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On the properness of the moduli space of stable

surfaces over Z[1/30]

EmelieArvidsson , FabioBernasconi and Zsolt Patakfalvi

Abstract

We show the properness of the moduli stack of stable surfaces over Z [1/30], assum-
ing the locally-stable reduction conjecture for stable surfaces. This relies on a local
Kawamata–Viehweg vanishing theorem for 3-dimensional log canonical singularities at
closed point of characteristic p �= 2, 3 and 5, which are not log canonical centres.
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1. Introduction

In [DM69, Theorem 5.2], Deligne and Mumford proved that the moduli stack of stable curves
Mg of given genus g≥ 2 is a proper Deligne-Mumford (DM) stack over Z. By introducing stable
curves (i.e. curves with at worst nodal singularities and ample canonical class) into the moduli
problem, they were able to construct a natural compactification of the moduli of smooth curves
of genus g, which led to interesting applications, such as the proof of irreducibility ofMg [DM69],
and the proof of general semi-stable reduction for curves in [dJ97].

The natural higher-dimensional generalisation of smooth curves of genus at least 2 are smooth
canonically polarised varieties. Hence, it is natural to look for a compactification of the moduli
space of these. A possible approach has been proposed by Kollár and Shepherd-Barron in [KSB88]
using the Minimal Model Program (MMP for short). According to Kollár and Shepherd-Barron,
the correct generalisation of stable curves to arbitrary dimensions are stable varieties, projective
varieties with semi-log canonical singularities and ample canonical class. We refer to the book
[Kol23b] for a comprehensive treatment of the construction of the moduli space of stable varieties
in characteristic 0.

The case of positive and mixed characteristic presents further difficulties. To mention a few:
the MMP is still largely conjectural in dimension > 3, the invariance of plurigenera (even asymp-
totic) is known to fail [Bri23, Kol23a], the singularities of the MMP are cohomologically more
complicated [CT19, Ber19] and other problems arise due to presence of inseparable morphisms
[Kol23b, Section 8.8]. However the MMP for 3-folds in positive characteristic p≥ 5 and mixed
characteristic (0, p > 5) has now been established [HX15, CTX15, Bir16, BW17, DW22, HW22,
TY23, BMP+23] and, following the strategy in characteristic 0, many of the steps needed for
the construction of the moduli space M2,v of stable surfaces have been proven in [HK19, Pat17,
BMP+23, Pos21a, Pos21b]. Nowadays, we know that M2,v exists as a separated Artin stack
with finite diagonal over Z[1/30] by [BMP+23, Corollary 10.2], but whether it is proper remains
still an open question. Our main result is the following, where locally-stable reduction means a
weakening of semi-stable reduction; see Definition 4.11 for the precise definition.

Theorem 1.1. Assume the existence of locally-stable reduction for surfaces. Then the moduli
stack M2,v of stable surfaces of volume v is proper over Z[1/30].

The main technical result needed to prove Theorem 1.1 concerns the depth of 3-dimensional
log canonical singularities, which we briefly explain. In [Pos21b, Theorem 6.0.5], Posva reduced
the valutative criterion of properness for the stack M2,v to two conjectures on families of stable
surfaces over a DVR: roughly speaking, the existence of semi-stable reduction and the (S2)-
condition of the central fibre of a locally stable family of surfaces. To prove the (S2)-condition
of the central fibre, it is thus natural to study the (S3)-condition at a closed point x of a log
canonical 3-fold singularity.

Let us first explain what the tools used to prove the (S2)-condition in characteristic 0 are, as
we will mimic this approach. In [Kol13, Theorem 7.20], a local version of the Kawamata–Viehweg
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vanishing theorem concerning the depth of divisorial sheaves on divisorially log terminal (dlt)
and log canonical pairs in characteristic 0 is presented (similar results were obtained previously
by Alexeev and Hacon [Ale08, AH12]).

Theorem 1.2 (Local Kawamata–Viehweg vanishing for log canonical pairs). Let (X,Δ) be a
log canonical pair over a field of characteristic 0. Let D be a Z-divisor such that D∼Q Δ′ where
0≤Δ′ ≤Δ. If x is a point that is not the generic point of an lc centre, then

depthxOX(−D)≥min {3, codimXx} .

This local vanishing is one of the crucial ingredients for the properness of the moduli functor
as shown in [Kol23b, Definition-Theorem 2.3], where 1.2 is used to prove the (S2)-condition
on the central fibre of a locally stable family. For this reason it is natural to consider whether
Theorem 1.2 remains true in positive and in mixed characteristics. The examples of klt not CM 3-
fold singularities (see [CT19, Ber21, ABL22]) show that Theorem 1.2 is false in equicharacteristic
p≤ 5. On the contrary, in [ABL22] the first two authors showed together with Lacini that 3-fold
klt singularities are Cohen–Macaulay in characteristic p > 5, and this was later extended by
the second author and Kollár in [BK23, Theorem 17] to a local Kawamata–Viehweg vanishing
on 3-dimensional excellent dlt singularities whose residue field is perfect of characteristic p > 5
(analogue to [Kol13, Theorem 7.31]). Moreover, in [PS14, Theorem 3.8], the third author and
Schwede prove a local Kawamata–Viehweg vanishing for sharply F -pure singularities. From all
these results, it would be natural to expect an analogue of Theorem 1.2 for 3-dimensional log
canonical singularities to hold, at least in large characteristics. Unfortunately, we show that this
is not the case.

Theorem 1.3 (See Section 5). For every prime p > 0, there exist a 3-dimensional log canonical
singularity x∈X such that

(i) the residue field of the closed point x is perfect of characteristic p;

(ii) x is not a minimal log canonical centre;

(iii) depth(OX,x) = 2.

Nevertheless, we are able to obtain a weaker local Kawamata–Viehweg vanishing statement,
which is sufficient to deduce the properness of the moduli space M2,v. See Section 2.1 for the
notion of pair used in the article.

Theorem 1.4. Let C ⊂ (X,Δ) be a 1-dimensional minimal log canonical centre of a
3-dimensional log canonical pair (X,X0 +Δ), and let x∈C be a closed point with perfect
residue field of characteristic p �= 2, 3 and 5. If X0 is Cartier and x∈X0, then OX,x is (S3) and
X0 is (S2) at x.

To prove Theorem 1.4, we find a clear geometric reason for the failure of the (S3)-condition
at a closed point x of a log canonical 3-dimensional singularity X, which is not a log canonical
centre.

Theorem 1.5. Let (X,Δ) be a 3-dimensional log canonical pair on the spectrum of a local
ring, such that the residue field of the closed point x is perfect of characteristic p �= 2, 3, 5. Let
C ⊂X be a 1-dimensional minimal log canonical centre for (X,Δ). Then there exists a proper
birational modification f : Z→X such that
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(i) Z is Cohen–Macaulay,

(ii) the exceptional divisor E is (S2), and for each point c∈C, E is normal at the generic points
of the fibre Ec;

(iii) H2
x(X,OX)	H0

x(C, R
1f∗OE).

In particular, if OX,x is not (S3), then E→C has a wild fibre over x.

We now give an overview of the article. In Section 2, we collect the various technical results on
surfaces and 3-folds that we need for our proofs. In Section 3, using the MMP for 3-folds and the
Kawamata–Viehweg vanishing for log canonical surfaces admitting a morphism to a curve, we
show Theorem 1.5. In Section 4, we review the theory of wild fibers of a fibred surface f : E→C,
developed by Raynaud in [Ray70], which we apply in combination with Theorem 1.5 to conclude
1.4 in 4.2. In Subsection 4.3, we combine the previous results to show Theorem 1.1 and we also
present an application to the asymptotic invariance of plurigenera for minimal models of log
canonical surfaces of log general type. In Section 5, we show the counterexample 1.3 by applying
a relative cone construction to an elliptic surface fibration with a wild fibre.

