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Abstract

Convolutional neural networks (CNN) trained from high-order ice-flow model realisations have
proven to be outstanding emulators in terms of fidelity and computational performance.
However, the dependence on an ensemble of realisations of an instructor model renders this strat-
egy difficult to generalise to a variety of ice-flow regimes found in the nature. To overcome this
issue, we adopt the approach of physics-informed deep learning, which fuses traditional numer-
ical solutions by finite differences/elements and deep-learning approaches. Here, we train a CNN
to minimise the energy associated with high-order ice-flow equations within the time iterations of
a glacier evolution model. As a result, our emulator is a promising alternative to traditional sol-
vers thanks to its high computational efficiency (especially on GPU), its high fidelity to the ori-
ginal model, its simplified training (without requiring any data), its capability to handle a variety
of ice-flow regimes and memorise previous solutions, and its relatively simple implementation.
Embedded into the ‘Instructed Glacier Model’ (IGM) framework, the potential of the emulator
is illustrated with three applications including a large-scale high-resolution (2400x4000) forward
glacier evolution model, an inverse modelling case for data assimilation, and an ice shelf.

1. Introduction

In glacier and ice-sheet models, ice is commonly described as a viscous non-Newtonian (Glen,
1953) fluid whose motion is governed by the 3D non-linear Glen–Stokes equations (Greve and
Blatter, 2009). Solving these equations usually remains very costly compared to other glacial
underlying processes. To reduce the costs, the ice-flow equations are often simplified by
neglecting higher-order terms in the aspect ratio of the ice domain e (thickness versus length)
considering it to be usually small. The truncation of the second-order terms in e yields the
first-order approximation (FOA) model (Blatter, 1995), which consists of a 3D non-linear
elliptic equation (Colinge and Rappaz, 1999) for the horizontal velocity and remains expensive.
Going one step further, the shallow ice approximation (Hutter, 1983) (SIA) is obtained after
dropping the first-order terms in e in the FOA model. As a result, the analytical solution of
SIA is computationally inexpensive to implement. The SIA remains a reference model for
many applications (e.g. Maussion and others, 2019), despite strongly simplifying mechanical
assumptions and applicability limited to areas where ice flow is dominated by vertical shearing
(Greve and Blatter, 2009). The transfer of numerical methods from central processing units
(CPU) on graphics processing units (GPU) architectures is currently a promising approach
to bypass the computational bottleneck associated with high-order modelling (Brædstrup
and others, 2014), however, massive parallelisation of solvers on GPU remains a complex
task (Räss and others, 2020).

As an alternative to traditional solvers, deep-learning surrogate models (or emulators) have
been found very promising in reducing computational costs with minimal loss of accuracy
(Brinkerhoff and others, 2021; Jouvet and others, 2022; He and others, 2023). Deep learning
is based on artificial neural networks (ANNs), which are trained to capture the most essential
relationship between the input and the output of an instructor model. The ANN is intended to
be an efficient substitute for the original model within the range defined by the training data-
set. Following this strategy, the computationally expensive Glen–Stokes model could be emu-
lated by a simple convolutional neural network (CNN) by Jouvet and others (2022) with a
speedup of several orders of magnitude and high fidelity levels in the case of mountain gla-
ciers, and major benefits for inverse modelling purposes (Jouvet, 2023). Another key asset
of ANNs is that they run very efficiently on GPUs, permitting additional significant speed-ups,
especially when modelling high spatial resolution domains. However, the dependence on an
instructor model makes the training of such an emulator technically difficult, not very flexible,
and therefore limits its ability to generalise its validity range beyond the training data and its
given spatial resolution.

In recent years, physics-informed neural networks (PINNs) have emerged as a powerful
approach in surrogate modelling to directly enforce physical laws (such as partial differential
equations) in the learning process instead of matching datasets generated from physical mod-
els (e.g. Raissi and others, 2019). Basic PINNs are trained to minimise the residual associated
with the equations and the boundary conditions (Markidis, 2021). In contrast, variational
PINNs (VPINNs) exploit the minimisation form (or equivalently the variational form) of
the problem as a loss function (Kharazmi and others, 2019), which has the advantage of
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involving derivatives of lower orders compared to residuals. An
important aspect of VPINNs is their connections with traditional
finite element methods (FEM). For example, a standard FEM
solver applied to an elliptic problem represents the solution in a
finite element approximation space spanned by mesh-defined
basis functions and seeks the function that minimises the asso-
ciated energy in the approximation space (Ern and Guermond,
2004). On the contrary, the deep Ritz method proposed by Yu
(2018) (which belongs to the category of VPINN) represents the
solution as a neural network in an approximation space generated
by the parameters of a neural network.

In ice-flow modelling, PINNs have been used by Riel and
others (2021) to learn the time evolution of drag in glacier beds
from observations of ice velocity and elevation and by Riel and
Minchew (2022) to calibrate ice-flow law parameters and perform
uncertainty quantification. Recently, Cui and others (2022) pro-
posed a mesh-free method to solve Glen–Stokes equations using
an approach inspired by the deep Ritz method.

In this paper, we propose two different methods to compute
FOA ice flow efficiently on GPU by exploiting the minimisation
form associated with the FOA model and using optimisation tech-
niques based on automatic differentiation and stochastic gradient.
The first one is a conventional numerical solver, which is used
mostly here as a reference to evaluate the second one. The second
one on which the paper focuses is an emulator based on deep
learning. In more detail, we take the CNN ice-flow emulator
introduced previously by Jouvet and others (2022) and propose
a new training strategy inspired by VPINN to remove the depend-
ence on an instructor model and obtain a more generic emulator
that is easier to implement and faster to train. Here, we train our
CNN ice-flow emulator at minimising directly the energy instead
of minimising the misfit with solutions from an instructor model
as done previously (Fig. 1). A similar approach was used by
Cordonnier and others (2023) for modelling terrain formation
by glacial erosion. Their target was to generate realistic images
in computer graphics, whereas we propose a thorough evaluation
of the method and its potential for glaciological applications.

This paper is structured as follows: first, we introduce the phys-
ical model which includes the ice-flow FOA model and its mini-
misation formulation. Second, we describe the numerical model
which includes the spatial discretisation, the energy-based FOA
solver and deep-learning emulator. Last, we present and discuss
our assessment results and examples of modelling applications.

2. Physical model

Let Ω be a rectangular horizontal domain supporting a glacier/
volume of ice V at time t. Glacier bedrock and surface interfaces
are defined by functions b(x, y) and s(x, y, t) where (x, y)∈Ω.
According to these definitions, the ice thickness h is defined as
being the difference between the two: h(x, y, t) = s(x, y, t)− b

(x, y), and the three-dimensional volume of ice V is defined as

V = {(x, y, z), b(x, y) ≤ z ≤ s(x, y, t), (x, y) [ V},

which has two boundaries: the bedrock

Gb = {(x, y, z), z = b(x, y), (x, y) [ V}

and the surface

Gs = {(x, y, z), z = s(x, y, t), (x, y) [ V}

interfaces, see Figure 2. The two interfaces coincide in ice-free
areas.

Given an initial glacier geometry, the time evolution in ice
thickness h(x, y, t) is determined by the mass conservation equa-
tion, which couples ice dynamics and surface mass balance (SMB)
through:

∂h
∂t

+∇ · �uh( ) = SMB, (1)

where ∇· denotes the divergence operator with respect to horizon-
tal variables (x, y), �u = (�u, �v) is the vertically averaged horizontal
ice velocity field and SMB the SMB function, which consists of the
integration of ice accumulation and ablation over one year.
Equation (1) is generic and can be applied to model glacier evo-
lution in number of applications provided adequate SMB and ice-
flow model components. In the following, we mostly focus on
developing an efficient numerical method to compute the ice
flow �u considering it is often the most computationally expensive
component in glacier evolution model (Jouvet and others, 2022).

