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Abstract. We develop a general theory of Hopf image of a Hopf algebra
representation, with the associated concept of inner faithful representation, modelled
on the notion of faithful representation of a discrete group. We study several examples,
including group algebras, enveloping algebras of Lie algebras, pointed Hopf algebras,
function algebras, twistings and cotwistings, and we present a Tannaka duality
formulation of the notion of Hopf image.
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1. Introduction. The aim of this paper is to provide an axiomatization and
systematic study of the concept of Hopf image of a Hopf algebra representation, as well
as the related concept of inner faithful representation. These notions appeared, under
various degrees of generality, in a number of independent investigations: vertex models
and related quantum groups [6, 11, 12], locally compact quantum groups and their
outer actions [20, 27]. These were used extensively in the recent paper [10] in order
to study the quantum symmetries of Hadamard matrices and of the corresponding
subfactors.

The leading idea is that we want to translate the notion of faithful representation
of a discrete group at a Hopf algebra level. Let � be a group, let A be a k-algebra (k is
a field) and consider a representation

π : k[�] −→ A.

There are two possible notions of faithfulness for π :
(1) faithfulness of π as an algebra map, in which case we simply say that π is

faithful;
(2) faithfulness of the induced group morphism π|� : � −→ A×.

It is clear that the first notion is much more restrictive than the second one, and choice
of one of these notions as the good one for faithfulness depends on whether one is
interested by the algebra k[�] or rather by the group � itself.

It is not difficult so see that π|� is faithful if and only if Ker(π ) ⊂ k[�] does not
contain any non-zero Hopf ideal. This simple observation leads to a notion of inner
faithful representation for arbitrary Hopf algebras: if H a Hopf algebra, we say that a
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representation

π : H −→ A

is inner faithful is Ker(π ) does not contain any non-zero Hopf ideal. Of course, H is
viewed as the group algebra of a discrete quantum group, and faithfulness refers to
this discrete quantum group.

If the representation π is not inner faithful, there is, however, a minimal Hopf
algebra Hπ that factorizes π that we call the Hopf image of π (for H = k[�], we have
k[�]π = k[π (�)]). The exact universal property of the Hopf image is stated in Section 2.
The Hopf image measures how much π fails to be faithful in the discrete quantum
group sense. In the situation of [10], the Hopf image of the representation of the
quantum permutation algebra associated to a complex Hadamard matrix measures
the complexity of the quantum invariants of the Hadamard matrix.

A natural concept arising from these considerations is the notion of inner linear
Hopf algebra: we say that a Hopf algebra is inner linear if it admits a finite-
dimensional inner faithful representation. Therefore the problem of inner linearity
for Hopf algebras is a generalization of the celebrated linearity problem for discrete
groups (see [18, Chapter III, Section 20] for a short overview). More generally, we
believe that the study of Hopf images leads to interesting new questions and problems
in Hopf algebra theory, as well as in group theory through the study of group
duals.

The paper is devoted to a general study of the notion of Hopf image, culminating
in a Tannakian formulation, together with the study of several key examples.

The precise contents of the paper are as follows. In Section 2, we give a precise
formulation of the concept of Hopf image, we prove the existence of the Hopf
image and study some of its basic properties. In Section 3, we get back to the
discrete group example discussed in the introduction and also discuss the example of
enveloping algebras of Lie algebras. We also introduce the notion of inner linear Hopf
algebra. In Section 4, we consider the case of pointed Hopf algebras (thus including
quantized enveloping algebras), for which we give a criterion of inner faithfulness for
a representation using skew-primitives. As a simple illustration, we examine the vector
two-dimensional representation of Uq(sl2), which is shown to be inner faithful if and
only if q is not a root of unity. Section 5 is devoted to function algebras on algebraic
and compact groups. The construction of inner faithful representations is related to
the existence of topological generators. These simple examples already show that for
co-semi-simple Hopf algebras, inner faithulness is not directly related to injectivity on
characters (in contrast with the group algebra situation). In Section 6, we consider the
problem of constructing inner faithful representations for Hopf algebras with twisted
coproduct or twisted product. We show that the cotwist (2-cocycle deformation) of an
inner linear Hopf algebra for which S2 is an inner automorphism is still inner linear
if the 2-cocycle is induced by a finite-dimensional quotient. In particular, the multi-
parametric 2-cocycle deformations (cotwists) of O(GLn(�)) at roots of unity are inner
linear. Section 7 is devoted to the study of tensor and free products of Hopf images.
The question of knowing whether a tensor product of inner faithful representations
is still inner faithful leads to the notion of projectively inner faithful representation.
Section 8 is devoted to Tannaka duality type results, which provide so far the best
inner faithfulness criteria for a representation of a compact Hopf algebra (i.e. a Hopf
algebra associated to a compact quantum group). These are used in Section 9 to
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describe examples of inner faithful representations of compact Hopf algebras having
all their simple comodules of dimension smaller than 2.

Notations and conventions. We work in general over a fixed field k. We assume that the
reader has some familiarity with Hopf algebras, for which the textbooks [21] or [26]
are convenient. Our terminology and notation are the standard ones: in particular,
for a Hopf algebra, �, ε and S denote the comultiplication, counit and antipode,
respectively.

2. Construction of the Hopf image and basic properties. In this section, we give
the precise formulation of the concept of Hopf image, prove its existence and study of
some of its basic properties. The case of Hopf ∗-algebras is also considered at the end
of the section.

2.1. Construction of the Hopf image. First, let us give a precise formulation of
the notion of Hopf image of a representation. Let H be a Hopf algebra over a field k.
As usual, a representation of H on an algebra A is an algebra morphism π : H −→ A.

Let us say that a factorization of π is a triple (L, q, ϕ), where L is a Hopf algebra,
q : H −→ L is a surjective Hopf algebra map and ϕ : L −→ A is a representation, with
the decomposition π = ϕ ◦ q. We define in a straightforward manner the category of
factorizations of π , and the Hopf image of π is defined to be the final object in this
category (hence we can also say that this is a minimal factorization).

THEOREM 2.1. Let π : H −→ A be a representation of a Hopf algebra H on an
algebra A. Then π has a Hopf image: there exists a Hopf algebra Hπ together with a
surjective Hopf algebra map p : H −→ Hπ and a representation π̃ : Hπ −→ A, such that
π = π̃ ◦ p, and such that if (L, q, ϕ) is another factorization of π , there exists a unique
Hopf algebra map f : L −→ Hπ such that f ◦ q = p and π̃ ◦ f = ϕ.

H
π ��

p ���
��

��
��

�

q

��

A

Hπ

π̃

����������

L

f

���
�
�

ϕ

��

Proof. Let Iπ be sum of all the Hopf ideals contained in Ker(π ). It is clear that Iπ

is a Hopf ideal and is the largest Hopf ideal contained in Ker(π ). Let Hπ = H/Iπ and
let p : H −→ Hπ be the canonical surjection. Since Iπ ⊂ Ker(π ), there exists a unique
algebra map π̃ : Hπ −→ A such that π̃ ◦ p = π .

Let (L, q, ϕ) be a factorization of π . Then Ker(q) is a Hopf ideal contained in
Ker(π ) and hence Ker(q) ⊂ Iπ . Hence there exists a unique Hopf algebra map f :
L −→ Hπ , q(x) �−→ p(x), satisfying f ◦ q = p and ϕ ◦ f = π̃ , and thus Hπ has the
required universal property. �

As noticed by the referee, the notion of Hopf image is formally dual to the notion
of Hopf sub-algebra generated by the image of a coalgebra morphism.
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The above proof uses the Hopf ideal Iπ , the largest Hopf ideal contained in Ker(π ).
This Hopf ideal is constructed in a very abstract manner, and it is useful for several
purposes to have a more concrete description of Iπ , that we give now.

Let F be the free monoid generated by the set �, with its generators denoted
α0, α1, . . . and its unit element denoted 1. We denote by τ : F −→ F the unique monoid
anti-morphism such that τ (αi) = αi+1 for all i.

To any element g ∈ F , we associate an algebra Ag, defined inductively on the length
of g as follows. We put A1 = k, Aαk = A if k is even and Aαk = Aop if k is odd. Now for
g, h ∈ F with l(g) ≥ 1 and l(h) ≥ 1, we put Agh = Ag ⊗ Ah.

Now we associate an algebra morphism πg : H −→ Ag to any g ∈ F , again by
induction on the length of g. We put π1 = ε, παk = π ◦ Sk, and for g, h ∈ F with
l(g) ≥ 1 and l(h) ≥ 1, we put πgh = (πg ⊗ πh) ◦ �.

PROPOSITION 2.2. Let π : H −→ A be a representation and let Iπ be the largest Hopf
ideal contained in Ker(π ). We have

Iπ =
⋂
g∈F

Ker(πg) ⊂ H.

The proof of Proposition 2.2 uses several lemmas. We put Jπ = ⋂
g∈F Ker(πg) ⊂ H.

By construction Jπ is an ideal in H, and we wish to prove now that Jπ is a Hopf ideal.
The following result ensures that it is a co-ideal.

LEMMA 2.3. Let Cπ be the linear subspace in H∗ generated by the elements

{ψ ◦ πg, g ∈ F, ψ ∈ Ag∗ } ⊂ H∗.

Then Cπ is a sub-algebra of H∗, and Jπ = C⊥
π . In particular, Jπ is a co-ideal in H.