Remark 1.6. While completing this work, the first author has found an alternative construction
[Arv23, Theorem 2] that can replace the role played by Theorem 1.5 in this work. This con-
struction simplifies some of the technical arguments in this article. Indeed, the main technical
difficulty in the present approach is that in Theorem 1.5, the modification Z together with the
crepant bounday is not, in general, dlt, but only étale dlt. In [Arv23, Theorem 2] the first author
proves an analogous statement using a possibly non-Q-factorial dlt modification. We believe that
the various vanishing statements discussed here may be of independent interest.

2. Preliminaries

2.1 Basic notation

Notation 2.1. Throughout this article we work over a fixed base ring R, and X, Y and Z always
denote quasi-projective schemes of pure dimension n over R, unless otherwise stated.

The base ring R is always be assumed to be Noetherian, excellent, of finite Krull dimension,
and admitting a dualising complex ω•

R. Furthermore, R will always be assumed to be of pure
dimension d. Here, and in general in the present article, dimension means the absolute dimension,
not the relative dimension over R.

We normalise ω•
R as in [BMP+23, Section 2.1]: H−i(ω•

R) = 0 if i > d and with H−d(ω•
R) �= 0.

The first non-zero cohomology sheaf ωR :=H−d(ω•
R) is the dualising sheaf of R. For the upper-

shriek functor, we follow the convention of [Sta, Tag 0A9Y]. By [Sta, Tag 0AA3], the complex
ω•
X := π!ω•

R is a dualising complex for X, where π : X→ Spec(R) is the structure morphism. We
then define the dualising sheaf ωX of X to be the first non-zero cohomology sheaf of the complex
ω•
X .
We say that X is a curve (resp. a surface, a 3-fold) if it is a connected reduced scheme of

dimension 1 (resp. 2, 3). We say a proper morphism f : X→ Y is a contraction if f∗OX =OY .
Given a closed subscheme Z of X, we denote by ΓZ,X the functor of global sections with

support on Z. The induced right-derived functor is denoted by RΓZ,X and its i-th cohomology
by RiΓZ,X (orH i

Z(X,−)). These groups are called the i-th local cohomology groups with support
on Z.
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A Weil Q-divisor D on a connected reduced scheme X is a formal sum of codimension 1
integral subschemes with rational coefficients. As we will work with non-normal schemes, we
recall the definition of the more restrictive class of Mumford divisors following [Kol23b].

Definition 2.2. A Weil Q-divisor B on X is called a Mumford Q-divisor if X is regular at all
generic points of SuppB.

Equivalently, B is Mumford if SuppB does not contain any irreducible component of codimen-
sion 1 of the divisorial part of the conductor D⊂X. We say a Mumford Q-divisor D is Q-Cartier
if there exists n> 0 such that nD is a Cartier divisor. We refer to [BMP+23, Section 2.5] for
the various notions of positivity (as ample, nef, big) for Q-Cartier Q-divisors. When R= k is a
field and X is integral, then for a nef Q-Cartier Q-divisor L, the numerical dimension of L is
ν(L) :=max {n≥ 0 |Ln �= 0}.

Definition 2.3. We say (X,Δ) is a couple if

(i) X is a reduced, pure-dimensional, (S2) and (G1) (where the latter means that ωX is locally
free at codimension 1 points of X) scheme,

(ii) Δ is an effective Mumford Q-divisor.

An open set U ⊂X is big if codimX(X \U)≥ 2. If X is (S2) and (G1), then any reflexive
sheaf is determined on big open sets, and a Mumford divisor D defines a reflexive sheaf OX(D)
[Har94]. By [Kol13, Paragraph 5.6], in this case the Mumford class group coincides with the
group of isomorphism classes of reflexive sheaves of rank 1 that are locally free in codimension 1.
As a consequence, if X is pure-dimensional, (S2) and (G1), then there exists a Mumford divisor
KX such that OX(KX)	 ωX (note that ωX is reflexive by [Sta, Tag 0AWN]).

Definition 2.4. We say a couple (X,Δ) is a pair if KX +Δ is a Mumford Q-Cartier divisor.

If (X,Δ) is a pair and X is normal, for every proper birational morphism of normal schemes
π : Y →X, we can write

KY + π−1
∗ Δ= π∗(KX +Δ)+

∑
i

a(Ei, X,Δ)Ei,

where Ei run through the π-exceptional divisors and a(Ei, X,Δ)∈Q are called the discrepancies
of Ei with respect to (X,Δ). We define ΔY := π−1∗ Δ−

∑
i a(Ei, X,Δ)Ei as the crepant pull-back

of Δ on Y . We say that (X,Δ) is a klt (resp. log canonical or lc) pair if X is normal and if for
every proper birational maps of normal schemes π : Y →X, 
ΔY � ≤ 0 (resp. the coefficients of

ΔY � are ≤ 1).

We say that a pair (X,D) of pure dimension n is snc (=simple normal crossings) if for every
closed point x∈X, X is regular at x and if there exists local coordinates t1, . . . , tn such that
Supp(D)⊂ (t1 · · · tn = 0). Note that being snc is a local property in the Zariski topology (but not
in the étale topology). We denote by nsnc(X,Δ) the non-snc locus of (X,Δ). We say that (X,Δ)
is dlt if it is log canonical, and for every exceptional divisor E such that centX(E)⊂ nsnc(X,Δ),
we have a(Ei, X,Δ)>−1.

Definition 2.5. Let (X,Δ) be a pair. The étale-snc locus etsnc(X,Δ) is the locus where (X,Δ)
is snc in the étale topology. This is a Zariski open set of X.

We say that a pair (X,Δ) is étale-dlt if for every exceptional divisor E over X such that
centXE ⊆X \ etsnc(X,Δ) we have a(E;X,Δ)>−1.
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2.2 Semi-log canonical singularities

If X is reduced, then we can consider its normalisation morphism π : X→X (see [Sta, Tag
035N]). The conductor ideal of π is the largest ideal I of OX , which is also an ideal of OX . It
can be also defined explicitly in multiple ways:

I =
{
s∈OX | s · π∗OX ⊆OX as subsheaves of the field of total fractions

}
=

im
( {

φ∈Homπ∗OX
(π∗OX , π∗OX) | imφ⊆OX

}
→OX

)
= im(HomOX

(π∗OX ,OX)→OX).

The conductor subscheme D of X (resp. D of X) is the subscheme defined by I in X (resp. in
X).

We recall the definition of the singularities of the MMP for non-normal varieties, following
[Kol13]. We start by explaining what a node is.

Definition 2.6 [Kol13, 1.41]. We say that a scheme S has a node at a codimension 1 point
s∈ S if OS,s 	A/(f), where (A,m) is a regular local ring of dimension 2, f ∈m2 and f is not a
square in m2 \m3. Sometimes we equivalently say that S is nodal at s∈ S.

Remark 2.7. Let (A,m) be a regular local ring of dimension 2, and let f ∈m2 such that
Spec(A/(f)) is a node. It is easy to see that the effective divisor given by (f = 0) has mul-
tiplicity 2 at the closed point of Spec(A) and that f is not irreducible if and only if the pair
(W,D) := (Spec(A), (f = 0)) is snc. Examples where the pair is not snc are given in [Kol13,
Examples, page 1]. If char(k(s)) �= 2, then it is clear that there exists an étale neighborhood V
of W for which (V, DV ) is snc.