2.1 Glen–Stokes model

The Stokes model consists of the momentum conservation equa-
tion when inertial terms are ignored, together with the incom-
pressibility condition:

− ∇ · s = rg, in V , (2)

∇ · u = 0, in V , (3)

where σ is the Cauchy stress tensor, g = (0, 0,− g), g is the gravi-
tational constant and u = (ux, uy, uz) is the 3D velocity field. Let τ
be the deviatoric stress tensor defined by

s = t− PI, (4)

where I is the identity tensor, P is the pressure field, with the
requirement that tr(τ) = 0 so that P =−(1/3)tr(σ). Glen’s flow

Figure 1. Our physics-informed deep-learning emulator can be seen as a fusion of data-driven deep-learning and traditional numerical-solving strategies.
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law (Glen, 1953), which describes the mechanical behaviour of
ice, consists of the following non-linear relation:

t = 2mD(u), (5)

where D (u) denotes the strain rate tensor defined by

D(u) = 1
2
(∇u+ ∇uT ), (6)

μ is the viscosity defined by

m = 1
2
A−1

n|D(u)|1n−1, (7)

where |Y| : =
����������
(Y :Y)/2

√
denotes the norm associated with the

scalar product ( : ) (the sum of the element-wise product), A =A
(x, y) > 0 is the Arrhenius factor and n > 1 is the Glen’s exponent
(here we take the most standard value n = 3). Note that A depends
on the temperature of the ice (Paterson, 1994). For simplicity, this
paper assumes vertically constant ice temperature; however, this
assumption could be released without further difficulties.

2.2 Boundary conditions

The boundary conditions that supplement (2) and (3) are the
following. Stress-free force applies to the ice–air interface,

s · n = 0, P = 0, on Gs, (8)

where n is an outer normal vector along Γs. Along the lower surface
interface, the non-linear Weertman friction condition reads
(Hutter, 1983; Schoof and Hewitt, 2013)

u · n = 0, (9)

[(I − nnT )t] · n = −c−m|(I − nnT ) · u|m−1(I − nnT ) · u, (10)

on Γb for k∈ {x, y}, where m > 0, c = c(x, y) > 0 and n is the out-
ward normal unit vector to Γb. The relation (10) relates the basal
shear stress [(I− nnT)τ] ⋅ n to the sliding velocity (I− nnT) ⋅ u,
both of them projected onto the tangential plane. Note that c = 0
in case of no-sliding.

2.3 Minimisation formulation

The above-mentioned Glen–Stokes problem can be reformulated
into variational and minimisation problems. We follow the der-
ivation made by Jouvet (2016). For that, we consider the follow-
ing divergence-free velocity field space (Girault and Raviart,
1986):

X : = {v [ [W1,1+1
n(V)]3, ∇ · v = 0, v · n = 0 on Gb},

where W1,p is the appropriate Sobolev space (Adams and
Fournier, 2003). The variational formulation associated with
the Glen–Stokes problem writes: find u [ X such that for all
v [ X we have:

∫
V
A−1

n|D(u)|1n−1(D(u), D(v)) dV (11)

+
∫
Gb

c−m|u|m−1
M (u, v)M dS+ rg

∫
V
(∇s · v) dV = 0, (12)

where the bilinear form (a, b)M : = (Ma) ⋅ b, and its associated
norm |a|M : =

��������
(a, a)M

√
have for matrix

M = I + (∇xb)(∇xb)
T 0

0 0

( )
. (13)

The above problem is equivalent to seeking for u [ X such that

J (u) = min{J (v), v [ X }, (14)

where the functional to be minimised is

J (v) =
∫
V
2
A−1

n

1+ 1
n

|D(v)|1+1
n dV +

∫
Gb

c−m

1+m
|v|1+m

M dS

+ rg
∫
V
(∇s · v) dV.

(15)

It must be stressed that only the first term still depends on the
vertical velocity in both formulations (12) and (15).

2.4 First-order approximation (FOA)

We introduce the aspect ratio e = [h]/[x] of the ice geometry V,
where [h] and [x] denote its typical height and length. It is easy to
verify that in that the strain rate tensor D (v) contains terms scal-
ing with e−1, e0 and e1. As glaciers are usually thin objects with a
small aspect ratio e, it is a common practise to omit the highest
order term. By doing so and invoking the incompressibility equa-
tion, the vertical velocity components (∂x uz and ∂y uz) of the
strain rate tensor can be eliminated:

D(u) =
∂xux 1

2 ∂yux + ∂xuy
( )

, 1
2 ∂zux( )

1
2 ∂yux + ∂xuy
( )

∂yuy 1
2 ∂zuy
( )

1
2 ∂zux( ) 1

2 ∂zuy
( ) −∂xux − ∂yuy

⎛
⎜⎝

⎞
⎟⎠.

(16)

In turn, this eliminates the vertical velocity component uz from
the ice-flow model. The resulting model (so-called first-order
approximation, FOA, or Blatter–Pattyn model (Blatter, 1995)) is
obtained by minimising the functional J defined in (15) with
D (u) defined by (16). Advantageously, the constraints of the
functional space X disappear when removing the vertical compo-
nent of the velocity. As a result, the FOA model consists of a
three-dimensional, non-linear, elliptic and unconstrained prob-
lem, which is therefore simpler than the original Glen–Stokes
problem. Provided enough friction at the bedrock (i.e. the coeffi-
cient c is not too high) and other suitable assumptions, one can
show (Colinge and Rappaz, 1999; Schoof, 2006) that the func-
tional J is continuous, strictly convex and coercive in the func-
tional space [W1,1+1

n(V)]2; therefore, the FOA problem admits a
unique solution.

3. Numerical model

The glacier evolution model (equipped with both the ice-flow
solver and the physics-informed deep-learning emulator) is
implemented in the ‘Instructed Glacier Model’ framework
(IGM, https://github.com/jouvetg/igm), which can simulate gla-
cier time evolution (on CPU or GPU) given an initial glacier
geometry and SMB forcing (Jouvet and others, 2022). IGM is
written in Python and relies on operations of the TensorFlow
library to allow vector/parallel operations (such as used in neural
networks) between large arrays that are computationally efficient
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on GPU. At each time step, IGM updates in turn the SMB (e.g.
equilibrium line altitude (ELA)-based parameterisation or
climate-driven PDD model), the ice flow (solved or emulated
according to the user’s choice) and the ice thickness by solving
conservation equation (1) using a first-order upwind finite-
volume scheme on a regular 2D grid. Thus, the time step is com-
puted adaptively to satisfy the CFL condition, make sure that the
ice is never transported over more than one cell distance in one
time step, and therefore to ensure numerical stability. We refer
to Jouvet and others (2022) for more details on the transport
numerical scheme. In what follows, we focus on the computation
of the ice flow by numerical solving and deep-learning emulation.

3.1 Spatial discretisation

First, the horizontal rectangular domain Ω is discretised with a
regular raster/structured grid of size Nx ×Ny with constant cell
spacing H in the x and y direction (Fig. 2, right panel).
Variables such as the ice thickness h, the surface topography s,
the rate factor A and the sliding coefficient c are defined at the
corners of each grid cell of the horizontal grid. In the following,
we use subscript H to denote these discrete quantities such as
uH, hH, sH, AH, cH defined on the horizontal grid. Note that our
choice of a structured grid (instead of any other type of discretisa-
tion) is essential to represent variables as 2D arrays and therefore
to use CNNs for emulating the ice-flow mechanics later on. On
the other hand, the ice thickness is discretised vertically using a
fixed number of points Nz (in this paper we use Nz = 10).
Layers are distributed according to a quadratic rule such that
discretisation is fine close to the ice–bedrock interface (where the
strongest gradients are expected) and coarse close to the ice–
surface interface following the strategy given by (PISM, Khroulev,
2020). Subsequently, the approximation space XH for velocities
consists of piecewise linear functions defined at the corners of
each grid cell in the horizontal direction and at the intersection
of each layer in the vertical discretisation.