Proof. For ψ, φ ∈ H∗ and g, h ∈ F , we have

(ψ ◦ πg) · (φ ◦ πh) = ((ψ ◦ πg) ⊗ (φ ◦ πh)) ◦ � = (ψ ⊗ φ) ◦ πgh

and since ε ∈ Cπ , we conclude that Cπ is a sub-algebra of H∗. It is clear that C⊥
π = Jπ ,

and we conclude that Jπ is a co-ideal by [26, Proposition 1.4.6]. �
LEMMA 2.4. For all g ∈ F, there exists a linear isomorphism Rg : Aτ (g) −→ Ag such

that πg ◦ S = Rg ◦ πτ (g). In particular, S(Jπ ) ⊂ Jπ , and Jπ is a Hopf ideal in H.

Proof. We prove the result by induction on l(g). For l(g) = 0, this is clear and for
l(g) = 1, we can take Rg = idA since πτ (αk) = παk+1 = παk ◦ S. So assume that l(g) ≥ 1,
so that g = hh′, with l(h) = l(g) − 1 and l(h′) = 1 and that the result is proved for
elements of length < l(g). We put

Rg = Rhh′ = ch′,h ◦ (Rh′ ⊗ Rh) : Aτ (g) = Aτ (h′)τ (h) = Aτ (h′) ⊗ Aτ (h) −→ Ah ⊗ Ah′ = Ag,

where ch′,h : Ah′ ⊗ Ah −→ Ah ⊗ Ah′
is the usual symmetry (flip) map. For x in H, we

have

πg ◦ S(x) = πhh′ ◦ S(x) =πh(S(x2)) ⊗ πh′
(S(x1)) = ((Rh ◦ πτ (h))(x2)) ⊗ ((Rh′ ◦ πτ (h′))(x1))

= Rhh′ ◦ (πτ (h′) ⊗ πτ (h)) ◦ �(x) = Rg ◦ πτ (g)(x),

which proves the result. The last assertion is then clear. �
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The following lemma finishes the proof of Proposition 2.2.

LEMMA 2.5. Let π : H −→ A be an algebra map, let q : H −→ L be a Hopf algebra
map, and let ϕ : L −→ A be an algebra map with π = ϕ ◦ q. Then Ker(q) ⊂ Jπ , and
hence any Hopf ideal contained in Ker(π ) is contained in Jπ .

Proof. Let us show that

πg = ϕg ◦ q, ∀g ∈ F

with the same notation for ϕ as the one for π . We show this by induction on l(g).
This is true if l(g) = 0 since q is a coalgebra map and if l(g) = 1, we have παk =
π ◦ Sk = ϕ ◦ q ◦ Sk = ϕ ◦ Sk ◦ q = ϕαk ◦ q. Assume now that l(g) > 1, so that g = hh′

with l(g) > l(h) ≥ 1 and l(g) > l(h′) ≥ 1, and that the result is proved for elements of
length < l(g). Then

πhh′ = (πh ⊗ πh′
) ◦ � = (ϕh ⊗ ϕh′

) ◦ (q ⊗ q) ◦ � = (ϕh ⊗ ϕh′
) ◦ � ◦ q = ϕhh′ ◦ q,

and this proves our assertion by induction. Hence we have Ker(q) ⊂ Jπ . Any Hopf
ideal is the kernel of a Hopf algebra map, and hence the last assertion follows. �

REMARK 2.6. The notion of Hopf image considered here is in general different from
the one given in [2], Definition 1.2.0, which refers to the category of Hopf algebras.
Our definition of Hopf image uses the larger category of algebras.

2.2. Inner faithful representations. The following definition was already given in
the introduction.

DEFINITION 2.7. Let π : H −→ A be a representation of a Hopf algebra H on an
algebra A. We say that π is inner faithful if Ker(π ) does not contain any non-zero Hopf
ideal.

We have several equivalent formulations for inner faithfulness.

PROPOSITION 2.8. Let π : H −→ A be a representation of a Hopf algebra H on an
algebra A. The following assertions are equivalent.

(1) π is inner faithful.
(2)

⋂
g∈F Ker(πg) = (0).

(3) The Hopf algebra morphism p : H −→ Hπ in Theorem 2.1 is an isomorphism.
(4) If (L, q, ϕ) is any factorization of π , then q is an isomorphism.

The equivalence between these assertions follows from the previous considerations
and Proposition 2.2. Under a special assumption, we also have another equivalent
criterion for inner faithfulness.

PROPOSITION 2.9. Let π : H −→ A be a representation of a Hopf algebra H on an
algebra A such that Ker(π ) is S-stable: S(Ker(π )) ⊂ Ker(π ). Then π is inner faithful if
and only if (0) is the only bi-ideal contained in Ker(π ).

Proof. Assume that π is inner faithful. Let I ⊂ Ker(π ) be a bi-ideal. Then J =∑
k∈� Sk(I) is a co-ideal stable under the antipode with J ⊂ Ker(π ). Let J ′ be the ideal

generated by J: this is a bi-ideal with S(J ′) ⊂ J ′, and hence J ′ is a Hopf ideal contained
in Ker(π ). Hence, by the previous proposition, we have J = J ′ = (0). The converse
assertion is immediate. �
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We also have a characterization of the Hopf image using inner faithfulness, which
can be useful in some contexts (e.g. see the proof of Proposition 3.3).

PROPOSITION 2.10. Let π : H −→ A be a representation of a Hopf algebra H on an
algebra A, and let (Hπ , p, π̃ ) be the Hopf image of π . Then π̃ is inner faithful. Conversely
if (L, q, ϕ) is a factorization of π such that ϕ is inner faithful, then L � Hπ .

Proof. Let (L, q, ϕ) be a factorization of π̃ : Hπ −→ A: we have ϕ ◦ q = π̃ , and
hence ϕ ◦ (q ◦ p) = π . Thus there exists a Hopf algebra map f : L −→ Hπ such that
f ◦ q ◦ p = p. Hence f ◦ q = idHπ

, q is injective and is an isomorphism. By Proposition
2.8 we conclude that π̃ is inner faithful.

Now let (L, q, ϕ) be a factorization of π with ϕ inner faithful. By the universal
property of the Hopf image, there exists a surjective Hopf algebra map f : L −→ Hπ

such that π̃ ◦ f = ϕ. But then (Hπ , f, π̃ ) is a factorization of ϕ, and Proposition 2.8
ensures that f is an isomorphism. �

REMARK 2.11. Let π : H −→ A be a representation of a Hopf algebra H on an
algebra A and let θ : A −→ B be an algebra isomorphism. The universal property of
the Hopf image ensures that we have a Hopf algebra isomorphism Hθ◦π � Hπ , and,
in particular, θ ◦ π is inner faithful if and only if π is inner faithful.

When considering Hopf algebra maps, Hopf images are usual images and inner
faithfulness is equivalent to faithfulness.

PROPOSITION 2.12. Let H and A be Hopf algebras and π : H −→ A be a Hopf
algebra map. Then the Hopf image of π is π (H), and π is inner faithful if and only if it
is faithful.

Both assertions are immediate, since Ker(π ) is a Hopf ideal.
Of course, one cannot expect that an inner faithful representation H −→ A will

transmit all the algebra properties of the algebra A to the algebra H. This is true,
however, for commutativity.

PROPOSITION 2.13. Let π : H −→ A be a representation of a Hopf algebra H on a
commutative algebra A. Then the Hopf image Hπ is a commutative algebra, and hence if
π is inner faithful, then H is also commutative.

Proof. Since A is commutative, the ideal of H generated by the commutators of
elements of H is contained in Ker(π ). But the commutator ideal is also a Hopf ideal,
so is contained in Iπ , and hence Hπ is commutative. �

2.3. Hopf ∗-algebras. In this subsection, we assume that k = �, and we consider
Hopf ∗-algebras. In this case the construction of the previous subsection has to be
slightly modified.

Let us begin by recalling the appropriate language. First, a Hopf ∗-algebra is a Hopf
algebra H which is a ∗-algebra and such that the comultiplication � : H −→ H ⊗ H
is a ∗-algebra map. It follows that the counit is a ∗-morphism and that the antipode
is bijective, and its inverse satisfies S−1(x) = S(x∗)∗. A ∗-representation of H on a
∗-algebra is a ∗-algebra map H −→ A.

The formulation of the problem of the existence of a Hopf ∗-image is the same as
in the introduction, adding ‘∗’ where needed. In this framework, Theorem 2.1 has the
following form.
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THEOREM 2.14. Let π : H −→ A be a ∗-representation of a Hopf ∗-algebra H on an
∗-algebra A. Then π has a Hopf ∗-image: there exists a Hopf ∗-algebra Hπ together with
a surjective Hopf ∗-algebra map p : H −→ Hπ and a ∗-representation π̃ : Hπ −→ A,
such that π = π̃ ◦ p, and such that if (L, q, ϕ) is another ∗-factorization of π , there exists
a unique Hopf ∗-algebra map f : L −→ Hπ such that f ◦ q = p and π̃ ◦ f = ϕ.

H
π ��

p ���
��

��
��

�

q

��

A

Hπ

π̃

����������

L

f

���
�
�

ϕ

��

Proof. Similarly to the proof of Theorem 2.1, one constructs I+
π , the largest Hopf

∗-ideal contained in Ker(π ). The explicit construction of I+
π is as follows. Let F+ be

the free monoid generated by the set �. Similarly to the construction in the previous
subsection, to any g ∈ F+, we associate an algebra Ag and a representation πg : H −→
Ag, using the inverse of the antipode when needed. Then, similarly to the proof of
Proposition 2.2, we show that

I+
π =

⋂
g∈F+

Ker(πg) ⊂ H.