Definition 2.8. The scheme X (quasi-projective over R as assumed in Notation 2.1) is said to
be demi-normal if it is pure-dimensional, it satisfies Serre’s condition (S2) and its codimension
1 points are either regular or nodal.

If X is demi-normal, then D and D are reduced closed subschemes of pure codimension 1
(see [Kol13, Line 14 of page 189]. We use the following definition of semi-log canonical pairs in
the present article:

Definition 2.9. We say that (X,Δ) is a semi-log canonical pair (or slc) if

(i) X is demi-normal and (X,Δ) is a pair;

(ii) the normalised pair (X,D+Δ) is log canonical, where D is the conductor subscheme.

Note that in Definition 2.9, (X,D+Δ) is automatically a pair, as it is crepant to (X,Δ). As
in this article we are interested in understanding the locus of strictly log canonical singularities,
we recall the terminology on log canonical places and centres.

Definition 2.10. Let (X,Δ) be a pair. We denote by nklt(X,Δ) the non-klt locus of (X,Δ),
which is the closed subset of X consisting of points x of X for which (X,Δ) is not klt near x.

Let (X,Δ) be a log canonical pair. We say that an irreducible exceptional divisor E for proper
birational modification f : Y →X is a log canonical place if a(E,X,Δ)=−1. A closed subset
Z ⊂X is a log canonical centre if there exists a log canonical place E such that centX(E) =Z.

We recall the construction of double covers of demi-normal varieties explained in [Kol13, 5.23].
This allows to reduce many questions to slc pairs whose irreducible components are regular in
codimension 1.

6

https://doi.org/10.1112/mod.2024.1
Downloaded from https://www.cambridge.org/core. IP address: 3.15.14.114, on 10 Jan 2025 at 23:43:21, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms.

https://doi.org/10.1112/mod.2024.1
https://www.cambridge.org/core
https://www.cambridge.org/core/terms


On the properness of the moduli space of stable surfaces over Z[1/30]

Proposition 2.11 [Kol13, 5.23]. Let (X,Δ) be an slc pair such that 1
2 ∈OX . Then there exists

a finite morphism π : X̃→X of degree 2 such that

(i) X̃ is (S2);

(ii) π is étale in codimension 1;

(iii) the irreducible components of X̃ are (R1) (i.e. regular in codimension 1);

(iv) the normalisation of X̃ is a disjoint union of two copies of the normalisation of X;

(v) if K
˜X +Δ

˜X = π∗(KX +Δ), the pair (X̃,Δ
˜X) is slc.

We need also a non-normal version of dlt-ness. We refer to [Kol13, Definition 1.10] for the
definition of semi-snc pair.

Definition 2.12. An slc pair (X,Δ) is semi-dlt if a(E,X,Δ)>−1 for every exceptional divisor
E such that the generic point of centXE is contained in the locus where (X,Δ) is not semi-snc,
where “semi-snc” is defined in [Kol13, Def 1.10].

As for dlt, the notion of semi-dlt is not local in the étale topology.

2.3 Log canonical surface singularities

In this section we collect some results on 2-dimensional excellent surface singularities, relying
on the classification scheme of [Kol13, Section 3.3].

Notation 2.13. Besides the assumptions on our base ring R stated in Notation 2.1, in the present
section we suppose that R is integrally closed, local and of dimension 2 with maximal ideal m
and residue field k :=R/m. Additionally, we set X =SpecR, and we set Δ to be a Q-divisor on
X for which (X,Δ)= (Spec(R),Δ) is a pair. We denote by x∈X the closed point of X.

Definition 2.14. Let π : Y →X be a projective birational morphism of normal surfaces. We
say that π is a log minimal resolution of (X,Δ) if

(i) Y is regular and π−1∗ 
Δ� is regular (as a closed subscheme);

(ii) KY + π−1∗ Δ is π-nef;

(iii) multyπ
−1∗ Δ≤ 1 for every y ∈ Y ;

(iv) the support of Ex(π) + π−1∗ Δ has a node at every intersection point of Ex(π) and π−1∗ 
Δ�.

Remark 2.15. The existence of a log minimal resolution for surfaces is proven in [Kol13, Theorem
2.25.a]. The construction goes as follows: if f : W →X is a projective log resolution of (X,Δ)
such that f−1∗ Δ is regular, then Y is obtained as the output of a (KW + f−1∗ Δ)-MMP over X.

We need a slightly modified version of the above in the case of dlt surfaces.

Lemma 2.16. Assume that (X,Δ) is a dlt surface pair. Then there exists a projective birational
morphism π : Y →X such that

(i) Y is regular and KY + π−1∗ Δ is π-nef;

(ii) if KY +Γ∼Q π
∗(KX +Δ), then 
Γ�= π−1∗ 
Δ�;

(iii) the support of Ex(π) + π−1∗ Δ has a node at every intersection point of Ex(π) and
π−1∗ 
Δ�.
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Proof. Let f : W →X be a thrifty log resolution of (X,Δ) [Kol13, Lemma 2.79]. As X is a
surface, f being thrifty means that it is an isomorphism at the nodes of 
Δ�. This we can
achieve by running our resolution algorithm by excluding the nodes of 
Δ�.

Then run a (KW + f−1∗ Δ)-MMP over X ending with π : Y →X such that KY + π−1∗ Δ is
π-nef. As this is also a KW -MMP, we deduce that Y is regular by [Kol13, Theorem 2.29]. As f
does not extract log canonical places, (ii) is immediate. To finally verify (iii), we argue as in the
proof of [Kol13, Theorem 2.25.a]. �

Our next goal is a precise understanding of the exceptional divisor of a log minimal resolu-
tion of a log canonical singularity. We start by recalling [Kol13, Theorem 2.31] on the reduced
boundary of 2-dimensional log canonical singularities.

Theorem 2.17. Assume that (X,Δ=E +D) is log canonical, where E =
∑

i Ei has only
coefficients 1. Then either:

(i) E is regular at x, or

(ii) E has a node at x, no components of the support of D contain x and every exceptional
divisor of a minimal log resolution has discrepancy −1.

We will need the following observation on conics.

Lemma 2.18. Let k be a separably closed field, and let C be a k-projective integral Gorenstein
curve. Suppose that C is singular and chark �= 2. Then degk ωC/k ≥ 0.

Proof. Without loss of generality we can suppose k=H0(C,OC). Suppose by contradiction that
degk ωC/k < 0. By [Kol13, Lemma 10.6], C embeds as a conic in P2

k. Taking the base change to

k, we still get an embedding Ck → P2
k
. As k is separably closed, Ck is still an irreducible conic,

and by the classification of conics over an algebraically closed field, either Ck is regular or it is a
double line. Note that the case of a double line cannot appear as char(k) �= 2 by [BT22, Lemma
2.17]. Finally, if Ck is regular, we deduce C is regular by descent for faithfully flat morphisms
[Sta, Tag 033E], getting a contradiction. �

Example 2.19. The following examples show that the assumptions in Lemma 2.18 are sharp. Let
k be a field, and consider the conic

C :=
{
x2 − uy2 = 0

}
⊂ P2

k =Projk[x, y, z],

where u∈ k. By the Jacobian criterion [Sta, Tag 07PF], it is easy to see that the only non-regular
point of C is p= [0 : 0 : 1]. Note that degk ωC/k =−2. This example shows that the assumptions
of Lemma 2.17 are indeed necessary:

• If chark �= 2 and u �∈ k2, then C is integral, singular and with degk ωC/k < 0, but k is not
separably closed.