In finite elements, solving the non-linear elliptic FOA problem
requires minimising the associated functional J in a finite-
dimension approximation space XH spanned by shape functions
defined in the discretised domain instead of the full continuous
solution space X. We follow a similar strategy here: given pH =
(hH, sH, AH, cH), we seek for uH∈ XH such that

uH = argmin{JpH (vH), vH [ XH} (17)

where

JpH (vH) =
∫
V

2A
−1

n
H

1+ 1
n

∫sH
sH−hH

|DH(vH)|1+1
n dz

(

+ c−m
H

1+m
|vH |1+m

M dS

+rg
∫sH
sH−hH

(∇sH · vH) dz
)
dV.

(18)

For simplicity, D is approximated by a finite difference scheme on
a 3D staggered grid (Fig. 2, right panel). As D involves derivatives
in the three dimensions, we apply either a finite difference or cell
averaging to ensure that all derivatives in (16) are approximated
consistently on the same 3D staggered grid (i.e. at the centre of
cells horizontally and at the middle of layers vertically). The
two other terms (sliding and gravity force related) are also com-
puted on the staggered grid (otherwise, this would cause numer-
ical artefacts, typically chessboard modes). Due to the layer-wise
vertical discretisation, we first compute the horizontal derivatives
of DH in a layer-dependent system of coordinate (x, y, z̃) where
z̃ = z − l and l is the layer elevation, and transfer them in the
reference system of coordinate (x, y, z) using a simple rule of

derivative: e.g. ∂f
∂x = ∂f̃

∂x − ∂f̃
∂z

∂l
∂x for any quantity f (respectively f̃ )

defined in (x, y, z) (respectively (x, y, z̃)). Lastly, the integration
of (18) is done numerically using the rectangle method. Note that

Figure 2. Cross-section and horizontal view of a glacier with notations (left panel) and its spatial discretisation (right panel), which is obtained using a regular
horizontal grid and by subdividing the glacier into a pile of layers. All modelled variables (e.g. ice thickness) are computed at the corners of each cell of the
2D horizontal grid (materialised with squares) except the ice-flow velocities, which are computed on the 3D corresponding grid. In contrast, the strain rate is com-
puted on the staggered grid at the centre of each cell and layer (vizualised with circles).

1944 Guillaume Jouvet and Guillaume Cordonnier

https://doi.org/10.1017/jog.2023.73 Published online by Cambridge University Press

https://doi.org/10.1017/jog.2023.73


ice margins must be treated carefully to prevent singular vertical
derivatives of DH as the vertical step size tends to zero. To over-
come this issue, we assume a minimum ice thickness of 1 m.

3.2 Solver

Our solver solves the convex optimisation problem (17) using a
stochastic gradient descent method, namely the Adam optimiser
(Kingma and Ba, 2014) with a step size of 1. Using the Keras
(Chollet, 2015) and Tensorflow (Abadi, 2015) libraries, the deriva-
tives of JpH with respect to vH are obtained by automatic differen-
tiation. When used for computing a single snapshot ice flow, the
optimisation scheme is initialised with zero ice velocity. When
used multiple times in a transient glacier evolution run, the gradi-
ent scheme uses the ice flow from the previous time step as initial-
isation to predict the next one. In the following, we refer to the
‘solved’ solution (in contrast to the ‘emulated’ solution defined
in the next section), the result of the solver at convergence. Note
that we found in Appendix B a very good agreement between
the ‘solved’ and the reference solutions of the ISMIP-HOM
(Pattyn, 2008) experiments. This test validates the numerical
solver, as well as the implementation of the system energy in
IGM, which is used for both the solver and the emulator.

3.3 Emulator

As an alternative to the previously introduced solver, we now
propose an ice-flow emulator, which predicts horizontal ice flow
(uH, vH) from the input field pH.

Nl : {hH , sH , AH , cH , HH} −� {uH , vH}

RNX×NY×5 −� RNX×NY×NZ×2
(19)

where input and output can be seen as two- and three-dimensional
multichannel fields, which are defined on the regular horizontal
grid (Fig. 3). Having selected these input parameters allows us
to develop a generic ice-flow emulator that can handle a large var-
iety of glacier shapes, types of ice flow (from shearing to sliding
dominant) and spatial resolutions. As the spatial resolution HH

is fixed in modelling application, including it as an input of the
emulator is in fact not necessary. Here, we added HH for conveni-
ence such that one can take advantage of an initial pre-trained
emulator (Appendix A) irrespective of the spatial resolution.

As an emulator, we choose an ANN, which maps input to out-
put variables by a sequential composition of linear and non-linear
functions (or a sequence of network layers). Linear operations have
weights λ = {λi, i = 1, ..., N}, which are optimised in the training
stage. Here, we use a CNN (Long and others, 2015), which is a

special type of ANN that additionally includes local convolution
operations to learn spatially variable relationships (LeCun and
others, 2015) and proved to be capable of learning high-order ice-
flow models (Jouvet and others, 2022). Here, we retain the hyper-
parameters found by Jouvet and others (2022) as they provide a
good trade-off between model fidelity and complexity: our CNN
consists of 16 two-dimensional convolutional layers between
input and output data (Fig. 3). Convolutional operations have a
kernel matrix (or feature map) of size 3×3. A padding is used to
conserve the frame size through the convolution operation.
Convolutional operations are repeated using a sliding window
with one stride across the input frame and 32 feature maps. As a
non-linear activation function, we use leaky rectified linear units.
As a result, our CNN has about 140 000 trainable parameters.

While Jouvet and others (2022) proposed to train (19) by fit-
ting to external ice-flow model realisations, we take here another
strategy inspired from PINNs. We differ from traditional PINNs
in two ways: first, PINNs usually map the coordinate of the sam-
pling points to the physical output, which forces them to retrain
the network for different settings, while our inputs are essential
model parameters (the coordinates at each pixel are not explicitly
passed). Second, PINNs usually minimise the residual of the
equation and/or boundary conditions involved in the physical
model (e.g. Markidis, 2021). Instead, we adopt the different
VPINN strategy (Kharazmi and others, 2019) by minimising
the energy associated with the FOA model instead of the residual
(Fig. 1). In more detail, the training consists of finding the weights
of the CNN λ = {λi, i = 1, ..., N} that minimise:

l = argmin JpH (Nl(pH))
( )

, (20)

given geometrical and glaciological input data pH. The optimisa-
tion problem (20) is solved again using the Adam optimiser
(Kingma and Ba, 2014) – the derivatives of J H with respect to
λ being obtained from automatic differentiation. At first view,
the minimisation problem (20) is expected to be more difficult
to solve than that in (17), as there is no guarantee that J pH is con-
vex with respect to the training parameters λ. On the other hand,
problem (20) is expected to have much fewer control parameters
(the number of training parameters is on the order of 105) than
problem (17), which may have much more control parameters
(2 ×Nz ×Ny ×Nx) when treating a large-scale array.