The details are left to the reader (to show that
⋂

g∈F+ Ker(πg) is ∗-stable, one uses the
formula S ◦ ∗ = ∗ ◦ S−1). �

REMARK 2.15. We have used the same notation Hπ for the Hopf ∗-image of a
∗-representation π : H −→ A and its Hopf image. In general, it seems possible that two
notions might not coincide, although we do not have an explicit example. This should
cause no confusion: unless specifically notified, when we have such a ∗-representation,
the notation Hπ will always denote the Hopf ∗-image.

We will say that a ∗-representation π : H −→ A of a Hopf ∗-algebra H on an
∗-algebra A is inner faithful if Ker(π ) does not contain any non-zero Hopf ∗-ideal
(similarly to Proposition 2.8 there are several equivalent characterizations). Again it
seems to be possible that such a ∗-representation be inner faithful as a ∗-representation,
but not as a representation. However, the two notions coincide when S2 = idH (or more
generally if some power of S2 is an inner automorphism).

REMARK 2.16. The proof of Theorem 2.14 also shows that Hopf images exist in
the category of Hopf algebras having a bijective antipode (more precisely, the Hopf
ideal I+

π is the largest Hopf ideal with S(I+
π ) = I+

π contained in Ker(π )), and the Hopf
image in this category coincides with the Hopf ∗-image. Note that the construction
of Theorem 2.1 does not give the Hopf image in the category of Hopf algebras with
bijective antipode, since there exist quotients of Hopf algebras with bijective antipode
that do not have a bijective antipode (see e.g. [25]).

We now turn to compact Hopf algebras: these are the Hopf ∗-algebras having all
their finite-dimensional comodules equivalent to unitary ones (see [19], these are called
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CQG algebras there), and are the algebras of representative functions on compact
quantum groups.

THEOREM 2.17. Let π : H −→ A be a ∗-representation of a compact Hopf algebra
H on a ∗-algebra A. Then the Hopf ∗-image Hπ is a compact Hopf algebra, and hence
Hopf ∗-images exist in the category of compact Hopf algebras.

Proof. It is clear from Theorem 27, Section 11.3 in [19], that a quotient of a compact
Hopf algebra is again a compact Hopf algebra. Thus since we have a surjective Hopf
∗-algebra map H −→ Hπ , we conclude that Hπ is a compact Hopf algebra. �

3. Classical examples: group algebras and Lie algebras. In this section, we get
back to the motivating examples for the notion of inner faithfulness: group algebras
and universal enveloping algebras of Lie algebras.

3.1. Group algebras. The following result is announced in the introduction. Its
origin goes back to Proposition 2.2 in [6].

PROPOSITION 3.1. Let � be a group, let A be an algebra and let π : k[�] −→ A be an
algebra map. Then we have

k[�]π � k[π (�)] � k[�/Ker(π|�)].

In particular, π is inner faithful if and only if the group morphism π|� : � −→ A× is
injective (faithful).

Proof. Let (L, q, ϕ) be a factorization of π . Then L is the group algebra k[q(�)],
and we have a group factorization

�
π|� ��

q|� ���
��

��
��

� A×

q(�)

ϕ|q(�)

		��������

Hence, we have q(�) ⊂ π (�), and this induces the appropriate Hopf algebra map
k[q(�)] = L −→ k[π (�)]. �

The above result motivates the following definition.

DEFINITION 3.2. A Hopf algebra H is said to be inner linear if there exists an inner
faithful representation π : H −→ A into a finite-dimensional algebra A.

Indeed the group algebra k[�] is inner linear if and only the group � is linear (over
k). It is clear that a Hopf algebra is inner linear if and only if it contains an ideal of
finite codimension that does not contain non-zero Hopf ideals.

3.2. Lie algebras. Let g be a Lie algebra, and let U(g) be its universal enveloping
algebra. Algebra maps U(g) −→ A correspond exactly to Lie algebra maps g −→
gl(A), where gl(A) is the Lie algebra associated to A: as a vector space gl(A) = A and
the Lie bracket is defined by [a, b] = ab − ba, ∀a, b ∈ A. The Hopf image is described
as follows in characteristic zero.
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PROPOSITION 3.3. Let g be a Lie algebra over a characteristic zero field, let A be an
algebra and let π : U(g) −→ A be an algebra map. Then we have

U(g)π � U(π (g)) � U(g/Ker(π|g)).

In particular, π is inner faithful if and only if the Lie algebra map π|g : g −→ gl(A)
is injective (faithful). Thus the Hopf algebra U(g) is inner linear if and only if g is
finite-dimensional.

Proof. Let us first show if π|g : g −→ gl(A) is injective, then π : U(g) −→ A is
inner faithful. The space of primitive elements P(U(g)) equals g by the characteristic
zero assumption and 1 is the only group-like in U(g) (see e.g. [21, Proposition 5.5.3]).
Thus the canonical map p : U(g) −→ U(g)π is injective on primitive elements, and
since the Hopf algebra U(g) is pointed, we use Corollary 5.4.7 in [21] to conclude that
p is injective, and hence π is inner faithful.

In general, we have a Hopf algebra factorization

U(g) π ��



��������� A

U(π (g))

�����������

The algebra map on the right is inner faithful by the previous discussion, and
hence by Proposition 2.10 we have the announced isomorphism U(g)π � U(π (g)) �
U(g/Ker(π|g)). Finally, if π is inner faithful, it induces an isomorphism U(g) �
U(π (g)), which induces an isomorphism between the Lie algebras of primitive elements,
and hence between g and π (g): π|g is injective.

If U(g) is inner linear, then g is finite-dimensional by the previous discussion. The
converse follows from Ado’s Theorem: a finite-dimensional Lie algebra g has a faithful
finite-dimensional representation g −→ gln(k) for some n. �

In fact, the main argument we have used for the proof of this proposition,
Corollary 5.4.7 in [21], a result due independently to Takeuchi and Radford, is valid for
arbitrary pointed Hopf algebras. We use it in a similar manner in the next section to get
an inner faithfulness criterion for representations of arbitrary pointed Hopf algebras.

4. Pointed Hopf algebras. After the motivating examples of group algebras and
enveloping algebras of Lie algebras, the next natural step is the study of pointed Hopf
algebras. These have been much studied in recent years (see e.g. [19] for quantized
enveloping algebras of Lie algebras and [3] for the finite-dimensional case). In this
section, we study the inner faithfulness of a representation of a pointed Hopf algebra.
The criterion that we give unifies those given in the previous section.

Recall that a Hopf algebra H is said to be pointed if all its simple comodules are
one-dimensional, hence corresponding to group-like elements. The group of group-like
elements of H is denoted by G(H). An element x ∈ H is said to be (g, h)-primitive for
g, h ∈ G(H) if

�(x) = g ⊗ x + x ⊗ h.

The space of (g, h)-primitive elements is denoted Pg,h(H).
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THEOREM 4.1. Let π : H −→ A be a representation of a pointed Hopf algebra H on
an algebra A. The following assertions are equivalent.

(1) π is inner faithful.
(2) ∀g ∈ G(H), the restriction π|Pg,1(H) : Pg,1(H) −→ A is injective.
(3) ∀g ∈ G(H), the restriction π|P1,g(H) : P1,g(H) −→ A is injective.

Proof. We begin by showing that π is inner faithful if and only if for all g, h ∈ G(H),
the restriction π|Pg,h(H) : Pg,h(H) −→ A is injective. Assume that π is inner faithful. Let
x ∈ Pg,h(H) be such that π (x) = 0 and let I be the ideal of H generated by x. It is clear
from the identities

�(x) = g ⊗ x + x ⊗ h and S(x) = −g−1xh−1

that I is a Hopf ideal, and since I is contained in Ker(π ), we get I = 0 and x = 0.
Conversely, assume that π is injective on each space of primitives. Then so is p :

H −→ Hπ , and hence by Corollary 5.4.7 in [21], we conclude that p is an isomorphism
and that π is inner faithful.

For x ∈ Pg,h(H), we have g−1x ∈ P1,g−1h(H) and h−1x ∈ Ph−1g,1(H). Hence if (2)
or (3) holds, then π is injective when restricted to each space of primitives, and the
previous discussion shows that π is inner faithful. �

The above criterion applies, in particular, to the quantized universal enveloping
algebra Uq(g) of a semi-simple Lie algebra g, for which descriptions of skew-primitives
are available [14, 22]. As a simple illustration, let us have a look at the vector
representation of Uq(sl2(�)).

THEOREM 4.2. Let π : Uq(sl2(�)) −→ M2(�) be the two-dimensional vector
representation of Uq(sl2(�)). Then π is inner faithful if and only if q is not a root of
unity, and hence Uq(sl2(�)) is inner linear if q is not a root of unity.

Proof. Recall first that for q ∈ �, q2 �= 1 and q �= 0, the algebra Uq = Uq(sl2(�)) is
presented by the generators E, F , K , K−1, submitted to the relations

KK−1 = 1 = K−1K, KE = q2EK, KF = q−2FK, [E, F ] = K − K−1

q − q−1

and its comultiplication is defined by

�(E) = 1 ⊗ E + E ⊗ K, �(F) = K−1 ⊗ F + F ⊗ 1, �(K) = K ⊗ K.

The vector representation π : Uq −→ M2(�) is defined by

π (K) =
(

q 0
0 q−1

)
, π (E) =

(
0 1
0 0

)
, π (K) =

(
0 0
1 0

)
.