• If chark �= 2 and k is separably closed, then C is singular and with degk ωC/k < 0, but C is
not integral.

• If chark= 2, k is separably closed and u �∈ k2, then C is integral, singular and with
degk ωC/k < 0. Geometrically, Ck is a double line.

Proposition 2.20. Assume that (R,m) is strictly Henselian with chark= p �= 2, and that
(X,Δ) is log canonical such that Δ is a Q-divisor. Let π : Y → (X,Δ) be a log minimal resolution
as in Definition 2.14. Then one of the following holds:
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On the properness of the moduli space of stable surfaces over Z[1/30]

(i) Δ=0 and there exists an irreducible nodal curve E ⊂Ex(π). Then Ex(π) =E,KY +E ≡X 0
and (Y, E) is étale-snc;

(ii) (Y, π−1∗ 
Δ�+Ex(π)) is snc.

Proof. The proof is case by case.

There exists a singular exceptional curve E ⊂Ex(π): By Lemma 2.18, degk ωC/k ≥ 0 in this

case. By [Kol13, 3.30.1], then Δ= 0, and E is the unique exceptional divisor. Let −1≤ a∈Q be
the discrepancy of E. By adjunction we have

0≤ degKE ≤ (KX +E) ·E = (KX − aE) ·E + (1+ a)E2 = (1+ a)E2 ≤ 0. (1)

In particular, we have equality everywhere. Taking into account that E2 < 0, this means that
a=−1. We obtain that (Y, E) is log canonical. Taking into account that Y is regular, we deduce
that (Y, E) is étale-snc. To see KY +E ≡X 0, we simply note that (KY +E) ·E = 0 by Equation
(1).

All irreducible component Ei of Ex(π) are regular: Note that π−1∗ 
Δ� is regular and that

Ex(π) + π−1∗ 
Δ� is snc at intersection points by construction of the minimal resolution, in this
case. We are left to prove that Ex(π) is snc. We can suppose that all irreducible components are
conics by [Kol13, 3.30.2], and we fix ri := dimk H

0(Ei,OEi
).

All the Ei are regular, and (Ei ·Ej)>max {ri, rj} for some i �= j: In this case Δ= 0 and

there are two exceptional curves E1 and E2, by [Kol13, 3.30.3]. Consider the following
computation:

0≤E1 ·E2 +degKE1
≤ (KX +E1 +E2) ·E1

= (KX − a1E1 − a2E1) ·E1 + (1+ a1)E
2
1 + (1+ a2)E1 ·E2 = (1+ a1)E

2
1 + (1+ a2)E1 ·E2

This implies that

−(1 + a1)E
2
1 ≤ (1 + a2)E1 ·E2. (2)

By applying the same argument to E2 instead of to E1, we obtain

−(1 + a2)E
2
2 ≤ (1 + a1)E1 ·E2. (3)

Multiplying (2) and (3) together, we obtain the following, where we are also using that both
sides of the two inequalities are non-negative:

(1 + a2)(1 + a1)(E
2
1)(E

2
2)≤ (1 + a1)(1 + a2)(E1 ·E2)

2. (4)

In other words, either one of the ai is equal to −1, or the determinant of the intersection matrix
is non-positive. The latter contradicts the negative definiteness of the intersection matrix; hence,
we obtain that one of the ai is −1. By symmetry we can assume that a1 =−1. However, then
(3) says that (1 + a2)E

2
2 ≥ 0. As E2

2 < 0, this implies also that a2 =−1.
In particular, (Y, E1 +E2) are log canonical, and hence, by adjunction, so are (E1, E1 ∩E2)

and (E2, E1 ∩E2). This means that the coefficients of E1 ∩E2 are 1 on both E1 and E2. As k is
separably closed, all finite non-trivial extensions of k have degree divisible by p. As E1 ·E2 = 2
and p �= 2, in fact E1 ∩E2 contains only points with residue field equal to k. As above we have
seen that the coefficients of these points cannot be more than 1, so we obtain that E1 ∩E2 has
two distinct points with coefficient 1 and, hence, that the intersection of E1 and E2 is transversal.
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In particular, (Y, E1 +E2) is snc (and the singularity is a cusp with the exceptional divisor of
the minimal resolution being a cycle of two conics).

All the Ei are regular, and (Ei ·Ej) =max {ri, rj} for all i and j: fix two components Ei

and Ej . We may assume by symmetry that ri ≥ rj . In particular, the intersection scheme Ei ∩Ej

is a length one Artinian scheme over H0(Ei,OEi
). This implies that Ei ∩Ej is reduced. Hence,

the intersection of Ei and Ej is transversal, which concludes our proof. �

The following is well-known:

Lemma 2.21. Let f : Y →Z be a projective birational morphism of normal surfaces over R,
and let D be a nef Q-Cartier divisor on Y . If f∗D is Q-Cartier, then it is nef.

Proof. Let C be a curve on Z, mapping to a closed point of Spec(R). By projection formula for
the Mumford pull-back, we conclude that f∗D ·C =D · f∗C ≥ 0. �

Corollary 2.22. Assume that the characteristic of k is p �= 2 and that (X =Spec(R),Δ) is
log canonical. Then there exists a projective birational morphism f : Z→X such that

(i) (Z, f−1∗ 
Δ�+Ex(f)) is étale-dlt,

(ii) KZ + f−1∗ Δ+Ex(f) = f∗(KX +Δ), and

(iii) −Ex(f) is nef over X.

Proof. First, we may assume that R is strictly Henselian. Second, let π : Y →X be as in
Definition 2.14. By Proposition 2.20, there are two cases. In case i, Δ= 0 (Y,Ex(π)) is étale-snc
and Ex(π) is a single exceptional divisor; necessarily, then, anti-f -nef. In this case, f := π satisfies
the assertion of the theorem.

In case ii, the pair (Y, π−1∗ 
Δ�+Ex(π)) is snc. By [Tan18, Theorem 1.1.(QF)], we can
run a (KY + π−1∗ Δ+Ex(π))≡X (

∑
i(1 + a(Ei, X,Δ)Ei)-MMP over X, denoted by ρ : Y →Z,

ending with a minimal model f : Z→X. By a standard application of the negativity lemma
[BMP+23]∗Lemma 2.16, the birational contraction ρ contracts exactly the π-exceptional divi-
sors with discrepancy a(E,X,Δ)>−1, and thus Z is a Q-factorial surface with (KZ + f−1∗ Δ+
Ex(f)) = f∗(KX +Δ). As a (KY + π−1∗ Δ+Ex(π))-MMP over X is a (KY + π−1∗ 
Δ�+Ex(π))-
MMP,

1

the pair (Z, f−1∗ 
Δ�+Ex(f)) remains dlt. By the definition of the log minimal resolution,
−
∑

i a(Ei, X,Δ)Ei is nef over X, and therefore, so is −Ex(f) = ρ∗(−
∑

i(1 + a(Ei, X,Δ))Ei)
by Lemma 2.21. �

2.4 Dlt modifications and log canonical centers

In this section, we recall dlt modifications and apply their existence to the study of log canonical
centres of log canonical 3-folds. Since we will need the MMP developed in [BMP+23], we suppose
the following:

Notation 2.23. Besides the assumptions on our base ring R stated in Notation 2.1, we suppose
that the characteristic of the residue fields of R are different from 2, 3 and 5.