While there exist different strategies for initialising the weights
of CNNs, we found in Appendix A that using a CNN pretrained
over a large glacier catalogue (Fig. A1) facilitates the convergence
of the emulator, presumably because the diversity of the catalogue
prevents against falling into local minima. The optimisation of the
CNN is therefore always initialised with pre-trained weights
(Appendix A). When used for computing a single snapshot ice
flow, we use an adaptive learning strategy including an exponential
decay to launch the training aggressively (∼10−4) for efficiency and
to end it gently for fine-tuning (∼10−5). When used in a transient
glacier evolution run, one performs a single step of gentle (∼10−5)
training per iteration (or each X iteration to vary the degree of
training) starting from the lastly trained emulator.

4. Results

In this section, we present fidelity and computational perform-
ance results of the ‘emulated’ solution towards the ‘solved’ solu-
tion simulations with different strengths of emulator training.
For that purpose, we consider two glaciers of different sizes (i)
the present-day Aletsch Glacier, Switzerland, which is the current
largest glacier of the European Alps and (ii) the former Valais
Glacier, Switzerland, which covered a large part of Switzerland

Figure 3. Our emulator consists of a CNN that maps geometrical (thickness and sur-
face topography), ice-flow parameters (shearing and basal sliding) and spatial reso-
lution inputs to 3D ice-flow fields.
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during the last glacial maximum. The experiments for these two
glaciers cover different applications from individual glaciers on
a small grid (244 × 179 at 100 m of resolution for Aletsch) rele-
vant for the modelling of today’s glaciers to large ice fields on
large grid (700 × 700 at 200 m of resolution for Valais) more rele-
vant for paleo glacier modelling. We conduct two kinds of experi-
ments in turn: (i) the computation of a snapshot solution to assess
the best accuracy we should expect from the emulator without
consideration for the computational price, and (ii) the computa-
tion of a transient solution to assess both fidelity and computa-
tional performance in a modelling application.

4.1 Fidelity of snapshot solutions

First, we consider the topography and ice thickness of Aletsch and
Valais glaciers at a given time and fix the ice-flow parameters
(A, c) to constant physical values (A = 78 MPa−3 a−1, c = 10 km
MPa−3). Based on these geometries, we computed two numerical
solutions: (i) a ‘solved’ one uH obtained by minimising (18) within
the space of solutions Xh, (ii) an ‘emulated’ one N l(pH) obtained
by minimising (20) in the space of parameters of the CNN.
Figures 4 and 5 present the results in terms of ‘solved’ solution
at convergence (panel A), ‘emulated’ solution at emulator conver-
gence (panel B), difference between ‘solved’ and ‘emulated’ solu-
tions (panel C), decrease of the system energy during solving and
training (panels D and E), and L1 error of the emulated uE
towards the solved uS solution through training iterations (panel
F) defined by:

EL1 =
∫
V

∫b+h

b
|uE − uS|. (21)

In general, the Adam optimiser succeeds at minimising the
energy and capturing the ‘solved’ and the ‘emulated’ solutions.
Indeed, the energy associated with the ‘emulated’ solution
decreases towards a value (∼−0.34) that is relatively close to
the value obtained when solving (∼−0.35), demonstrating that
our CNN has learnt well to minimise the energy for the
Aletsch case (Fig. 4E). Most importantly, the L1 error is small
(∼1.2 m a−1, Fig. 4F), showing that the ‘emulated’ solution is
very similar to the reference ‘solved’. An in-depth comparison
of the spatial pattern of the two solutions (Fig. 4C) reveals

minor and unevenly distributed discrepancies. Interestingly,
the Valais glacier case shows a larger energy gap (� 10%,
Fig. 5E), and a larger L1 error norm (∼3.6 m a−1, Fig. 5F),
which remains small considering the velocity scale (0–300 m
a−1). Comparing the spatial pattern of the two solutions
(Fig. 5C) shows that the error is mostly concentrated on the
most prominent glacier tongue. The slight deterioration of the
accuracy from the Aletsch to the Valais case can be explained
as follows: an emulator trained to a single glacier in a small
region is naturally expected to be more accurate (as more custo-
mised) than an emulator of the same complexity trained to a
larger glacier network. Note that increasing the size of the
CNN (increasing the number of layers, feature maps or kernel
size) have shown slight but not significant improvements of
fidelity.

For computing a single snapshot ice-flow field at a given time,
the solver was found to be more efficient than the emulator in
terms of convergence and then in terms of computational per-
formance, presumably due to different convexity properties. In
the next section, we show that the opposite is true when we con-
sider the evolution of a glacier over time.

4.2 Fidelity of transient solutions

For each glacier (Aletsch and Valais), we now perform two kinds
of transient experiments: (i) the first (referred to as
‘ELA-varying’) assumes fixed ice-flow parameters (A and c),
and forces the SMB with time-varying ELAs; (ii) the second
(referred as ‘A/c-varying’) assumes fixed ELA and force time-
varying ice-flow parameters (A and c). The goal of these two
experiments is to test the memory capacity of the deep-learning
emulator. As SMB, we use a simple parameterisation based on a
given ELA zELA, vertical gradients of accumulation and ablation,
and maximum accumulation rate:

SMB(z) = min (0.003× (z − zELA), 1), if z ≥ zELA
0.006× (z − zELA), otherwise.

{

Prior to running experiments, we collected the bedrock topog-
raphy of the two regions (Grab, 2020), initialised the model
with ice-free conditions and ran it with ice-flow parameters c =
10 km MPa−3 a−1 and A = 78 MPa−3 a−1 and mass-balance para-
meters zELA = 2800 m asl, and zELA = 2200 m asl for Aletsch and
Valais, respectively. The goal of this preliminary phase is to simu-
late the build-up of glaciers until they reach a steady-state shape.
Then, the ELA-varying transient experiment consists of model-
ling 2000 years (starting from the obtained steady-state shape,

Figure 4. Results of the solver and the emulator for the snapshot experiment related
to Aletsch glacier. Panels A and B show the magnitude of the ice-flow velocities
obtained by solving and emulation, respectively. Panel C shows the difference
between the two. Panels D and E show the decrease of the system energy through
iterations. Panel F shows L1 error of the emulated towards the solved solution
through training iterations.

Figure 5. Results of the solver and the emulator for the snapshot experiment related
to Valais glacier. The meaning of panels is similar to Figure 4.

1946 Guillaume Jouvet and Guillaume Cordonnier

https://doi.org/10.1017/jog.2023.73 Published online by Cambridge University Press

https://doi.org/10.1017/jog.2023.73


and keeping the parameters constant) with the following ELA
parametrisation:

zELA = 2800+ 200× sin (pt/500) m,

zELA = 2200+ 300× sin (pt/500) m,

for the Aletsch and Valais glaciers, respectively. On the other
hand, the A/c-varying transient experiment consists of running
the model for 2000 years (starting from the obtained steady-state
shape and keeping the parameters constant) with the following
ice-flow parameters:

A = 78+ 22× sin (pt/500) MPa−3a−1,

c = 10+ 5× sin (pt/500) km MPa−3a−1,

to induce glacier variations (retreat-advance-retreat), and explore
a variety of configurations for assessment.

The experiments were performed using the solver (our refer-
ence run) and the emulator (pretrained on a glacier catalogue,
Appendix A) with different retraining strategies to compute the
ice dynamics: (i) with no retraining at all (Experiment ‘0–0%’),
(ii) with 100% retraining during the first 1000 years (i.e. one
step of retraining per iteration) and then no retraining
(Experiment ‘100–0%’), (iii) with 100% retraining during the
first 1000 years and then 10% retraining (i.e. on step of retraining
each 10 iteration) during the second 1000 years (Experiment
‘100–10%’). Table 1 summaries the design and the outcomes in
terms of fidelity of all experiments. Figures 6 and 7 show the
results of the ELA and A/c-varying experiments for Aletsch and
Valais Glacier, respectively, in terms of fidelity (L1 error) of the
‘emulated’ solution uE to the reference ‘solved’ one uS, and overall
ice volume.