We have G(Uq) = {Kn, n ∈ �} � �. If q is not a root of unity we have

P1,K (Uq) = �(1 − K) ⊕ �E ⊕ �FK, and for m �= 1, P1,Km (Uq) = �(1 − Km).

It is a direct computation to check that the conditions of Theorem 4.1 are fulfilled, and
hence π is inner faithful. If q is a root of unity, then π is not injective on the group-like
elements and hence is not inner faithful. �
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REMARK 4.3. If q is a root of unity, one can show that the Hopf image of the above
representation π is the (finite-dimensional) Hopf algebra uq(sl2(�)).

5. Function algebras. In this section, we study Hopf images for various function
algebras: polynomial functions on algebraic groups and representative functions on
compact groups. The idea for the computation of the Hopf image goes back to [6],
but we are a little bit more general here. These simple examples are already interesting
for testing the possibility of generalizing representation theoretic properties of discrete
group algebras to arbitrary Hopf algebras.

PROPOSITION 5.1. Let G be a linear algebraic group over an algebraically closed
field of characteristic zero and let π : O(G) −→ A be a representation on an algebra A.
Assume that the algebra π (A) is reduced, so that π (A) � O(X) for an affine algebraic
set X and that the algebra map O(G) −→ π (A) � O(X) is induced by a polynomial map
ν : X −→ G. Then O(G)π � O(〈ν(X)〉), where 〈ν(X)〉 is the Zariski closure in G of the
subgroup generated by ν(X).

Proof. By the assumption and Remark 2.11 we may assume that π : O(G) −→
O(X) is induced by an injective polynomial map ν : X −→ G. The injections X →
〈ν(X)〉 ⊂ G yield a factorization of π . Now let (L, q, ϕ) be a factorization of π . Then
L is finitely generated and is reduced by Cartier’s theorem (k has characteristic zero),
hence we can assume that L = O(H) for a linear algebraic group H, and that q and ρ are
induced by polynomial maps X → H ⊂ G whose composition is ν. Hence 〈ν(X)〉 ⊂ H,
and this gives the required Hopf algebra map O(H) −→ O(〈ν(X)〉). �

EXAMPLE 5.2. Let G be a linear algebraic group over an algebraically closed field
of characteristic zero and let g1, . . . , gn ∈ G. The algebra map

O(G) −→ kn

f �−→ (f (g1), . . . , f (gn))

has O(〈g1, . . . , gn〉) as Hopf image and is inner faithful if and only if G = 〈g1, . . . , gn〉.
PROPOSITION 5.3. If G is a linear algebraic group over an algebraically closed field

of characteristic zero, there exists an inner faithful representation π : O(G) −→ kn for
some n ∈ �∗, and hence the Hopf algebra O(G) is inner linear.

Proof. By the previous example it is enough to show that there exists g1, . . . , gn ∈ G
that generate G as an algebraic group: G = 〈g1, . . . , gn〉. We can assume that G is
connected since if G0 is the neutral component of G, the group G/G0 is finite. The Levi
decomposition of G as a semi-direct product of a reductive group and a unipotent one
reduces the problem to the case when G is unipotent or G is reductive. If G is unipotent,
we can use an induction argument on dim(G) to prove the result, since all the subgroups
of G are unipotent (and hence connected by the characteristic zero assumption). If G
is reductive, we have G = BB′ where B, B′ are Borel subgroups containing a maximal
torus T . We have B = TU and B = TU ′ with U, U ′ unipotent. Therefore it just remains
to treat the torus case, for which the result is clear. �

The compact group case is worked out similarly. Let G be a compact group.
The Hopf ∗-algebra of representative functions on G is denoted by R(G): this a
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dense ∗-sub-algebra of C(G) by the Peter–Weyl theorem, and moreover C(G) is the
enveloping C∗-algebra of R(G).

PROPOSITION 5.4. Let G be a compact group and let π : R(G) −→ A be a
∗-representation on a C∗-algebra A. Extend π to a ∗-algebra map π+ : C(G) −→ A, and
let X be the spectrum of π+(C(G)), so that π+(C(G)) � C(X) and that the induced C∗-
algebra map C(G) −→ π+(C(G)) � C(X) comes from a continuous map ν : X −→ G.
Then R(G)π � R(〈ν(X)〉), where 〈ν(X)〉 is the closure in G of the subgroup generated by
ν(X).

Proof. The proof is essentially the same as the one of Proposition 5.1, because a
quotient of a compact Hopf algebra is itself compact, and by the Hopf algebra version
of the Tannaka–Krein theorem, a commutative compact Hopf algebra is the algebra
of representative functions on a unique compact group. �

PROPOSITION 5.5. Let G be a compact Lie group. Then there exists an inner faithful
∗-representation π : R(G) −→ �n for some n ∈ �∗.

Proof. If G is connected, it is known (see [5]) that there exists x, y ∈ G such G =
〈x, y〉. Similarly to Example 5.2, this gives a ∗-representation R(G) −→ �2 which is
inner faithful by the previous proposition. If G is not connected, let G0 be the neutral
component of G: the group G/G0 is finite and hence G has a family of 2[G : G0]
topological generators, which again gives an inner faithful representation on �n, with
n = 2[G : G0]. �

We end the section by showing that the simple example of function algebras shows
that it is not possible to deduce inner faithfulness of a representation of a co-semi-
simple Hopf algebra by only studying its restriction to characters.

Let us assume that k is algebraically closed. Recall that a co-semi-simple Hopf
algebra is a Hopf algebra H, whose category of comodules is semi-simple. This is
equivalent to say that H has a Peter–Weyl decomposition

H =
⊕
λ∈�

Hλ,

where � is the set of simple H-comodules and for λ ∈ �, Hλ is the comatrix coalgebra
of corresponding coefficients. Let dλ be the dimension of the simple H-comodule
corresponding to λ, and let χλ ∈ Hλ be the corresponding character.

The group algebra case corresponds to when dλ = 1 for any λ, and then the
characters correspond to the group-like elements. Since for group algebras inner
faithfulness can be detected by only studying the restriction of a representation to
group-like elements, it would be natural to hope that in the general case, the restriction
to characters would lead to the same information. The following simple example shows
that this is not true.

EXAMPLE 5.6. Let us consider S4, the symmetric group on 4 letters, and let �(S4) =
�[S4]∗ be the co-semi-simple Hopf algebra of (complex) functions on S4. The group
S4 is generated by the elements τ1 = (1, 2), τ2 = (2, 3) and τ3 = (3, 4), and hence we
have an inner faithful representation

�(S4) −→ �3

f �−→ (f (τ1), f (τ2), f (τ3)).
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The elements τ1, τ2 and τ3 are all conjugate in S4, so this representation is not injective
on characters. Thus an inner faithful representation is not necessarily injective on
characters.

Conversely, the representation

�(S4) −→ �2

f �−→ (f (τ1), f ((1, 2, 3)))

is injective on characters (as one easily checks on the character table of S4), but is not
inner faithful since the elements τ1 and (1, 2, 3) do not generate S4.

As a conclusion, it seems that there is no link between the inner faithfulness of a
representation and its injectivity on characters.

6. Twisting. In this section, we study the behaviour of Hopf images under various
deformation procedures such as Drinfeld’s twisting, or the dual operation, often called
2-cocycle deformation, which we will call here cotwisting for simplicity.

6.1. Twisting. We begin with the twisting operation, in the sense of Drinfeld [16].
More exactly, the definitions we use are taken or adapted from [17, 23].

Let H be a Hopf algebra and let � be an invertible element in H ⊗ H. Consider
the linear maps δ�,�� : H −→ H ⊗ H defined respectively by

δ�(x) = ��(x), ��(x) = ��(x)�−1.

We say that � is a twist on H if

�12(� ⊗ 1H)(�) = �23(1H ⊗ �)(�), (ε ⊗ 1H)(�) = 1 = (1H ⊗ ε)(�)

which is equivalent to say that (H, δ�, ε) is a coalgebra. The element u = m ◦ (idH ⊗
S)(�) is then invertible in H, and H� = (H, m, u,��, ε, Su) is a Hopf algebra, where
Su : H −→ H is defined by Su(x) = uS(x)u−1.

We say that � is a pseudo-twist on H if (ε ⊗ id)(�) = 1 = (id ⊗ ε)(�), if (H,��, ε)
is a coalgebra, and if there exists an invertible element u ∈ H such that Su : H −→ H,
defined by Su(x) = uS(x)u−1, is an antipode for the bialgebra (H, m, u,��, ε), so that
H� = (H, m, u,��, ε, Su) is a Hopf algebra.

A Hopf algebra having the form H� for some twist (resp. pseudo-twist) � on H is
said to be a twist (resp. pseudo-twist) of H.

The following lemma gives some basic properties of twisting, probably well known.
The direct verification is left to the reader.

LEMMA 6.1. Let � be a pseudo-twist on a Hopf algebra H.
(1) Let f : H −→ L be a surjective Hopf algebra map. Then f ∗(�) = (f ⊗ f )(�) is

also a pseudo-twist for L.
(2) The Hopf ideals in H are exactly the Hopf ideals in H�.