Definition 2.24. Let (X,Δ) be a log canonical pair. A proper birational morphism
π : (Y,ΔY )→ (X,Δ) is a dlt modification (or a dlt blow-up) if (Y,ΔY ) is dlt, whereKY +ΔY ∼Q

1This is because for any effective divisor D on a surface X, the strict transform π−1
∗ D is nef over X.
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π∗(KX +Δ) and ΔY = f−1∗ Δ+E, where E denotes the divisorial part of the exceptional locus
of π.

The existence of a dlt modification for (X,Δ), extracting only divisors of discrepancies −1,
is a standard consequence of the MMP (see [BMP+23, Corollary 9.21]).

Proposition 2.25. Let (X,Δ) be a log canonical 3-fold pair. Then there exists a dlt
modification Y → (X,Δ).

We recall some properties of log canonical centres on log canonical excellent 3-fold pairs.

Proposition 2.26. Any intersection of log canonical centres of a 3-dimensional log canonical
pair (X,Δ) is a union of log canonical centres.

Proof. This is [FW20, Corollary 1.7] (see also [Pos21b, Corollary 5.2.16] for a proof in the case
X is defined over Fp). �

We will need the following characterisation of plt pairs.

Corollary 2.27. Let (X,Δ=D+B) be a 3-dimensional log canonical pair, where D is a
prime divisor. If D is a minimal log canonical centre, then (X,Δ) is plt in a neighbourhood
of D.

Proof. Suppose by contradiction that (X,Δ) is not plt around D. By definition, there exists a
log canonical centre S such that Z := S ∩D is not-empty and that codimXZ ≥ codimXS > 1.
As Z is a union of log canonical centres by Proposition 2.26, this contradicts the minimality
of D. �

We will need the following technical result on dlt singularities:

Lemma 2.28. Let π : (Y,ΔY )→ (X,Δ) be a proper crepant birational contraction of Q-factorial
pairs. If (Y,ΔY ) is dlt and if a(E,X,Δ)>−1 for every π-exceptional divisor E, then (X,Δ)
is dlt as well.

Proof. Let E be a log canonical place over (X,Δ). As (Y,ΔY ) is dlt, the generic point of
Z = centY (E) is a stratum of (Y,Δ=1

Y ), and E is already a log canonical place of (Y,Δ=1
Y ).

This in particular implies that Z �⊆ SuppΔ<1
Y . However, as both X and Y are Q-factorial, the

exceptional locus of π is purely divisorial. So, putting the last two sentences and the assumption
on the discrepancies of the π-exceptional divisors together, we obtain that Z �⊆Ex(π). However,
that means that π is an isomorphism around the generic point of π(Z), and therefore π(Z) is
also a stratum of (X,Δ=1). �

Note that the Q-factoriality hypothesis in Lemma 2.27 is needed as shown in [Fuj07, Example
3.8.4].

2.5 A restriction sequence for pairs

In this section, we refine the short exact sequences used in [HW19, BK23]. We start by recalling
some general properties of codimension 1 strata of dlt pairs.

Lemma 2.29. Let (X,
∑

i∈I Ei +Δ) be a dlt pair, where Ei are prime divisors and 
Δ�= 0.
Then

(i) Ei is (R1) (i.e. Ei is regular in codimension 1) for every i∈ I;
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(ii) the normalisation n :
⋃
En

i →
⋃
Ei is the disjoint union of the (S2)-ifications of the Ei’s,

and it factorises through the (S2)-ification ν : E
ν →

⋃
Ei;

(iii) if X is Q-factorial, then Eν
i →Ei is a universal homeomorphism for every i∈ I.

Proof. For i, it is sufficient to localise at codimension 1 points of Ei and apply [Kol13, Theorem
2.31]. Then ii follows immediately from i and iii is proven in [HW23, Lemma 2.1]. �

We begin by studying the singularities of the étale-dlt surfaces.

Lemma 2.30. Assume that R is local with closed point x∈X =SpecR and that (X,Δ=E +D)
is an étale-dlt surface pair such that 
Δ�=E. Then either

(i) (X, E +D) is dlt at x; or

(ii) X is regular, E is irreducible with a node at x and Δ=0.

In particular, X is Q-factorial.

Proof. If E = 0, then 
Δ�= 0, and hence (X,Δ) is klt. This is covered by point 1. Hence, we
may assume that E �= 0. As we work in the local case, this means that x∈ SuppE. By [Kol13,
Proposition 2.15] (X,Δ) has log canonical singularities. If there is an irreducible component of
E that is singular, then E is an irreducible nodal curve and Δ= 0 by Theorem 2.16. As (X,Δ)
is étale-dlt, in this case X is regular, so we are in case ii. Thus we may also assume that every
irreducible component of E is regular. We may also assume that x �∈ etsnc(X,Δ). Note that
SpecR \ {x} ⊆ snc(X,Δ), and that all discrepancies over the point x are greater than −1 by the
étale snc assumption. Hence, (X,Δ) is actually dlt at x.

For the assertion about Q-factoriality, we conclude in case i by combining [Kol13, Proposition
2.28] and [Kol13, Proposition 10.9]; case ii is then immediate. �

For étale-dlt surface pairs we need the following statement on the existence of a special
resolution not extracting log canonical places.

Lemma 2.31. Let (X,Δ=E +Γ) be an étale-dlt surface pair such that 
Δ�=E. Then there
exists a projective birational morphism π : Y →X such that

(i) Y is a regular surface, and

(ii) by setting KY +ΔY = π∗(KX +Δ), we have ΔY ≥ 0 and 
ΔY �= π−1∗ (E).

Proof. Let x∈ (X,Δ) be a closed point. We divide the proof into two cases. If (X,Δ) is dlt
near x, we take the resolution of singularities at x constructed in Lemma 2.16. If (X,Δ)
is not dlt near x, we do not perform any blow-up as X is already regular around x by
Lemma 2.30. �

We need the following generalisation of the short exact sequence of [HW19, Section 3] to
étale-dlt surface pairs.

Lemma 2.32. Let (X,Δ) be a log canonical surface pair. Suppose Δ=E +Δ′, where E is a
Z-divisor and (X, E) is étale-dlt. Let D be a Z-divisor on X such that SuppD does not contain
any irreducible component of E or any point of SingE. Then there exists a canonically defined
Mumford Z-divisor DE on E such that

(i) DE ∼QD|E +ΓE for some Mumford Q-divisor 0≤ ΓE ≤DiffE(0)≤DiffE(Δ
′);
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(ii) there exists a short exact sequence of OX -modules

0→ ωX(D)→ ωX(E +D)→ ωE(DE)→ 0.

Proof. Recall that X is Q-factorial by Lemma 2.30. By the assumption that no irreducible
component of E and no point of the singular locus of E is contained in the support of D, the
divisor D|E is a well-defined Mumford Q-divisor on E.

Let π : Y →X be the resolution of the pair (X, E) given by Lemma 2.31, and write
KY +EY +ΓY = π∗(KX +E), where 
EY +ΓY �=EY = π−1∗ (E). As π extracts no divisor of
discrepancy −1, π is an isomorphism around the singular points of E. Hence, π|EY

:EY →E
is an isomorphism. For similar reasons, �π∗D�|EY

does make sense, i.e. the support of �π∗D�
intersects EY only along its regular locus. Let DE be the divisor on E corresponding to the
divisor �π∗D�|EY

on EY via the isomorphism π|EY
.