As a result, the pretrained emulator without further retraining
(0–0%) captures roughly the ice flow in the ELA-varying and
A/c-varying experiments of Aletsch Glacier when ice-flow para-
meters are fixed with an L1 error of ∼5 m a−1 (Fig. 6), which is fairly
small compared to the velocity scale (0–200 m a−1). This shows that
the shape of the Aletsch Glacier is relatively well represented in the
pretraining glacier catalogue (Fig. 12). Therefore, the emulator has
acquired a fair knowledge to predict a solution in line with the
‘solved’ one. However, emulator-induced cumulative errors lead to
an increasing bias in ice volume (Fig. 6). In contrast, the pretrained
emulator performs very poorly with the Valais Glacier (very high L1
error in Fig. 7). This is likely due to the fact that the glaciers of this
experiment go well beyond the glaciers in the catalogue (Fig. A1) in
terms of shape, size and ice-flow behaviour.

In contrast, our results reveal that adaptive retraining of the
emulator (100–0%) shows largely improved accuracy with respect
to the ‘solved’ reference solution during the first 1000 years.
Indeed, retraining damps the L1 error to small values: ∼1 and
∼4 m a−1 in the Aletsch and the Valais Glacier experiments,
respectively (Figs 6, 7) in the first 1000 years when one retraining
step is applied to each time step. These errors as well as the spatial
patterns of the error (not shown) are very similar to the ones

found in the snapshot experiments (Figs 4, 5, panels A and B)
with discrepancies, mostly in the trunk of Valais Glacier. As a
result, the modelled volumes agree very well with the ‘solved’
solution when systematic retraining is used (Figs 6, 7). It must
be stressed that using more than one training iteration per time
step did not show significant reduction of the L1 error.

As systematic online retraining during the first 1000 years is a
relatively costly task (next section), we analyse the effect of releas-
ing the retraining to assess the capability of the emulator to retain
the ice-flow solutions accurately (Figs 6, 7). As a result, switching
off the retraining after 1000 years of simulation and repeating
the experiments with the same forcing for another 1000 years
(100–0%) reveal different outcomes. Indeed, the emulator ‘retains’
some of the relevant training in ELA-varying experiments, but
deteriorates very quickly in the A/c-varying experiments, leading
to notable biases in ice volume (Figs 6, 7). In contrast, the emulator
remains as accurate as in the first phase when lightly retrained each
10 time steps (100–10%) in the second phase. This means that the
emulator has mostly retained the geometry–ice flow relationship
during the first pass and that the accuracy can be maintained
with a light computationally effective retraining provided an initial
systematic training.

An important parameter for online retraining is the learning
rate. A too low parameter (gently learning) will result in ineffi-
cient learning and solution biases, while a too high parameter
(aggressive learning) will result in erratic/non-smooth accuracy
curve and deteriorated memory of the emulator (not shown).
As a trade-off between the two cases, we found that a learning
rate of 2 × 10−5 is optimal in all our transient experiments.

4.3 Computational performance of transient solutions

We now compare the computational performance of the three
solutions: ‘solved’, ‘emulated without online retraining’ and ‘emu-
lated with online retraining’ to lead the ELA and A/c-varying
experiments presented in the previous section. Comparing the
emulator and the solver is a challenge, as the first requires only
one emulation step (the retraining does not require to be per-
formed more than once per time iteration), while the solver
may require several iterations per time step to converge. For
this reason, we first discuss the costs associated with one individ-
ual step (i.e. one iteration of retraining or solving of the optimisa-
tion algorithm) before analysing the overall costs.

Table 2 gathers together the computational times needed to
achieve one step of (i) solving, (ii) emulating and (iii) retraining
for modelling domains of various sizes, and on both CPU and
GPU architectures of the same desktop computer (equipped
with a 10-core Intel CPU i9–10900 K and a 10 000 cores Nvidia
GPU RTX 3090). As a result, the GPU (which has 1000 times
more cores) systematically out-performs the CPU. While the
CPU may be interesting for small-scale array domains, Table 2
shows that it is not a viable option to treat large-scale arrays.
Therefore, we focus our performance analysis on the GPU only.
We find that the emulation step is the most affordable task, fol-
lowed by the solving step, which is slightly (about 30%) more
expensive, and the retraining step, which is about three times
more expensive than emulation regardless of the domain size.
This can be explained as follows. The emulation step is inexpen-
sive as it only requires a single pass of the CNN. On the other
hand, the solving step consists of a forward evaluation of the sys-
tem energy followed by the computation of the energy gradients
and an update of the ice flow. Last, the retraining step is naturally
expected to be more costly than the ‘emulation + solving’, as it
combines the tasks of the two: one CNN evaluation, one system
energy evaluation, the computation of the two gradients and an
update of the weights of the CNN.

Table 1. Design and results of ELA and A/c-varying experiments with various
retraining strategies

Exp.
Training level Resulting fidelity

name [0,1] ky [1,2] ky [0,1] ky [1,2] ky

0–0% 0% 0% Med./low Med./low
100–0% 100% 0% High Med./low
100–10% 100% 10% High High
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Since a CNN is evaluated sequentially layer by layer, the emu-
lation step is memory efficient. Therefore, emulation step can be
performed on large arrays (i.e. we achieved 2400 × 4000 with our
24 Gb GPU, Table 2), while the solving and retraining steps are
more memory-demanding and therefore more limited by the
GPU available memory. For example, none of the solving and
retraining steps for the 2400 × 4000 domain were achievable
with our GPU (we found that a maximum grid of about
2000 × 2000). Hopefully, this limitation can be overcome for the
retraining (and not for the solving step, Table 2) by splitting
the domain into smaller patches and sequentially retraining the
emulator patch-wise.

As the other modules (ice thickness and mass-balance
updates) are computationally inexpensive compared to the ice-
flow model, the overall cost is mainly the number of time itera-
tions times the costs of individual emulation (with or without
retraining) or solver steps. In the ELA and A/c-varying experi-
ments related to Aletsch and Valais glaciers, the time step was
on the order of 0.1 y to maintain numerical stability meaning
that ∼10 000 time iterations were needed per millennium of mod-
elling irrespective of the chosen method (solver or emulation).
When using the solver, several iterations were required to reach
convergence at a given time step, however, this number is case-
dependent: ∼3− 4 and more than ten iterations in the case of

Figure 6. Transient results of the ELA-varying (left panels) and A/c-varying (right panels) transient modelling experiments for Aletsch Glacier. The panels indicate
the time evolution of input parameters (ice-flow parameters and ELA), the resulting ice-flow L1 error between all ‘emulated’ solutions (with and without retraining)
and the ‘solved’ one and the output ice volume obtained with the three modelling methods (‘solved’, ‘emulated’ with and without retraining).

Figure 7. Transient results of the ELA-varying (left panels) and A/c-varying (right panels) transient modelling experiments for Valais Glacier. This is similar to the
caption of Figure 6.
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Aletsch and Valais glaciers, respectively. These numbers should be
taken with care, as a more efficient optimiser (e.g. Newton-like)
may reduce the number of required iterations. In contrast with
the solver, the emulation only requires one step, while the retrain-
ing can be applied infrequently while remaining effective. In our
case, the best trade-off in terms of accuracy to computational per-
formance was found using light retraining (each 10 iterations) as
it maintained accuracy (Figs 6, 7) at the cost of one cheap emu-
lation per time step plus more expensive but infrequent retraining
steps (Table 2).