THEOREM 6.2. Let H be a Hopf algebra, let � be a pseudo-twist on H and let
π : H −→ A be a representation on an algebra A, that we also view as a representation π :
H� −→ A. We have (H�)π = (Hπ )p∗(�), where p : H −→ Hπ is the canonical projection,
and π is inner faithful as a representation of H if and only if it is inner faithful as a
representation of H�.
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Proof. Since by the previous lemma the Hopf ideals of H and of H� are the same,
this is also true for the Hopf ideals contained in Ker(π ), and the largest one is the same.
So the defining Hopf ideal of (H�)π is the Hopf ideal Iπ constructed in Section 2, so
that (H�)π = H�/Iπ , and since (H/Iπ )p∗ (�) = H�/Iπ , we have the claimed result. The
last assertion is also immediate after the previous discussion. �

It follows that the twist of an inner linear Hopf algebra is still inner linear. The
reader will find several examples of twisted Hopf algebras in [17, 23], for example,
for which the above theorem furnishes inner faithful representations of the new Hopf
algebra from the old one. Some of the Hopf algebras considered in Section 9 are also
obtained by twisting.

6.2. Cotwisting. We now deal with the dual operation to twisting, which we call
cotwisting. The situation is more complicated here, because we deform the product
rather than the coproduct, and so a representation of the given Hopf algebra is not a
representation of the deformed one.

Let us recall the basic vocabulary, which is dual to the one of the previous
subsection. We only consider the cotwist case.

Let H = H be a Hopf algebra. We use Sweedler’s notation �(x) = x1 ⊗ x2. Recall
(see e.g. [15]) that a cotwist (=2-cocycle) is a convolution invertible linear map σ :
H ⊗ H −→ k satisfying

σ (x1, y1)σ (x2y2, z) = σ (y1, z1)σ (x, y2z2)

and σ (x, 1) = σ (1, x) = ε(x), for x, y, z ∈ H.
Following [15, 24], we associate various algebras to a cotwist. First, consider the

algebra σH. As a vector space we have σH = H and the product of σ H is defined to be

{x}{y} = σ (x1, y1){x2y2}, x, y ∈ H,

where an element x ∈ H is denoted {x}, when viewed as an element of σH.
We also have the algebra Hσ−1 , where σ−1 denotes the convolution inverse of σ .

As a vector space we have Hσ−1 = H and the product of Hσ−1 is defined to be

〈x〉〈y〉 = σ−1(x2, y2)〈x1y1〉, x, y ∈ H,

where an element x ∈ H is denoted 〈x〉, when viewed as an element of Hσ−1 . The cocycle
condition ensures that σH and Hσ−1 are associative algebras with 1 as a unit.

Finally, we have the Hopf algebra Hσ = σHσ−1 . As a coalgebra Hσ = H. The
product of Hσ is defined to be

[x][y] = σ (x1, y1)σ−1(x3, y3)[x2y2], x, y ∈ H,

where an element x ∈ H is denoted [x], when viewed as an element of Hσ , and we have
the following formula for the antipode of Hσ :

Sσ ([x]) = σ (x1, S(x2))σ−1(S(x4), x5)[S(x3)].

A Hopf algebra having the form Hσ for some cotwist σ on H is said to be a cotwist
of H.
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Very often cotwists are induced by simpler quotient Hopf algebras. More precisely
let π : H → K be a Hopf algebra surjection and let σ : K ⊗ K → � be a cotwist on
K . Then σπ = σ ◦ (π ⊗ π ) : H ⊗ H → � is a cotwist.

We prove the following result.

THEOREM 6.3. Let H be a Hopf algebra and let σ : H ⊗ H → k be a cotwist
induced by a finite-dimensional quotient Hopf algebra of H. Assume that S2 is an inner
automorphism of H. If H is inner linear, then Hσ is also inner linear.

The proof will be a consequence of the following technical result.

THEOREM 6.4. Let θ : H −→ A ⊗ L be an algebra map, where H, L are Hopf
algebras and A is an algebra, and let ϕ : L −→ B be an inner faithful representation of L
on an algebra B. Assume that there exists ψ ∈ A∗ such that (ψ ⊗ idL) ◦ θ : H −→ L is
an injective coalgebra map. Assume moreover that one of the following conditions holds.

(1) SL ◦ ((ψ ⊗ idL) ◦ θ ) = ((ψ ⊗ idL) ◦ θ ) ◦ SH.
(2) SL(Ker(ϕ)) ⊂ Ker(ϕ).

Then the representation (idA ⊗ ϕ) ◦ θ : H −→ A ⊗ B is inner faithful.

Proof. Let I ⊂ Ker((idA ⊗ ϕ) ◦ θ ) be a Hopf ideal. Let J = (ψ ⊗ idL)(θ (I)) ⊂ L:
this is a co-ideal since (ψ ⊗ idL) ◦ θ is a coalgebra map. We have

ϕ(J) = (ψ ⊗ ϕ)(θ (I)) = (ψ ⊗ idL)((idA ⊗ ϕ)(θ (I)) = 0,

and hence J ⊂ Ker(ϕ). Let J ′ be the ideal of L generated by J: we have J ′ ⊂ Ker(ϕ)
and J ′ is a bi-ideal in L.

Assume that condition (1) holds. Then J is SL-stable and hence so is J ′, which
is a Hopf ideal. Since ϕ is inner faithful, we have J ′ = J = (0), and we conclude that
I = (0) by the injectivity of (ψ ⊗ idL) ◦ θ .

Assume now that condition (2) holds. Then J ′ = (0) = J by Proposition 2.9, and
I = (0), again by the injectivity of (ψ ⊗ idL) ◦ θ . �

Proof of Theorem 6.3 By the assumption, there is a Hopf algebra surjection π :
H → K onto a finite-dimensional Hopf algebra K and a cotwist τ : K ⊗ K → k such
that σ = τπ . As noted in [8], we have an injective algebra map

θ : Hτπ −→ τK ⊗ Kτ−1 ⊗ H,

[x] �−→ {π (x1)} ⊗ 〈π (x3)〉 ⊗ x2.

Consider the linear map ψ = ε ⊗ ε : τK ⊗ Kτ−1 −→ k. We have (ψ ⊗ id) ◦ θ = id, and
hence is a coalgebra map. Let ϕ0 : H −→ B be an inner faithful finite-dimensional
representation, and let ϕ : H −→ B × Bop, x �−→ (ϕ0(x), ϕ0(S(x))). It is clear that ϕ is
still inner faithful, and the second condition in the previous theorem is satisfied since
S2 is inner. Hence the previous theorem ensures that the representation (id ⊗ ϕ) ◦ θ :
H −→ τK ⊗ Kτ−1 ⊗ (B × Bop) is inner faithful, and we are done since τK ⊗ Kτ−1 is
finite-dimensional. �

To illustrate the previous theorem, let us examine the case of multi-parametric
deformations of GLn of [4]. We assume that the base field is � until the end of the
section. Let p = (pij) ∈ Mn(�) be a multiplicatively anti-symmetric matrix: pii = 1 and
pijpji = 1 for all i, j. The algebra Op(GLn(�)) is the algebra presented by generators xij,
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yij, 1 ≤ i, j ≤ n submitted to the following relations (1 ≤ i, j, k, l ≤ n):

xklxij = pkipjlxijxkl, yklyij = pkipjlyijykl, yklxij = pikpljxijykl,

n∑
k=1

xikyjk = δij =
n∑

k=1

xkiykj.

The presentation we have given avoids the use of the quantum determinant. The algebra
Op(GLn(�)) has a standard Hopf algebra structure, described as follows:

�(xij) =
∑

k

xik ⊗ xkj, �(yij) =
∑

k

yik ⊗ ykj, ε(xij) = δij = ε(yij), S(xij) = yji, S(yij) = xji.

When pij = 1 for all i, j, one gets the usual Hopf algebra O(GLn(�)). It is known that
Op(GLn(�)) is a cotwist of O(GLn(�)), by a cotwist induced by the quotient Hopf
algebra O((�×)n) � �[�n] (see e.g. [4]).

COROLLARY 6.5. Let p = (pij) ∈ Mn(�) be a multiplicatively anti-symmetric matrix
whose entries are roots of unity. Then the Hopf algebra Op(GLn(�)) is inner linear.

Proof. Let M be the (finite and cyclic) subgroup of �× generated by the elements
pij. The cotwist defining Op(GLn(�)) is induced by the quotient Hopf algebra O(Mn),
and thus Theorem 6.3 gives the result. �

When the multiplicatively anti-symmetric matrix p satisfies some appropriate
additional conditions, we have similar deformations for various algebraic subgroups
of GLn and Theorem 6.6 holds true with similar proof. For example if pij = −1,

∀i �= j, one gets a Hopf algebra deformation of O(O(n, �)), found in [9, Section 4] and
corresponding to the quantum symmetry group of the hypercube, which therefore is
inner linear.

There are, however, interesting situations for which Theorem 6.3 is not sufficient
to ensure inner linearity, and where we need the full strength of Theorem 6.4, for
example, for the Hopf algebra O−1(SL2(�)) (which is well known not to be a cotwist
of O(SL2(�))).

COROLLARY 6.6. The Hopf algebra O−1(SLn(�)) is inner linear for any n ≥ 1.

Proof. The case n = 1 is trivial while if n ≥ 3, similarly to the previous cases,
O−1(SLn(�)) is a cotwist of O(SLn(�)) induced by a finite-dimensional quotient. So
we assume that n = 2. As in [28], we have an algebra embedding

θ : O−1(SL2(�)) ↪→ M2(�) ⊗ O(SL2(�)),

a �→ σ1 ⊗ a, b �→ σ2 ⊗ b, c �→ σ2 ⊗ c, d �→ σ1 ⊗ d,

where

σ1 =
(

0 1
1 0

)
, σ2 =

(
i 0
0 −i

)

and a, b, c, d denote the standard generators of both O(SL2(�)) and O−1(SL2(�)).
Let ψ : M2(�) → � be the unique linear map such that ψ(1) = 1 = ψ(σ1) = ψ(σ2) =
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ψ(σ1σ2). It is clear that (ψ ⊗ id) ◦ θ is a vector space isomorphism O−1(SL2(�)) −→
O(SL2(�)), and it is not difficult to check that it is a coalgebra map. Now choose
topological generators x, y of SL2(�) and consider the inner faithful representation
(see Example 5.2)

ϕ : O(SL2(�)) → �4, f �→ (f (x), f (y), f (x−1), f (y−1)).