As Y is regular, we have the following exact sequence on Y :

0→ ωY (�π∗D�)→ ωY (EY + �π∗D�)→ ωEY
(�π∗D�|EY

)→ 0. (5)

Note the following properties:

(i) since π does not extract any divisor of discrepancy −1, we have KY + �π∗D� ≥

KY +ΓY + π∗D� ≥ 
π∗(KX +D)�, so π∗(ωY (�π∗D�)) = ωX(D). Similarly, π∗(ωY (EY +
�π∗D�)) = ωX(E +D);

(ii) By the above choice of DE , we have π∗ωEY
(�π∗D�|EY

)∼= (π|EY
)∗ ωEY

(�π∗D�|EY
)∼=

ωE(DE).

(iii) by GR vanishing for surfaces [Kol13, Theorem 10.4], R1π∗ωY (�π∗D�) = 0.

Thus, pushing forward 5 via π, we obtain the short exact sequence

0→ ωX(D)→ ωX(E +D)→ ωE(DE)→ 0.

We are left to check only that DE ∼QD|E +ΓE for some 0≤ ΓE ≤DiffE(0). Note that via the
isomorphism π|EY

, ΓE identifies with (�π∗D� − π∗D)|EY
≥ 0. Let x be a point of X, and let ix

be the determinant of the dual graph of the minimal resolution of X at x. By possibly restricting
to a neighbourhood of x, we have that ixD is Cartier by [Kol13, Prop 10.9.(3)]. Additionally, by
[Kol13, Corollary 3.45], the following equality holds:

DiffE(0) =

{(
1− 1

ix

)
x, if (X, E) is plt near x

x, if (X, E) is not plt near x,

Since 
ΓE�= 0 and ixΓE is integral, we finally conclude that ΓE ≤DiffE(0)≤DiffE(Δ
′). �

In higher dimension we deduce the following generalisation of [BK23, Lemma 5]:

Proposition 2.33. Let (X,Δ) be a log canonical pair. Suppose Δ=E +Δ′, where E is a
Z-divisor and (X, E) is an étale-dlt pair. Let ν : Eν →E be the (S2)-ification of E. If D is a
Z-divisor on X, then there is a short exact sequence of OX -modules:

0→ ωX(D)→ ωX(E +D)→r ν∗ (ωEν (DEν )) ,

where DEν ∼QD|Eν +ΓE is a Mumford divisor on Eν for some Q-divisor 0≤ ΓEν ≤DiffEν (Δ′).
Moreover, r is a surjection at all codimension 1 points in E, and, if ωX(D) is S3, then r is
surjective.
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Proof. By Lemma 2.30, at the codimension 2 singular points of E, the Z-divisor D is Cartier.
Hence, up to replacing D by another divisor in its linear equivalence class, we may assume that
D does not contain any component of E and that it also does not contain any singular point
of E that has codimension 2 in X. By localising at codimension 2 points of X and applying
Lemma 2.32, there exists a canonically defined Mumford Z-divisor DE on E. As the irreducible
components of E are (R1), by taking the preimage of D in Eν we obtain a globally defined
Mumford Z-divisor DEν on the (S2) surface E

ν .
Consider the natural exact sequence

0→ ωX(D)→ ωX(E +D)→Q→ 0,

where Q is a sheaf supported on E. Note that Q is a torsion-free OE-module of rank 1 by [Kol13,
Corollary 2.61], and therefore, the (S2)-hull Q→Q(∗∗) is an injection. So we obtain the exact
sequence

0→ ωX(D)→ ωX(E +D)→Q∗∗.

We now claim that Q(∗∗) is isomorphic to ν∗(ωEν (DEν )). By construction of the residue map,
there is a natural homomorphism ψ : Q→ ν∗(ωEν (DEν )). As ν∗(ωEν (DEν )) is S2, then there is
a natural map Q(∗∗) → ν∗(ωEν (DEν )). As both OX -modules are (S2), it is sufficient to show
equality at codimension 1 points of E, which has been proved in Lemma 2.32. The linear equiv-
alence DEν ∼QD|Eν +ΓE and 0≤ ΓEν ≤DiffEν (Δ′) is a codimension 2 statement and it is a
consequence of Lemma 2.32.

For the last claim, if ωX(D) is (S3), then Q is (S2) by [Kol13, Lemma 2.60], thus concluding
that r is surjective. �

2.6 Partial resolutions of demi-normal excellent surfaces

In this subsection, we fix an excellent base ring T such that 1
2 ∈OT . We start by defining the

notion of a pinch point for excellent local rings.

Definition 2.34. Let (R,m) be a 2-dimensional excellent local ring. We say it is a pinch
point if there exists a finite étale morphism R→ S such that S 	R′/(x2 − zy2), where R′ is a
3-dimensional regular local ring and (x, y, z) is a regular system of parameters for R′.

We recall the definition of semi-regular surfaces.

Definition 2.35 (cf. [KSB88], Definition 4.2). A surface S is called semi-regular if for every
closed point s∈ S, the local ring OS,s is regular, a node (cf. Definition 2.6) or a pinch point.

Motivated by [Kol13, Theorem 10.56], we introduce the notion of semi-regularity for surface
pairs.

Definition 2.36. Let (S, H) be a pair, where S =Spec(R) and where R is an excellent local
ring of dimension 2 and H is a Weil Z-divisor. We say that (S, H) is a semi-regular pair if S is
semi-regular and if one of the following holds:

(i) the pair (S, H) is snc;

(ii) S is nodal, and there exists an étale morphism SpecR/(x2 − uy2)→ S, where R is
3-dimensional regular ring with u∈R∗, local parameters x, y, z and H = (z = 0);

(iii) S is a pinch point, and there exists an étale morphism SpecR/(x2 − zy2)→ S, where R is a
3-dimensional regular ring with local parameters x, y, z and H = (x= z = 0).
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Remark 2.37. As in the characteristic 0 case, the conductor D⊂ S of a semi-regular surface is a
regular curve. In case iii, if f : T → S is the blow-up of S along D, then the local computations
in [Kol13, Definition 1.43] show that the pair (T, DT + f∗H) is snc.

Definition 2.38 (cf. [KSB88], Definitions 4.3, 4.4). Let (S, H) be a demi-normal surface pair.
We say that π : T → (S, H) is a semi-regular resolution if

(i) π is a proper morphism;

(ii) π is an isomorphism over the nc locus of (S, H);

(iii) (T, π∗H) is a semi-regular pair;

(iv) no component of the non-normal locus DT of T is π-exceptional.

We say π is good if additionally

(e) Ex(π)∪ π∗H ∪DT has regular components and transverse intersections.

If (S, H) is a pair, we say that a semi-regular resolution π is thrifty if a(E, S, F )>−1 for all
π-exceptional divisors E.

Note that the assumption (S, H) is demi-normal implies that π is an isomorphism over a big
open set of S.

To show the existence of semi-regular resolutions of excellent surfaces, we follow the strat-
egy of [Pos21a, Section 3.6]. We start with a description of involutions for complete DVR in
characteristic �= 2.

Lemma 2.39. Let (R,m) be a complete DVR with residue field k :=R/m of characteristic p �= 2.
Let τ be a non-trivial involution of R such that τ(m) =m. Then there exists a uniformizer
π ∈m \m2 such that τ(π) =−π.

Proof. The proof is similar to [Pos21a, Lemma 3.6.5]. We fix t∈m to be a uniformiser.

Suppose t− τ(t) /∈m2. In this case, we set π := t− τ(t). Note that τ(π) = τ(t)− τ2(t) = i

τ(t)− t=−π, and we conclude.