5. Applications

In this section, we illustrate the potential of our physics-informed
ice-flow emulator for glaciological applications.

5.1 Paleo glacier modelling in the European Alps

Modelling paleo-glacier evolution is an important tool for under-
standing the history of glaciations. However, the long time scales
and the size of the domain may render this exercise computation-
ally very demanding. For example, the 120 000-year-long simula-
tion of alpine glacier evolution in the Alps of Jouvet and others
(2023) at 2 km with the Parallel Ice Sheet Model (PISM,
Khroulev, 2020) would take several weeks of computational
time on a 10 core i9–10900 K running at 3.70 GHz. It is, therefore,
prohibitively expensive to explore subkilometre resolutions that
would be required to resolve the complex topography of the
Alps in the highest reaches. Therefore, the ice-flow emulator
with online retraining is a promising approach to overcome the
computational bottleneck, especially on GPU, which allows
large array computations. Here, we test its capability to simulate
the paleo evolution of glaciers in the entire European Alps in
very high resolution (200 m) over 10 000 years encompassing
the Last Glacial Maximum (LGM, about 24 000 years ago).

To this end, we took over the model setting of Jouvet and
others (2023). Initialising with ice-free conditions and today’s
topography of the Alps as bedrock, IGM was forced with a
coupled modelled paleoclimate data and PDD SMB model
(Hock, 1999) from 28 000 years BP to 18 000 years BP. As a result,
the 200 m IGM simulation at 21 000 years BP shows highly
detailed glacier extents resolving small valleys and Nunataks
(Fig. 8), and took about 2 days of computations on a ∼10
000-core RTX 3090 1.70 Ghz GPU. Here, the GPU has 24 GB
memory, which is key to treating very large arrays. The horizontal
grid covers the entire Alps at 200 m yielding a resolution of
2400 × 4000. This exercise illustrates the capability of our
approach to achieving very high resolutions at affordable compu-
tational costs. For comparison, PISM at a much lower resolution

(2 km resolution, 240 × 400) would take about the same time to
carry a similar simulation on a 10-core 3.70 GHz CPU. Of course,
this comparison must be tempered by the fact that IGM does not
include all the many physical components of PISM, especially the
thermodynamics of ice, which is known to add substantial com-
putational time.

5.2 Ice-flow model inversion/data assimilation

Inverse modelling is an essential step to initialise present-day gla-
cier models, i.e. estimate unknown variables (such as ice thickness
and/or ice-flow parameters) such that the model matches at best
observations (surface ice-flow velocities or pointwise ice thickness
profiles). Substituting the ice-flow equations with a CNN
emulator allows solving the inverse model (or the underlying
optimisation problem) very efficiently by utilising automatic dif-
ferentiation and stochastic gradient methods (Jouvet, 2023).
Therefore, the CNN emulator trained by physics-informed deep
learning can also be used in a similar way. Most importantly,
one can now simultaneously optimise the CNN parameters to
fit the ice physics by minimising the system energy and the
CNN inputs to match observations by minimising the misfit to
the data. The coupled optimisation allows to perform the inver-
sion with an accurate and customised-to-the-glacier CNN at the
same time.

As an illustration, we solve the inversion problem for Aletsch
Glacier proposed by Jouvet (2023) with this new strategy. Given
present-day pointwise ice thickness measurements and surface
ice velocity measurements, we use the CNN trained offline over
the glacier catalogue, and seek alternatively for the CNN weights
λ, the ice thickness distribution h and the distributed sliding par-
ameter c, such that both the system energy (Eqn (20)) and the
mismatch between the observed and modelled quantities (Eqn
(5) in Jouvet (2023)) are minimised. Note that the regularisation
terms for h and c are added to enforce smoothness and ensure a
unique solution. As a result, Figure 9 shows the convergence of
the fields towards an optimal state and the reduction of the cor-
responding misfit values in terms of standard deviations. Here,
the quality of data assimilation is comparable to that obtained
by Jouvet (2023). However, the simultaneous emulator training/
optimisation has a major benefit with respect to the former
method (based on offline training): the online retraining permits
to account for spatial variations of the sliding coefficient (Fig. 9,
top-right panel) and makes the emulator nearly as accurate as
the solver (Fig. 10). In contrast, the former emulator, which
met only the glacier catalogue and spatially constant sliding coef-
ficient at training, suffers from larger biases as observed in
Appendix A.

5.3 Ice shelf

Ice shelves behave very differently to mountain glacier ice flow
as modelled in the two previous applications. Indeed, they can
be very fast due to the absence of friction under floating ice,
and are therefore dominated by basal sliding. By contrast, friction
under grounded glaciers usually induces an important vertical
shearing component. Yet, modelling accurately the dynamics of
ice shelves is essential to predict the evolution of the Antarctic
ice sheet under climate change and the resulting sea-level rise
(Seroussi and others, 2020). Here, we demonstrate that IGM
equipped with the new physics-informed deep-learning emulator
has an important potential for modelling ice-sheet/shelf systems
by performing a simple experiment inspired by the Marine Ice
Sheet Model Inter-comparison Project (MISMIP, Pattyn and
others, 2012). The goal here is not to run all exercise simulations,

Table 2. Computational time required (in average) to perform one emulation,
retraining, solving iteration step in modelling experiments for Aletsch, Valais
and the entire Alps

Exp Step CPU GPU

Aletsch Solver 125 ms 15 ms
244x179 Emulator 39 ms 11 ms

Retrain 533 ms 29 ms
Valais Solver 1538 ms 51 ms
700x700 Emulator 468 ms 38 ms

Retrain 5592 ms 110ms
Entire Alps Solver X X
2400x4000 Emulator X 360ms

Retrain X 1465 ms

In the latter case, we reported ‘X’ when the computation was not possible, or prohibitively
too expensive. The CPU (i9–10900 K) has 10 3.70 GHz cores with 64 Gb RAM while the GPU
(RTX 3090) has about 10 000 1.70 GHz cores with 24 Gb RAM.
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but only to compute the ice dynamics associated with one state to
prove the capacity of the emulator to handle sliding-dominant ice
flow of ice shelves.

For that purpose, we consider an idealised ice-sheet–ice-shelf
geometry lying on a ramp of constant slope in the x-direction
over a distance of Lx = 1100 km (Fig. 11). All geometrical variables
are constant in the y-direction to mimic the 2D MISMIP experi-
ment 1 (Pattyn and others, 2012). In that configuration, we distin-
guish the ice sheet (x < xGL) and the ice shelf (x > xGL) from the

grounding location xGL∼ 966.5 km (Fig. 11). The lower surface
elevation l is either the bedrock when the ice is grounded or deter-
mined by Archimedes’s principle when the ice is floating: l =max
{b,− (ρi/ρw)h}, where ρi = 910 kg m−3 and ρw = 1000 kg m−3

denote the densities of ice and water, respectively. Here, we use
the following parameters: A = 146.5 MPa−3 a−1, m = 1/3, c =
71.2 km MPa−3 a−1 where the ice is grounded and c−1 = 0 km
MPa−3 a−1 where the ice is floating (no friction). In addition,
we use the ‘shallow shelf approximation’ model (Morland,
1987) instead of the FOA by simply setting a single layer in the
vertical discretisation (Fig. 2, right panel), which is equivalent
to assuming vertically constant ice-flow velocities. Lastly, the
function J defined by (15) is augmented with an additional
term to account for balance stress conditions between ice and
water columns at the calving front (CF) on the extreme right of
the modelled domain (Fig. 11):

−
∫
CF

1
2

1− ri
rw

( )
righ

2v · n, (22)

where n is an outer normal vector along CF (Schoof, 2006). The
above condition was implemented along the other terms of the

Figure 8. Ice thickness of the alpine ice field obtained at 24 000 years BP modelled with IGM at 200 m of resolution.