The second condition in Theorem 6.4 is satisfied, and hence we get an inner faithful
representation O−1(SL2(�)) → M2(�) ⊗ �4. �

7. Tensor and free product of representations. The Hopf image does not behave
well with respect to the tensor or free product: the Hopf image of a tensor or free
product is not necessarily the tensor or free product of the Hopf images. Here is what
can be said in general.

PROPOSITION 7.1. Let H and L be Hopf algebras and let π : H −→ A and ϕ : L −→
B be algebra maps. Then there are surjective Hopf algebra maps

Hπ ⊗ Lϕ −→ (H ⊗ L)π⊗ϕ and Hπ ∗ Lϕ −→ (H ∗ L)π∗ϕ.

Proof. We consider the Hopf algebra factorizations

H ⊗ L
π⊗ϕ ��

pπ ⊗pϕ ������������ A ⊗ B

Hπ ⊗ Lϕ

π̃⊗ϕ̃



										

H ∗ L
π∗ϕ ��

pπ ∗pϕ ����������� A ∗ B

Hπ ∗ Lϕ

π̃∗ϕ̃














and the universal property of the Hopf image yields the announced Hopf algebra maps,
which are clearly surjective. �

The morphisms in the proposition are not injective in general, as the following
example shows.

EXAMPLE 7.2. Let �n be the cyclic group of order n and let x ∈ �n be a generator.
Let π : �[�n] −→ � be the unique algebra map with π (x) = ω, where ω is a primitive
root of unity of order n. The representation π is inner faithful because its restriction
to �n is faithful, hence �[�n]π = �[�n]. However, the representations π ⊗ π and π ∗ π

are not inner faithful because the groups �n × �n and �n ∗ �n do not inject in �∗.

For the tensor product, a faithfulness assumption on one of the algebra morphisms
enables one to describe the Hopf image easily. We begin with a lemma. We use the
notation of Section 2.

LEMMA 7.3. Let H and L be Hopf algebras and let π : H −→ A and ϕ : L −→ B
be algebra maps. Then

Iπ⊗ϕ =
⋂
g∈F

Ker(πg ⊗ ϕg).

Proof. We first show that for any g ∈ F , there exists a linear isomorphism Tg :
Ag ⊗ Bg −→ (A ⊗ B)g such that (π ⊗ ϕ)g = Tg ◦ (πg ⊗ ϕg). We prove this by induction
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on l(g). This is clear if l(g) ≤ 1, so we assume that g = hh′ with l(g) > l(h) ≥ 1 and
l(g) > l(h′) ≥ 1. Let x ∈ H and y ∈ L. We have, using the induction assumption,

(π ⊗ ϕ)hh′
(x ⊗ y) = (π ⊗ ϕ)h(x1 ⊗ y1) ⊗ (π ⊗ ϕ)h′

(x2 ⊗ y2)

= (Th ⊗ Th′ )(πh(x1) ⊗ ϕh(y1) ⊗ πh′
(x2) ⊗ ϕh′

(y2))

= Thh′ ◦ (πhh′ ⊗ ϕhh′
)(x ⊗ y),

and hence we have the desired result. Thus for g ∈ F , we have Ker((π ⊗ ϕ)g) =
Ker(πg ⊗ ϕg), and we have our result. �

PROPOSITION 7.4. Let H and L be Hopf algebras and let π : H −→ A and ϕ : L −→
B be algebra maps. Assume that π is faithful and that the antipode of H is injective. Then
(H ⊗ L)π⊗ϕ

∼= H ⊗ Lϕ . In particular, if the antipode of H is injective, if π is faithful and
if ϕ is inner faithful, then π ⊗ ϕ is inner faithful.

Proof. It is sufficient to show that Iπ⊗ϕ = H ⊗ Iϕ , since (H ⊗ L)/(H ⊗ Iϕ) � H ⊗
(L/Iϕ). For any g ∈ F , the representation πg is faithful since � and S are injective, so
Ker(πg ⊗ ϕg) = H ⊗ Ker(ϕg). By the previous lemma we have

Iπ⊗ϕ =
⋂
g∈F

Ker(πg ⊗ ϕg)

=
⋂
g∈F

H ⊗ Ker(ϕg) = H ⊗ (
⋂
g∈F

Ker(ϕg))

= H ⊗ Iϕ,

and we have our result. The last assertion is immediate. �
REMARK 7.5. Of course the assumption of the injectivity of the antipode is satisfied

in the most interesting cases. See [25] for an example of a Hopf algebra having a non-
injective antipode.

The result in the previous proposition naturally leads to the following question.

QUESTION 7.6. Let π : H −→ A be a representation of a Hopf algebra H on an
algebra A. Does there exist a condition on π , weaker than faithfulness, that ensures that
for any inner faithful representation ϕ : L −→ B of a Hopf algebra L on an algebra B,
then the representation π ⊗ ϕ is inner faithful?

If a representation π satisfies to the hypothetic condition of Question 7.6, then
in particular π ⊗ π will be inner faithful. It seems to be simpler to study first
representations with this weaker property, and this leads to the following definition.

DEFINITION 7.7. Let π : H −→ A be a representation of a Hopf algebra H on an
algebra A. We say that π is projectively inner faithful if π ⊗ π is inner faithful.

Once again this terminology is motivated by the discrete group case: a
representation π : k[�] −→ A is projectively inner faithful if and only if the associated
group morphism � −→ A×/k∗ is faithful (this follows from the following fact: an
element a ⊗ b ∈ A ⊗ B in a tensor product of algebras satisfies a ⊗ b = 1 ⊗ 1 if and only
if a, b ∈ k1 and ab = 1). When A = End(V ), this means that π induces an embedding
of � into the projective linear group PGL(V ).
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The example of function algebras shows that it is, in general, difficult to decide
when an inner faithful representation is projectively inner faithful. This specific example
leads to the following definition. This is a purely discrete group theoretic definition, but
of course we have in mind discrete groups embedded as dense subgroups of algebraic
groups.

DEFINITION 7.8. Let � be a discrete group and let {s1, . . . , sn} be a family of
generators of �. We say that {s1, . . . , sn} is a family of projective generators of � if the
group � × � is generated by the elements (si, sj), 1 ≤ i, j ≤ n.

If � = 〈s1, . . . , sn〉 is a dense subgroup of an algebraic group G, then {s1, . . . , sn} is
a family of projective generators of � if and only if the corresponding representation
O(G) −→ �n of Example 5.2 is projectively inner faithful.

Of course {s1, . . . , sn} is a family of projective generators if 1 ∈ {s1, . . . sn}. It would
be interesting to have more examples and to characterize the family of projective
generators of a group.

We end the section by noting that there is no analogous result to Proposition 7.4.
in the free product case, as shown by the following example.

EXAMPLE 7.9. Let π : �[�n] −→ � be the inner faithful representation of
Example 7.2. Then π ∗ id : �[�n] ∗ �[�n] −→ �[�n] is not inner faithful by Proposition
2.12, since �[�n] ∗ �[�n] � �[�n ∗ �n] is a non-commutative algebra while �[�n] is
commutative.

8. Tannaka duality. Tannaka duality studies the interplays between a Hopf
algebra and its category of comodules. In this section we formulate some Tannaka
type results for Hopf images, providing in this way criterion to prove inner faithfulness
of a representation. These results are used in [10], in the study of quantum permutation
groups associated to complex Hadamard matrices.

Let H be a Hopf algebra and let U, V be H-comodules. The coaction on U
is denoted αU : U −→ U ⊗ H. The set of H-comodule morphisms from U to V is
denoted HomH(U, V ). If f : H −→ L is a Hopf algebra map, then f induces natural
L-comodule structures on U and V (the resulting comodules still being denoted U and
V if no confusion arises), with

HomH(U, V ) ⊂ HomL(U, V ).

Now if π : H −→ A is a representation on an algebra A with Hopf image Hπ , we have
for all H-comodules U, V ,

HomH(U, V ) ⊂ HomHπ
(U, V ).

The Hopf algebra Hπ is constructed in a very abstract manner in general, but
we have a quite concrete description, that just uses π , for the morphisms between its
comodules arising from H.

PROPOSITION 8.1. Let π : H −→ A be a representation of a Hopf algebra H on an
algebra A. Let U and V be finite-dimensional H-comodules. We have

HomHπ
(U, V ) = Hom(Uπ , Vπ ),
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where

Hom(Uπ , Vπ ) = {f ∈ Homk(U, V ) | (1V ⊗ π ) ◦ αV ◦ f = (1V ⊗ π ) ◦ (f ⊗ 1H) ◦ αU}.

Proof. Let f ∈ HomHπ
(U, V ). We have, with the notations of Theorem 2.1:

(f ⊗ 1Hπ
) ◦ (1U ⊗ p) ◦ αU = (1V ⊗ p) ◦ αV ◦ f

⇒(1V ⊗ p) ◦ (f ⊗ 1H) ◦ αU = (1V ⊗ p) ◦ αV ◦ f

⇒(1V ⊗ π ) ◦ αV ◦ f = (1V ⊗ π ) ◦ (f ⊗ 1H) ◦ αU .