Suppose t− τ(t)∈m2. Then there exists f ∈m such that τ(t) = (1 + f)t. Moreover, it is easy

to see that τ(tk)− tk ∈mk+1. We distinguish two cases.

1. τ acts non− trivially on k. Let α∈ k \ kτ . Let α̃ be a lifting of α to R. Note that

α̃− τ(α̃)(1 + f) is invertible. Indeed, as R is local, it is sufficient to note that α̃− τ(α̃)(1 + f)≡
α− τ(α) �= 0 mod m by choice of α. Consider s := α̃t. Note that

s− τ(s)≡ (α̃− τ(α̃))t �= 0 mod m2,

as α− τ(α) �= 0. Thus s− τ(s) /∈m2, and thus, we can conclude by the previous step.

2. τ acts trivially on k. We verify this contradicts the non-triviality of τ . We construct a recur-

sive sequence tk such that tk − τ(tk)∈mk+1. Fix t0 = 0 and t1 := t. Suppose tk is defined. We
have tk − τ(tk) = atk+1 mod mk+2 for some a∈R. As 2 is invertible in R, we can define

tk+1 := tk −
a

2
tk+1.

Note that τ(a2 )
∼= a

2 mod m by hypothesis. Therefore,

τ(tk+1)− tk+1 ≡−atk+1 +
a

2
tk+1 − τ

(a
2

)
tk+1 mod mk+2 ≡ 0,
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as τ(a/2)≡ a/2 mod m. Now the sequence (tk) is a Cauchy sequence and thus converges to
s∈m. Note that by construction, τ(s) = s, reaching a contradiction (as τ is non-trivial). �

Lemma 2.40. Let (S, H) be a quasi-projective snc surface pair over T , and let D be a reg-
ular divisor intersecting transversally H. Let τ : D→D be a non-trivial involution. Then
(S/R(τ), H/R(τ)) is a semi-regular pair.

Proof. The relation R(τ) is finite; thus the quotient p : S→U := S/R(τ) exists, and it is demi-
normal by [Pos21a, Lemma 2.3.13]. Moreover, by [Kol13, 9.13], the diagram

D S

D/R(τ) U,

is a push-out square. We may assume that U =Spec(R) is the spectrum of a local ring with
maximal ideal mR. Therefore, S is an affine regular scheme Spec(A), and there exists a Cartier
divisor f ∈A (resp. h∈A) such that D= (f = 0) (resp. H = (h= 0)).

If D→D/R(τ) is a (Z/2Z)-quotient we have two cases:

(i) A has exactly two maximal ideals. In this case, up to an étale base change, we may assume
A=A1 ⊕A2, where A1 and A2 are local rings. Let fi ∈Ai (resp. hi ∈Ai) be the local
equations of D|Spec(Ai) (resp. H|Spec(Ai)) for i= 1, 2. Note that the transversality hypoth-
esis on H and D implies that (fi, hi) =mAi

. Then the push-out property implies that
mU =R ∩ (mA1

⊕mA2
). Let τ : A1/f1 →A2/f2 be the involution; therefore, x := (f1, 0), y=

(0, f2) and z := (h1, h2) generate mU . If τ is trivial, then we have the relations x= y and
H/R(τ) = (z = 0), and we are in case i of Definition 2.38. If τ is not-trivial, then we have
the relation xy= 0, and therefore, Spec(R) is nodal and H/R(τ) = (z = 0), thus ending in
case ii of Definition 2.38.

(ii) A is a local ring such that τ(mA) =mA, and let τ : A/(f)→A/(f) be an involution. The
involution τ extends to the completion of A and the completion of R is the preimage of the
τ -invariant elements of A/(f). As τ fixes mA, the residue field of R is isomorphic to kτ . The
completion Â/(f) is a complete DVR, and thus there exists a uniformiser π ∈ Â/(f) such
that τ(π) =−π by Lemma 2.39. Let π̃ be a lifting of π to Â such that H = (π̃= 0) (note
that h/π̃ is invertible). We distinguish two cases:

(a) Suppose k= kτ . Then R⊂A is the subalgebra generated by f, π̃ and π̃f . Moreover,
H/R(τ) is given by the equations (π̃= π̃f = 0), and thus we are in case iii of
Definition 2.38.

(b) Suppose kτ � k. Then there exists α∈ k such that k= kτ (α) and τ(α) =−α. Let A′ to be
the preimage of kτ under the projection A→ k. In this case, consider the subalgebra of A′

generated by x := απ̃, y := f, z := αf . Therefore, we have the relation α2y2 = z2, showing
that R is a nodal singularities and that H/R(τ) is described by (x= 0), showing we end
up in case ii of Definition 2.38. �

We now show the existence of semi-resolution (in characteristic 0, this is [Kol13, Theorem
10.54]).
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On the properness of the moduli space of stable surfaces over Z[1/30]

Corollary 2.41. Let (S, H) be a quasi-projective demi-normal surface pair over T . Then there
exists a good semi-regular resolution π : V → (S, H). If, moreover, (S, H) is semi-dlt, then we
can choose π to be thrifty.

Proof. Let ν : (Sν , DSν )→ S be the normalisation morphism where DSν is the conductor sub-
scheme of Sν . Let f : X→ (Sν , DSν + ν∗H) be a log resolution of (Sν , DSν + ν∗H) and let
DX := f−1∗ DSν . The involution τ lifts to an involution of DX , and we can apply Lemma 2.40 to
construct a projective birational contraction q : Y → S fitting in the commutative diagram

(X, DX + f− 1H + Ex(

*

**
f)) (Y := X/R

qf

(τ), (f− 1H + Ex(f))/τ)

(Sν, DSν + ν H) (S, H),

such that q : Y → (S, H) is a semi-regular resolution of (S, H).
If (S, H) is semi-dlt, then (Sν , DSn + ν∗H) is a dlt pair. In this case, we can take f : X→

(Sν , DSn + ν∗H) to be a thrifty log resolution of (Sn, DSn), and end-product T → (S, H) is
clearly a thrifty semi-regular resolution. �

We show how we can slightly improve the resolution algorithm (see [Kol13, Corollary 10.55]
for an analogue in characteristic 0).

Definition 2.42. Let (S, H) be a demi-normal surface pair, and let S0 ⊂ S be the largest open
set such that (S0, H|S0) is semi-snc. We say that π : T → (S, F ) is a semi-log resolution if

(i) π is projective and birational;

(ii) (T, DT := π−1∗ Supp(F ) + Ex(π)) is a semi-snc pair;

(iii) π is an isomorphism over the generic point of every lc centre of (S, H);

(iv) π is an isomorphism at the generic point of every lc centre of (T, DT ).

Theorem 2.43. Let (S, H) be a quasi-projective demi-normal surface pair over T . Then there
exists a semi-log resolution π : V → (S, H). If (S, H) is semi-dlt, we can choose π to be thrifty.