Figure 10. Surface ice-flow field of Aletsch Glacier with the parameters found after
performing the simultaneous inversion and emulator training: (A) using the solver
and (B) using the retrained emulator. Panel (C) shows the spatial difference between
the two.

Figure 9. Evolution of the sliding distribution c (unit: km MPa−3 a−1), the ice thick-
ness distribution h (unit: m), as well as resulting surface ice-flow velocity field u s

(unit: m y−1) through the iterations of the optimisation problem for Aletsch glacier.
The standard deviation (STD) between the modelled and observed fields is reported
at each step.
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system energy, and a 2D field (namely (22) along the calving front
and zero elsewhere) was added to the emulator inputs (Eqn (19))
to control this boundary condition.

As a result, we find that after training the emulator on the spe-
cific geometry, the ‘Solved’ and ‘Emulated’ ice-flow fields along
the x-axis are nearly identical (Fig. 11). This experiment demon-
strates that the approach of the paper is not limited to grounded
glacier flow, but is capable to handle the sliding-dominant flow of
ice shelves.

6. Discussion and conclusions

In this paper, we have introduced both a solver and a
physics-informed deep-learning emulator for modelling high-
order ice flow on a regular grid that are designed to run efficiently
on GPU. The solver relies on a stochastic gradient method and
automatic differentiation tools to efficiently minimise the energy
associated with the underlying ice-flow equations discretised by
finite differences, similarly to Ritz–Galerkin methods in the finite
element framework. On the other hand, the emulator relies on a
CNN, which is trained to minimise the same energy. Therefore,
our method (which belongs to the category of deep Ritz) can be
seen as a fusion of finite element and deep-learning approaches.
Here, our approximation space for the ice flow is induced by
the training parameters of our CNN instead of being spanned
by finite element basis functions. As a result, we have shown
that our emulator can reproduce the solutions of the solver with
high fidelity. Unlike the former emulator (Jouvet and others,
2022), the new one does not require any data from an external ice-
flow model, as it enforces the ice-flow physics directly in learning.
Here, we used a glacier catalogue to pre-train the emulator and
obtain a good initial guess that facilitates convergence. However,
adaptive online training within the time-stepping of a glacier
evolution model does not require any data and has proven to
significantly improve the emulator accuracy. This strategy makes
the new emulator generic, as it allows exploration of any para-
meters, types of ice flow, spatial resolutions and glacier shapes,
while the validity of the former emulator could not be ensured
beyond the ‘hull’ defined by the data and its associated spatial
resolution used for training. In addition, CNN training is there-
fore significantly easier and cheaper as no data are required.
Last, our new emulator models the full 3D ice-flow field (instead
of the vertical average horizontal speeds with the former version),
which can be advantageous for some applications (e.g. Lagrangian
3D particle tracking).

The computational benefits of using a CNN emulator (Jouvet
and others, 2022) remain unchanged. Indeed, one CNN forward
evaluation can be done very efficiently, especially on GPU. In con-
trast, the solving and training steps are computationally more
expensive (by a factor of 3 in our experiments). Therefore, to
obtain the best computational performances, we mitigate the

amount of training by limiting the frequency of retraining.
Indeed, the memory capability of the CNN revealed in our experi-
ments allows us to reduce the training costs for a given applica-
tion. For instance, we found that a light cost-effective online
retraining following a first systematic training is sufficient to
maintain accuracy, as the CNN conserves most of the previously
learnt solutions. Therefore, training costs can be strongly reduced
in some modelling applications that meet several times similar
glacier configurations (e.g. in paleo glacier modelling with
repeated glacial cycle, or in parameter sensitivity analysis), yield-
ing low overall computational costs.

There are a number of aspects that may be improved in the
method presented in this paper. First, we used here the simplest
finite-difference scheme to discretise the spatial derivatives in
the strain rate on a staggered grid for simplicity. A more elabo-
rated finite-element-like discretisation is expected to yield a
more accurate solution, possibly slightly increasing the training
costs but without affecting the emulation costs. Second, we used
here the Adam optimiser as it proved to be robust and simple
to implement, however, other optimisers may improve the con-
vergence. For example, the (deterministic) L-BFGS-B optimiser
has proven to be efficient at fine-optimising PINNs after an
initial coarse pass with Adam to avoid local minima (Taylor
and others, 2022). Similarly, the solver can be improved, and
hybrid solver/emulation strategies that take advantage of two
should be further investigated (e.g. using the emulator for
preconditioning purpose or to help finding an initial guess).
Third, here we investigated retraining strategies (to get the best
accuracy while minimising the amount of retraining) in an
empirical way by quantifying a posteriori the error between
the emulated and solved solutions. Future research should
investigate more effective and generic retraining strategies, e.g.
seeking for an a priori error estimate of the neural network
approximation (e.g. Minakowski and Richter, 2023) as done
FEM for estimating the numerical error Ern and Guermond
(2004). Lastly, the loss of accuracy with increasing domain size
is another aspect of the emulator that should be improved, e.g.
by using multiple region-specific emulators. It must be stressed
that our CNN emulator (computationally efficient on GPU)
strongly relies on the structured discretisation grid assumption.
Therefore, emulating ice flow on more complex mesh (e.g. with
local refinements) would require to follow a different strategy
(e.g. PINNs).

Our modelling experiments have shown that the new emulator
embedded in a glacier evolution model can handle very efficiently
large-scale and/or high-resolution domain arrays and/or very long
time scales. Therefore, our method has a high potential for paleo-
glacier simulations. Additionally, we found that the emulator is
suitable for both inverse and forward modelling. Therefore, the
method can be very beneficial to assimilate data and run prognos-
tic models of present-day glaciers on a global scale. Lastly, we have
shown that our approach can be extended to fast-flowing ice as
found in tidewater glaciers, opening promising perspectives for
modelling the Antarctica and Greenland ice sheets in high spatial
resolution.

Data. The code to run any solver-based or emulator-based glacier evolution
simulations is open-source, relatively simple and publicly available with the
‘Instructed Glacier Model’ (IGM, https://github.com/jouvetg/igm).

Acknowledgements. We acknowledge Jacob Downs and an anonymous ref-
eree for their valuable comments on the original manuscript.

Author contributions. G. J. conceived the study, wrote the code, performed
the simulations and wrote the article. G. C. developed simultaneously a similar
approach, provided valuable feedback on the method and the results and
helped to improve the manuscript.

Figure 11. MISMIP-inspired ice geometry of the ice-shelf experiment along the x-axis,
and resulting ice-flow velocities modelled from the solver and the emulator with cus-
tom training on the specific geometry.
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APPENDIX A. Pre-training over a glacier catalogue

Pre-training of the CNN emulator over a glacier catalogue was found benefi-
cial, especially to avoid local minima during online training, and improve
the memory capability of the emulator. Here, we describe the implementation
of the pre-training, and assess the accuracy of the pre-trained emulator with
respect to the solver. To generate glacier shape inputs in an offline training
process of the CNN, we use a glacier catalogue of 36 mountain glaciers at
eight different times and 100 m resolution (covering advancing and retreating
stages) obtained by Jouvet and others (2022) by glacier evolution simulations
(Fig. A1). Further details about the construction of this catalogue are given in
Appendix C of Jouvet and others (2022). The catalogue consists of a heteroge-
neous dataset with a large variety of possible glacier shapes (large/narrow, thin/
thick, flat/steep, long/small, straight/curved glaciers, etc.).