Hence f ∈ Hom(Uπ , Vπ ) and HomHπ
(U, V ) ⊂ Hom(Uπ , Vπ ). Assume conversely that

f ∈ Hom(Uπ , Vπ ), and let e1, . . . , em and e′
1, . . . , e′

m be respective bases of U and V
with

αU (ei) =
n∑

k=1

ek ⊗ uki and αV (e′
j) =

m∑
l=1

e′
l ⊗ vlj.

Let (λij) ∈ Mm,n(k) be such that f (ei) = ∑
j λjie′

j. Then since f ∈ Hom(Uπ , Vπ ), we have
for 1 ≤ i ≤ n, 1 ≤ l ≤ m:

m∑
j=1

π (vlj)λji =
n∑

k=1

λlkπ (uki)

and hence

Pli :=
m∑

j=1

vljλji −
n∑

k=1

λlkuki ∈ Ker(π ).

Let I be the ideal generated by the elements Pli. We have

�(Pli) =
m∑

j=1

vlj ⊗ Pji +
n∑

k=1

Plk ⊗ uki

and hence that I is a bi-ideal. Multiplying Pil on the left by S(vrl) and on the right by
S(uis) and summing over i and l gives

∑
i

λriS(uis) −
n∑

l=1

S(vrl)λls = S(−Prs) ∈ I.

Thus I is a Hopf ideal and hence I ⊂ Iπ = Ker(p). Thus we have, for 1 ≤ i ≤ n, 1 ≤
l ≤ m:

m∑
j=1

p(vlj)λji =
n∑

k=1

λlkp(uki).

This exactly means that f ∈ HomHπ
(U, V ), and we are done. �

COROLLARY 8.2. Let π : H −→ A be a representation of a Hopf algebra H on an
algebra A.
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(1) If π is inner faithful, we have

HomH(U, V ) = Hom(Uπ , Vπ )

for any H-comodules U and V.
(2) Assume that H is co-semi-simple and that the Hopf image Hπ is co-semi-simple.

Then π is inner faithful if and only if

HomH(U, V ) = Hom(Uπ , Vπ )

for any simple H-comodules U and V.

Proof. (1) This follows from the previous result.
(2) The ⇒ part follows from (1). Conversely, let us assume that

HomH(U, V ) = Hom(Uπ , Vπ ) = HomHπ
(U, V )

for any simple H-comodules U and V . Then the canonical projection p : H −→ Hπ

induces an injection from the set of simple H-comodules to the set of simple Hπ -
comodules, and using the respective Peter–Weyl decompositions of H and Hπ , we see
that p is injective, and hence is an isomorphism. �

The converse of part (1) of the corollary is not true in general. To see this,
assume that k has characteristic zero and consider H = O(SL2(k)) and L = O(B),
with B being the Borel subgroup of SL2(k) consisting of triangular matrices. The
restriction map O(SL2(k)) −→ O(B) is not inner faithful because it is not faithful (by
Proposition 2.12), and has O(B) as Hopf image. One easily sees that for the irreducible
representations of SL2(k) (the symmetric powers of the fundamental representation),
one has HomSL2(k)(U, V ) = HomB(U, V ), and hence by the co-semi-simplicity of
O(SL2(k)), this is true for any representation of SL2(k).

It seems to be difficult in general to decide whether the Hopf image is co-semi-
simple. However this is automatically true when one works in the category of compact
Hopf algebras (in the sense of Section 2), and hence we get the following interesting
characterization of inner faithfulness for ∗-representations.

THEOREM 8.3. Let π : H −→ A be a ∗-representation of a compact Hopf algebra H
on a ∗-algebra A. Then π is inner faithful if and only if

HomH(U, V ) = Hom(Uπ , Vπ )

for any simple H-comodules U and V.

Proof. The proof is done by the straightforward adaptation of the arguments of
Proposition 8.1 and Corollary 8.2 to the ∗-case. �

There is also a useful variant of the above theorem, when H is finitely generated. Let
U be a finite-dimensional H-comodule. To any x ∈ � ∗ � = 〈α, β〉, we associate an H-
comodule Ux as follows: U1 = �, Uα = U , Uβ = U∗, Uαβ = U ⊗ U∗, Uβα = U∗ ⊗ U
and so on. We say that the H-comodule U is faithful if any finite finite-dimensional
comodule is a sub-quotient of a direct sum of objects of type Ux. Assuming that H
is compact, this is equivalent to saying that any simple H-comodule is a sub-object of
some Ux. If u = (uij) is the matrix of coefficients of U , it is known that U is faithful if
and only if the coefficients uij and S(uij) generate H as an algebra.
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THEOREM 8.4. Let π : H −→ A be a ∗-representation of a compact Hopf algebra
H on a ∗-algebra A, and let U be a faithful H-comodule. Then π is inner faithful if and
only if

HomH(�, Ux) = Hom(�π , Ux
π )

for any x ∈ � ∗ �. If moreover U is self dual, then π is inner faithful if and only if

HomH(�, U⊗n) = Hom(�π , U⊗n
π )

for any n ∈ �.

Proof. The ⇒ part follows from the previous result. Conversely, assume that
HomH(�, Ux) = Hom(�π , Ux

π ) for any x ∈ � ∗ �. By duality theory in monoidal
categories, we get

HomH(Ux, Uy) = Hom(Ux
π , Uy

π ) (= HomHπ
(Ux, Uy))

for any x, y ∈ � ∗ �. Hence by Lemma 5.3 in [7] we see that the canonical morphism
p : H −→ Hπ is an isomorphism, which shows that π is inner faithful.

If U is self-dual, all the comodules Ux are isomorphic with U⊗n for some n, and
hence the result follows. �

9. Hopf algebras with small corepresentation level. This section gives a concrete
application of the inner faithfulness criterion of the previous section to compact Hopf
algebras having all their simple comodules of dimension smaller than 2. The Hopf
algebras we consider arise in the study of 4 × 4 Hadmard matrices ([10, 12]). Let us
begin with some vocabulary.

DEFINITION 9.1. Let H be a Hopf algebra and let n ∈ �∗. We say that H has
corepresentation level n if there exists a simple H-comodule V with dim(V ) = n, and
if any simple H-comodule has dimension smaller or equal than n. In this case we put
cl(H) = n. If the set of dimensions of simple H-comodules is not bounded, we put
cl(H) = ∞.

Pointed Hopf algebras are exactly the Hopf algebras with cl(H) = 1. The finite
groups � having all their irreducible representations of dimension ≤ 2 (in characteristic
zero) are described in [1], corresponding to the function Hopf algebras k� such that
cl(k�) ≤ 2.

We begin with a general result (Theorem 9.2) that ensures that a representation of
a compact Hopf algebra with corepresentation level 2 is inner faithful. Then this result
will be used to construct inner faithful representations of some concrete Hopf algebras
in Theorems 9.3 and 9.4.

THEOREM 9.2. Let H be a compact Hopf algebra with cl(H) = 2. Let � be the
group of group-like elements of H and let � be the set of isomorphism classes of
simple two-dimensional H-comodules. For each λ ∈ �, fix a matrix uλ = (uλ

ij ) ∈ M2(H)
of corresponding coefficients. Let π : H −→ A be a ∗-representation. Assume that the
following conditions are fulfilled.

(1) π|� is injective.
(2) ∀λ ∈ �, π (uλ

11) = 0 = π (uλ
22).
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(3) ∀λ ∈ �, ∀g ∈ �, π (uλ
12) and π (g) are linearly independent.

(4) ∀λ,μ ∈ �, π (uλ
12) and π (uμ

21) are linearly independent.
(5) ∀λ,μ ∈ � with λ �= μ, π (uλ

12) and π (uμ

12) are linearly independent.
Then π is inner faithful.

Proof. We have to show, by Theorem 8.3, that HomH(U, V ) = Hom(Uπ , Vπ ) for
any simple H-comodules U and V . If U and V have dimension 1, this is ensured by
condition (1). Assume that U has dimension 2, corresponding to λ ∈ � and that V has
dimension 1, corresponding to g ∈ �. Then Hom(Uπ , Vπ ) is identified with the spaces
of matrices t = (t1, t2) ∈ M1,2(�) such that

(t1, t2)

(
π (uλ

11) π (uλ
12)

π (uλ
21) π (uλ

22)

)
= (t1π (g), t2π (g)).

Using assumptions (2) and (3), we see that Hom(Uπ , Vπ ) = {0} = HomH(U, V ). Using
a similar argument, we see that the same conclusion holds if dim(U) = 1 and dim(V ) =
2. Assume now that dim(U) = 2 = dim(V ), corresponding, respectively, to λ,μ ∈ �.
Then Hom(Uπ , Vπ ) is identified with the space of matrices t = (tij) ∈ M2(�) such that(

π (uμ

11) π (uμ

12)

π (uμ

21) π (uμ

22)

) (
t11 t12

t21 t22

)
=

(
t11 t12

t21 t22

) (
π (uλ

11) π (uλ
12)

π (uλ
21) π (uλ

22)

)
.

