles on Y that are
homologically trivial.

Downloaded from https://www.cambridge.org/core. 11 Jan 2025 at 19:41:32, subject to the Cambridge Core terms of use.

https://www.cambridge.org/core


On the period of Li, Pertusi, and Zhao’s symplectic variety 1449

For any t ∈ H4(Y ,Z) = Z, we denote by J t
Y the torsor parametrizing cycles of

homology class t. Notice that, up to canonical isomorphism, there exists only one non-
trivial torsor, namely, J1

Y .
Let now V be a smooth cubic fourfold, and let us denote by U ⊂ PH0(V ,OV(1))∗ ,

the open subset parametrizing smooth linear sections. Then there exist two fibrations

p∶ JU �→ U and pt ∶ Jt
U �→ U,(5.1)

whose fibers are of the form JY and J t
Y , respectively.

Theorem 5.1 [LSV17, Sac20, Voi18] There exist smooth and projective compactifica-
tions

p∶ IJ(V) �→ (P5)∨ and pt ∶ IJt(V) �→ (P5)∨

of the fibrations (5.1). Moreover, both IJ(V) and IJt(V) are projective irreducible
holomorphic symplectic manifolds of type OG10, and both p and pt are Lagrangian
fibrations.

Varieties isomorphic to IJ(V) are called LSV varieties; varieties isomorphic to
IJt(V) are called twisted LSV varieties.

Remark 5.2 Theorem 5.1 is an existence result. It is known that when V is very
general (in the sense of Hassett), then the compactifications in Theorem 5.1 are unique,
but this may not longer be true for special cubic fourfolds. In [MO22, Section 6],
it is proved that in the twisted case, there exists only one compactification that is a
Lagrangian fibration, under the additional condition that the fibers are irreducible.
(In reference to Example 3.6, the cases where the stability condition τ̄ is conjecturally
nongeneric correspond to the cases where the compactifications of the twisted inter-
mediate Jacobian have reducible fibers.)

Even though there may be several compactifications, by construction, all the
compactifications are birational to each other. Since we are interested in the birational
class of LPZ varieties, we can safely ignore this lack of uniqueness.

We retain the notation from the previous section, so that C denotes the moduli
space of smooth cubic fourfolds and Cd denotes the Hassett divisor of special cubic
fourfolds with discriminant d.

Theorem 5.3 For any smooth cubic fourfold V, we consider the desingularized LPZ
variety M̃λ(V , τ), where λ = 2λ1 + 2λ2 and τ is λ-generic (cf. Example 3.6). Then the
following statements are equivalent:
(1) there exists a birational isomorphism between M̃λ(V , τ) and IJ(V);
(2) V ∈ Cd with d > 6 and d ≡ 2(mod 6).

Proof First of all, by [Sac20, Corollary 3.10] (see also [MO22, Example 3.3]), it is
known that if V is very general (in the sense of Hassett), then the twisted LSV manifold
is not birational to the untwisted one. Since by [LPZ20, Theorem 1.3], the manifold
M̃λ(V , τ) is always birational to IJt(V), in order to have any birational isomorphism
between M̃λ(V , τ) and IJ(V), the cubic fourfold V must be special, i.e., V ∈ Cd with
d > 6 and d ≡ 0, 2(mod 6).
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Let us assume that V ∈ Cd with d > 6 and d ≡ 2(mod 6). In particular, this is
equivalent to say that d > 6 is even and d ≡ 2(mod 3). Let T ⊂ V be an algebraic
two-dimensional cycle (not homologous to a complete intersection) such that the
discriminant of the lattice generated by the cohomology class [T] and h2 is d.
(Notice that such a cycle T exists since V ∈ Cd .) Here, h is the class of an hyperplane
section of V and h2 is the corresponding class in H4(V ,Z). If we set x = [T]2 and
y = h2 .[T], then d = 3x − y2. By hypothesis, we must have y ≡ ±1(mod 3); in other
words, the intersection of T with a smooth linear section of V is a cycle of degree
not a multiple of 3. We can then use T to construct a trivialization of the torsor
pt ∶Jt

U �→ U. In particular, we get an isomorphism between Jt
U and JU, which implies

that the varieties IJt(V) and IJ(V) are birational, so that also M̃λ(V , τ) is birational
to IJ(V).

Let us now prove the other implication. Assume that M̃λ(V , τ) is birational to an
LSV variety IJ(V), so that there is an isometry

Pic(M̃λ(V , τ)) ≅ Pic(IJ(V)).

Since, by [Ono20, Proposition 4.1], Pic(IJ(V)) contains a unimodular hyperbolic
plane, also Pic(M̃λ(V , τ)) contains a unimodular hyperbolic plane.

On the other hand, as we noticed in Example 3.13, we have

Pic(M̃λ(V , τ)) = ⟨U(3), H2,2(V ,Z)prim⟩,

where U(3) is the primitive sublattice generated by the exceptional divisor Σ̃ and the
movable isotropic class of the Lagrangian fibration induced on M̃λ(V , τ) by [LPZ20,
Theorem 1.3].

Since the lattice U(3) is primitive in Pic(M̃λ(V , τ)) and H2,2(V ,Z)prim is neg-
ative definite, the only way for Pic(M̃λ(V , τ)) to contain a hyperbolic plane is that
H2,2(V ,Z)prim contains at least a class of divisibility 3. By [Has00, Proposition 3.2.2],
this can happen only if V ∈ Cd with d ≡ 2(mod 6). ∎

Example 5.4 If V is a Pfaffian cubic fourfold, so that V ∈ C14, as already remarked in
[Ono18, Example 4.3.6] IJ(V) and IJt(V) are isomorphic. In particular, the manifold
M̃2λ1+2λ2(V , τ) is birational to IJ(V) and, moreover,

Pic(M̃2λ1+2λ2(V , τ)) = U ⊕ ⟨D⟩,

where D is a class of square −42 and divisibility 3.

Example 5.5 More generally, let us take a cubic fourfold V ∈ Cd with d > 6 and d ≡ 2
(mod 6), and let us assume that V is general in Cd . In particular, H2,2(V ,Z)prim =
ZD, where D2 = −3d and div(D) = 3 (see [Has00, Proposition 3.2.2]). Since d is
always even, let us write d = 2k, so that D2 = −6k.

In this case, we have that

Pic(M̃λ(V , τ)) = ⟨ē , f̄ , D⟩,
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where ē and f̄ are the standard basis of U(3). The rank 3 lattice generated by these
three classes has the following Gram matrix:

⎛
⎜
⎝

0 3 0
3 0 0
0 0 −6k

⎞
⎟
⎠

,

so that it is easy to see that

A ∶= ē + k f̄ + D
3

∈ Pic(M̃λ(V , τ)).

Notice that A2 = 0, A. f̄ = 1 and A.D = −2k, so that we eventually get that the rank 2
lattice generated by A and f̄ is the unimodular hyperbolic plane and, moreover, the
class Z = D + 2k f̄ is orthogonal to it (and it has divisibility 3). Eventually, we get that

Pic(M̃λ(V , τ)) = ⟨A, f̄ , Z⟩ =
⎛
⎜
⎝

0 1 0
1 0 0
0 0 −6k

⎞
⎟
⎠

.

Vice versa, if div(D) = 1, then there cannot exist any isometric embedding of U
in Pic(M̃λ(V , τ)). In fact, if x ∈ H2(M̃λ(V , τ),Z) is a class orthogonal to U(3) and
such that D.x = 1, then we will have A.x = 1/3, which is absurd.
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