First, we fix the ice-flow parameters (A, c) and the spatial resolution H to
constant standard values (A = 78 MPa−3 a−1, c = 10 km MPa−3, H = 100 m) for
simplicity. In a second experiment, we will vary these parameters at training.

A test glacier is selected in addition to the glacier catalogue, and a ‘solved’
ice-flow solution is obtained for this glacier by minimising the associated
energy with the Adam optimiser. Figure A2 presents the results in terms of
input data (panels A and B), ‘solved’ solution (panel C) and a decrease in sys-
tem energy (panel D).

Aside from the solver, we have trained a CNN emulator to minimise the
system energy (solving the optimisation problem (20)) over the entire glacier
catalogue (excluding the test glacier, Fig. A1), and evaluated its performance
to reproduce the previously ‘solved’ solution on a test glacier. As the size of
the dataset is considerable, one used batches (a batch size of 8 was used
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here) to facilitate convergence (previously only a single glacier sample was
used for online training at each iteration). In addition, we used an adaptive
learning rate including an exponential decay to launch the training aggressively
(10−4) for efficiency and to end it gently (10−6) for fine-tuning. Lastly, we have
re-initialized the learning-rate each 5000 training iterations to prevent falling
in local minima.

Figure A3 presents the results in terms of ‘emulated’ solution when the
training has converged (panel A), the difference between ‘solved’ and ‘emu-
lated’ solutions (panel B), the L1 error (panel C) and the decrease in the system
energy through training iterations (panel D). As a result, the evolution of the
L1 error (panel C, Fig. A3) shows that the emulator captures well the ice flow
after about 3000 iterations (the L1 error drops to ∼10 m/y). The effect of the
adaptive learning rate (initially fixed at 10−4, with exponential decay) is clearly
visible: the first stage of training (iterations 0–1000) shows the largest decays

and oscillations, while the last stage (iterations 4000–5000) is characterised
by a smoother but slower decay. Interestingly, the energy associated with the
‘emulated’ solution decreases towards a value (∼−2.2) that is relatively close
to the value obtained when solving (∼−2.3), demonstrating that our CNN
has learnt well to minimise the energy. Although the ‘emulated’ and ‘solved’
solutions show a fair degree of similarity (compare panel C of Fig. A2 with
panel A of Fig. A3), the spatial pattern of the difference between the two
(Fig. A3, panel B) reveals that the error is unevenly distributed, the highest
discrepancy being found on the most prominent glacier tongue. This is
presumably due to the relatively poor representation of large, fast-flowing
glacier tongues in the glacier catalogue compared to a smaller one (Jouvet
and others, 2022).

Figure A1. Ice thickness at their maximum extent of half of the glacier catalogue (18 of the 36). Each glacier shape is a snapshot of a simulation initialised with
ice-free conditions, and forced with a surface mass balance that permits building and retreat in successive phases over a total of 200 years. The horizontal bar
represents 5 km to give the scale of each glacier.

Figure A2. Results of the solver on the ‘test’ glacier: (A) ice surface topography and
(B) ice thickness of the ‘test’ glacier; (C) ‘solved’ surface ice-flow solution at conver-
gence; (D) evolution of the system energy through the iterations of the Adam
optimiser.

Figure A3. Results of the emulator on the ‘test’ glacier: (A) ‘Emulated’ surface ice flow
at the surface of the test glacier (Fig. A2) at convergence of the offline training over
the catalogue, (B) difference between the ‘emulated’ and ‘solved’ solutions, (C) evo-
lution of the L1 error between the two solutions and (D) of the system energy through
the training epochs. The jumps each 5000 iterations are due to the re-initialization of
the learning rate.
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In a second experiment, we take over the emulator trained with fixed
values of A, c and H, and augment the training data by sampling additional
values (but spatially constant) for A ∈ [20, 100] MPa−3 a−1, c ∈ [0, 20] km
MPa−3 a−1 and training at a different resolution H = 100, 200 m. The ice-
flow parameters (A, c) were sampled with a uniform distribution within
their ranges, while the spatial resolution HH (initially 100 m) was randomly
changed to 200 m by simple data upscaling. As a result, the CNN meets a
large set of input parameters in terms of glacier shape (sampling into the

catalogue as before) and other parameters. To assess the performance of
the emulator, we compare ‘emulated’ and ‘solved’ solutions obtained with
five sets of parameters (A, c, H ) for the test glacier in Figure A4. As a result,
the emulator generally captures roughly the ice flow for various parameter
sets (compare the first and second rows of Fig. A4). However, we find rela-
tively high spatial discrepancies when displaying the difference between the
two (third row of Fig. A4), with L1 errors between 10 and 20m a−1. Such a dete-
riorated accuracy is not surprising: the storage capacity of our CNN model

Figure A4. Results of the emulator on the ‘test’ glacier with varying values of A, c and H. Each column corresponds to one parameter set (A, c, H ) (the first column
shows the default original parameters). The first row displays the ‘solved’ surface ice-flow solution. The second row displays the ‘emulated’ solution after training
over the glacier catalogue, while the third shows the difference between this solution and the ‘solved’ one. The last raw shows the L1 error through the training. The
jumps each 5000 iterations are due to the re-initialization of the learning rate.

Figure B5. Surface ice-flow magnitude along the y = L/4 horizontal line for different length scales L = 10, 20, 40, 80 and 160 km in the ISMIP-HOM experiments A and
C: comparison between ‘solved’ with reference solution ‘oga1’ obtained from Pattyn (2008). For simplicity, the x-axis was scaled with L.
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emulator has reached its limit, and one cannot expect a model of a given size
(about 140 000 parameters) to store more realisations with similar accuracy.

APPENDIX B. ISMIP-HOM validation solutions

ISMIP-HOM (Pattyn, 2008) experiments consist of modelling exercises
based on various synthetic ice geometries and boundary conditions to pro-
duce different types of ice flow, which can be met in real glacier modelling.
Here, we focus on ISMIP-HOM experiments A and C, which represent a
wide panel of various 3D ice-flow scenarios (from shearing to sliding-
dominant flows) over a square horizontal domain of length L > 0: Ω = [0,
L] × [0, L]. In experiment A, the ice geometry is defined by

s(x, y) = −x tan (0.5◦),

b(x, y) = s(x)− 1000+ 500 sin 2px/L
( )

sin 2py/L
( )

,

and a no-slip condition is prescribed on the bedrock, while, in experiment
C, the geometry is defined by

s(x, y) = −x tan (0.1◦),

b(x, y) = s(x, y)− 1000,

and a slip condition is prescribed everywhere on the bedrock defined by m = 1
and

c(x, y) = [1000× (1+ sin(2px/L) sin(2py/L))]−1.

In both experiments, we use A = 100 MPa−3 a−1 as Arrhenius factor in Glen
flow law, and horizontal periodic boundary conditions connect the four hori-
zontal sides of Ω, see Pattyn (2008) for further details. The squared horizontal
domain Ω was divided into 100 cells in both horizontal directions to generate a
regular grid, while the ice thickness is divided into 20 layers. To obtain a wide
range of aspect ratios, we performed both experiments for several values of
domain length L = 10, 20, 40, 80 and 160 km. Figure B5 compares the ‘solved’
solutions at convergence with the reference ‘oga1’ solution obtained from
Pattyn (2008) for all experiments.

As a result, we generally find a very good agreement between the two solu-
tions. In line with model intercomparisons (Pattyn, 2008), there are small dis-
crepancies in the experiments that have the smallest domain length L, which
are known to be more sensitive to numerical parameters and schemes. This
validates our numerical solver and verifies that the system energy (18) –
which is used for solving and training the CNN – is correctly implemented.
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