Using assumptions (2) and (4), we see that t21 = t12 = 0 and if λ = μ we have t11 = t22,
and hence Hom(Uπ , Vπ ) = HomH(U, V ) = �. If λ �= μ, we have t11 = t22 = 0 by (5)
and hence Hom(Uπ , Vπ ) = (0) = HomH(U, V ): this concludes the proof. �

We now use Theorem 9.2 to provide inner faithful representations of a class of
Hopf algebras considered in [8], Section 7. We refer the reader to [8] for the precise
origins of these Hopf algebras, which we present now. First we have the Hopf algebra
Ah(2): this is the universal ∗-algebra presented by generators (vij)1≤i,j≤2 and relations:

(1) The matrix v = (vij) is orthogonal (with v∗
ij = vij).

(2) vijvik = vikvkj = 0 = vjivki = vkivji if j �= k.
The standard formulae

�(vij) =
∑

k

vik ⊗ vkj, ε(vij) = δij, S(vij) = vji

endow Ah(2) with a compact Hopf algebra structure. We have cl(Ah(2)) = 2, and the
fusion rules of the corepresentations of Ah(2) are those of the orthogonal group O(2).

The Hopf algebra Ah(2) has a series of finite-dimensional quotients defined as
follows.

For m ∈ �∗ and e = ±1, the compact Hopf algebra A(2m, e) is the quotient of
Ah(2) by the relations

(v11v22)m = (v22v11)m, (v12v21)m = e(v21v12)m.

Similarly, for m ∈ � and e = ±1, the compact Hopf algebra A(2m + 1, e) is the quotient
of Ah(2) by the relations

(v11v22)mv11 = (v22v11)mv22, (v12v21)mv12 = e(v21v12)mv21.

For any k ∈ �∗, we have dim(A(k, e)) = 4k and cl(A(k, e)) = 2 if k ≥ 2.
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THEOREM 9.3. Let q ∈ �∗ with q �= 1 and |q| = 1. Then there exists a unique
∗-representation πq : Ah(2) −→ M2(�) such that

πq(v11) = 0 = πq(v22), πq(v12) =
(

0 q−1

q 0

)
, πq(v21) =

(
0 1
1 0

)
.

(1) If q is not a root of unity, then the ∗-representation πq is inner faithful.
(2) If q has order 2m + 1, then Ah(2)πq � A(2m + 1, 1).
(3) If q has order 4m, then Ah(2)πq � A(2m,−1).
(4) If q has order 4m + 2, then Ah(2)πq � A(2m + 1,−1).

Proof. It is straightforward to check the existence of the ∗-representation πq. For
m ≥ 1, we have

π ((v11v22)m) = 0 = π ((v22v11)m),

π ((v12v21)m) =
(

q−m 0
0 qm

)
, π ((v21v12)m) =

(
qm 0
0 q−m

)
.

and for m ≥ 0 we have

π ((v11v22)mv11) = 0 = π ((v22v11)m)v22,

π ((v12v21)mv12) =
(

0 q−m−1

qm+1 0

)
, π ((v21v12)mv21) =

(
0 qm

q−m 0

)
.

(1) We have cl(Ah(2)) = 2 and the simple Ah(2)-comodules are as follows: there is
only one non-trivial one-dimensional comodule, corresponding to the group-like d =
v2

11 − v2
12, and a family of simple two-dimensional comodules Vn, n ≥ 1, corresponding

to the simple sub-coalgebras

C(2m) = �(v11v22)m ⊕ �(v12v21)m ⊕ �(v21v12)m ⊕ �(v22v11)m, m ≥ 1, and

C(2m + 1) = �(v11v22)mv11 ⊕ �(v12v21)mv12 ⊕ �(v21v12)mv21 ⊕ �(v22v11)mv22, m ≥ 0.

It is straightforward to check that if q is not a root of unity, the representation πq

satisfies to the conditions of Theorem 9.2, and hence we have our result.
(2) Assume that q is a root of unity of order 2m + 1. Then the representation

πq induces a ∗-representation π̃q : A(2m + 1, 1) −→ M2(�), and we have to show that
π̃q is inner faithful. For notational simplicity, the projections of elements of Ah(2)
in A(2m + 1, 1) are denoted by the same symbol. We have cl(A(2m + 1, 1)) ≤ 2 and
the simple A(2m + 1, 1)-comodules are as follows: there are three non-trivial one-
dimensional comodules, corresponding to the group-like elements

d = v2
11 − v2

12, g = (v11v22)mv11 + (v12v21)mv12, h = (v11v22)mv11 − (v12v21)mv12,

a family of 2m simple two-dimensional comodules V1, . . . , V2m, corresponding to the
simple sub-coalgebras C(k) just defined above. It is then a direct verification to check
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that the representation π̃q satisfies to the conditions of Theorem 9.2, and hence is inner
faithful.

(3) Assume that q is a root of unity of order 4m (m ≥ 1). Then the representation
πq induces a ∗-representation π̃q : A(2m,−1) −→ M2(�), and we have to show that π̃q

is inner faithful. We have cl(A(2m,−1)) = 2 and the simple A(2m,−1)-comodules are
as follows: there are three non-trivial one-dimensional comodules, corresponding to
the group-like elements

d = v2
11 − v2

12, g = (v11v22)m + i(v12v21)m, h = (v11v22)m − i(v12v21)m,

a family of (2m − 1) simple two-dimensional comodules V1, . . . , V2m−1, corresponding
to the simple sub-coalgebras C(k) defined above. It is a direct verification to check that
the representation π̃q satisfies to the conditions of Theorem 9.2, and hence is inner
faithful.

(4) Assume finally that q is a root of unity of order 4m + 2 (m ≥ 1). Then the
representation πq induces a ∗-representation π̃q : A(2m + 1,−1) −→ M2(�), and we
have to show that π̃q is inner faithful. We have cl(A(2m + 1,−1)) ≤ 2 and the simple
A(2m + 1,−1)-comodules are as follows: there are three non-trivial one-dimensional
comodules, corresponding to the group-like elements

d = v2
11 − v2

12, g = (v11v22)mv11 + i(v12v21)mv12, h = (v11v22)mv11 − i(v12v21)mv12,

a family of 2m simple two-dimensional comodules V1, . . . , V2m, corresponding to the
simple sub-coalgebras C(k) defined above. It is again a direct verification to check that
the representation π̃q satisfies to the conditions of Theorem 9.2, and hence is inner
faithful. �

The Hopf algebra Ah(2) is in fact a particular case of a construction given in
[13, Example 2.5], which we describe now, and the inner faithful representation of the
previous theorem has a natural generalization.

Let � be a group and let n ∈ �∗. Let An(�) be the algebra presented by generators
aij(g), 1 ≤ i, j ≤ n, g ∈ �, and relations (1 ≤ i, j, k ≤ n ; g, h ∈ �):

aij(g)aik(h) = δjkaij(gh) ; aji(g)aki(h) = δjkaji(gh) ;
n∑

l=1

ail(1) = 1 =
n∑

l=1

ali(1).

Then An(�) is a compact Hopf algebra, with

aij(g)∗ = aij(g−1) ; �(aij(g)) =
n∑

k=1

aik(g) ⊗ akj(g) ; ε(aij(g)) = δij ; S(aij(g)) = aji(g−1).

The Hopf algebra Ah(2) is A2(�2).
We need some notation to state a generalization of the first part of Theorem 9.3.

We consider the group free product � ∗ �, with the canonical morphisms still denoted
ν1, ν2 : � −→ � ∗ �. The canonical involutive group automorphism of � ∗ � is denoted
by τ , with τ ◦ ν1 = ν2 and τ ◦ ν2 = ν1.

THEOREM 9.4. Let � be a group, let A be a ∗-algebra, and let π0 : � ∗ � −→ A× be
a group morphism into the group of unitary elements of A, such that ∀x ∈ � ∗ � \ {1},
we have π0(x) �∈ �1. Then π0 induces an inner faithful ∗-representation π : A2(�) −→ A
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such that

∀g ∈ �, π (a11(g)) = 0 = π (a22(g)), π (a12(g)) = π0(ν1(g)), π (a21(g)) = π0(ν2(g)).

In particular, if there exists a group embedding � ∗ � ⊂ PU(n) for some n ≥ 1, then the
Hopf algebra A2(�) is inner linear.

Proof. It is a direct verification to check that the above formulae define a
∗-representation π : A2(�) −→ A. Recall from [13] that we have an algebra
isomorphism

A2(�) −→ �[(� ∗ �) × �2],

aij(g) �−→ νi(g)xij,

where if a is the generator of �2, x11 = 1+a
2 = x22 and x12 = 1−a

2 = x21 (of course we
simply write a for the element (1, a) of (� ∗ �) × �2, and so on). We freely use this
algebra identification in what follows. Let us now recall the corepresentation theory
of A2(�) (Proposition 2.6 in [13]). We assume of course that the group � is non-trivial
(otherwise the statement in the Theorem is trivial). The only non-trivial group-like
element in A2(�) is d = a11(1) − a12(1), for which π (d) = −1. To any x ∈ � ∗ � \ {1} is
associated a simple comodule Ux with corresponding matrix of coefficients defined by

A11(x) = xx11, A12(x) = xx12, A21(x) = τ (x)x21, A22(x) = τ (x)x22.

The comodules Ux and Uy are isomorphic if and only if x = y or x = τ (y). Any
two-dimensional A2(�)-comodule is isomorphic to some Ux, and cl(A2(�)) = 2. For
x ∈ � ∗ � \ {1}, we have

π (A11(x)) = 0 = π (A22(x)) , π (A12(x)) = π0(x) , π (A21(x)) = π0(τ (x)).

Then it is a straightforward verification to check that the conditions of Theorem 9.2
are fulfilled, using the properties of the group morphism π0 (using also that x = 1 if
and only if x = τ (x)), and we conclude that π is inner faithful. �
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