Proof. Consider q : Y → (S, H) be the semi-regular resolution constructed in Proposition 2.41.
The only problem is around the pinch points of Y , which are isolated by dimension reasons.
Therefore, we can localise to a neighbourhood of y ∈ Y , where y is a pinch point, and we let Dy

be the local component of the non-normal locus DT . By blowing-up Dy we obtain our desired
semi-log resolution as explained in Remark 2.37. �

2.7 Vanishing theorems for slc surfaces

In this section we generalise the vanishing theorems of Kawamata–Viehweg type for klt surfaces
due to Tanaka [Tan18, Theorem 3.3] to the slc case using the method developed by Kollár in
[Kol13, Section 10.3]. For an overview on vanishing theorems for slc pairs in characteristic 0,
we refer to [Fuj15]. The most general result we prove is Theorem 2.51, which is the funda-
mental vanishing theorem we will use in Section 3. We start with the case of semi-snc surface
pairs.
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Proposition 2.43. Let (S,Δ) be a semi-snc surface pair with Δ a reduced Z-divisor, and let
f : S→ T be a surjective projective morphism onto a normal scheme of dimension dim(T )≥ 1.
Let M be a Cartier divisor on S. Suppose that

(i) M ∼Q,f KS +Δ′ +L, where

(a) L is a f -nef Q-divisor, and
(b) 0≤Δ′ ≤Δ is a Q-divisor.

(ii) if Z is a log canonical centre of (S,Δ), including the irreducible components of Z as well,
then

(a) dim (f(Z))≥ 1;
(b) if FZ is the generic fibre of Z→ f(Z), then dim FZ = ν(L|FZ

).

Then R1f∗OS(M) = 0.

Proof. Using the relative Kawamata–Viehweg vanishing theorem for surfaces [Tan18, Theorem
3.3], we can repeat the same steps of the proof of [Kol13, Corollary 10.34]. �

The following result is useful to reduce various statements to the case of semi-snc
pairs.

Lemma 2.45. Let (S,Δ) be a semi-dlt surface pair such that 1
2 ∈OS . Let D be a Q-Cartier

Z-divisor such that D∼QKS +Δ+M for some Q-Cartier divisor M . Then there is a proper
birational morphism g : Y → S, a Cartier divisor DY and a Q-divisor ΔD,Y such that

(i) (Y,ΔD,Y ) is semi-snc;

(ii) DY ∼QKY +ΔD,Y + g∗M ;

(iii) if Z is a log canonical centre of (Y,ΔD,Y ), then the restriction g|Z is birational;

(iv) g∗OY (DY ) =OS(D);

(v) Rig∗OY (DY ) = 0 for i > 0.

Proof. The same proof of [Kol13, Proposition 10.36] applies as thrifty semi-log resolutions
by Theorem 2.43 exist for excellent surfaces and the necessary vanishing theorems hold by
Proposition 2.44. �

We generalise Proposition 2.44 to the case of semi-dlt surface pairs.

Proposition 2.46. Let (S,Δ) be a semi-dlt surface pair such that 1
2 ∈OS , and let f : S→ T

be a projective morphism onto a normal scheme of dim(T )≥ 1. Let D be a Q-Cartier Z-divisor
on S. Suppose that

(i) D∼Q,f KS +Δ+L, where L is a f -nef Q-divisor;

(ii) if Z is a log canonical centre of (S,Δ), including the irreducible components of Z as well,
then

(a) dim(f(Z))≥ 1;
(b) if FZ is the generic fibre of Z→ f(Z), then dim FZ = ν(L|FZ

).

Then R1f∗OS(D) = 0.
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Proof. Let g : Y → S be a proper birational morphism such that the pair (Y,ΔD,Y ) and the
Cartier divisor DY on Y satisfy the conditions of Lemma 2.45, and denote by h : Y → T the
natural composition. By Proposition 2.44, we conclude that R1h∗OY (DY ) = 0. As g∗OY (DY ) =
OS(D) and Rig∗OY (DY ) = 0 for i > 0 by Proposition 2.44 we deduce R1f∗OS(D) = 0 by the
Leray spectral sequence. �

In order to generalise to the slc case, the following is a useful observation:

Lemma 2.47. Let (S,Δ) be an slc surface pair such that 1
2 ∈OS , and let f : S→ T be a projective

morphism onto a normal scheme of dim(T )≥ 1. Suppose that

(i) every irreducible component of S is (R1);

(ii) if Z is a log canonical centre of (S,Δ), then dim(f(Z))≥ 1.

Then (S,Δ) is semi-dlt.

Proof. We argue by contradiction. Let E be an exceptional divisor such that a(E, S,Δ)=−1
and centS(E)⊂ nsnc(S,Δ). The hypothesis (a) guarantees that (S,Δ) is snc at codimension 1
points. Therefore centS(E) is a closed point, contradicting (b). �

Corollary 2.48. Let (S,Δ) be an slc surface pair such that 1
2 ∈OS , and let f : S→ T be a

projective morphism onto a normal scheme of dim(T )≥ 1. Let D be a Q-Cartier Z-divisor on
S. Suppose that

(i) D∼Q,f KS +Δ+L, where L is f -nef;

(ii) if Z is a log canonical centre of (S,Δ), including the irreducible components of Z as well,
then

(a) dim(f(Z))≥ 1;
(b) if FZ is the generic fibre of Z→ f(Z), then dim FZ = ν(L|FZ

).

Then R1f∗OS(D) = 0.

Proof. Let p : S̃→ S be the double cover of Proposition 2.11. As 2 is invertible, OS(D) is a
direct summand of p∗O˜S(p

∗D). We can thus assume that the irreducible components of S are
regular in codimension 1. In this case, (S,Δ) is semi-dlt by Lemma 2.47 and we conclude by
Proposition 2.46. �

We can prove a further generalisation of Kawamata–Viehweg vanishing for slc surfaces over
curves.

Proposition 2.49. Let (S,Δ) be a semi-snc surface pair with Δ a reduced divisor, and let
f : S→C be a projective surjective contraction onto a normal curve C. Let D be a Q-Cartier
Z-divisor on S. Suppose that

(i) every log canonical centre Z of (S,Δ), including the components of S, dominates C.

(ii) A is an f -nef Q-Cartier Q-divisor on S;

(iii) D∼f,QKS +Δ′ +A, where 0≤Δ′ ≤Δ is a Q-divisor;

(iv) on every connected component S′ of S there exists an irreducible component E of S′ such
that A|E is f |E-big.

Then R1f∗OS(D) = 0.
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Proof. We prove the result by induction on the number n of irreducible components of S. If
n= 1, we conclude by Proposition 2.44.

We prove the induction step. Let E be an irreducible component of S such that A|E is big
over C. Let T be the union of the irreducible components of S except E. Denote B :=E ∩ T ,
and we consider the short exact sequence:

0→OE(D|E −B)→OS(D)→OT (D|T )→ 0.

Taking the long exact sequence in cohomology, it is sufficient to show that R1g∗OE(D−B) =
R1g∗OT (D|T ) = 0 to conclude that R1g∗OS(D) = 0.

Since KS |E =KE +B, we have D|E −B ∼g,QKE +Δ′|E +A|E ; so by Proposition 2.44, we
conclude that R1g∗OE(D−B) = 0.

Since KS |T =KT +B, we have that DT ∼Q,g KT +Δ′|T +B +A|T , and that B is not trivial
on some irreducible component of every connected component of T , as g has connected fibres.
By hypothesis, B must be a non-empty horizontal divisor; thus it is nef over C, and for every
connected component of T , there exists an irreducible component F such that B|F is g|F -big.
Therefore, we apply the induction hypothesis to deduce R1g∗OT (D|T ) = 0. �

Proposition 2.50. Let (S,Δ) be a semi-dlt surface pair such that 1
2 ∈OS , and let g : S→C

be a projective morphism onto a normal curve C. Let D be a Q-Cartier Z-divisor on S. Suppose
that:

(i) every log canonical centre Z of (S,Δ), including the components of S, dominates C;

(ii) A is a Q-Cartier Q-divisor on S, which is g-nef;

(iii) D∼g,QKS +Δ′ +A, where 0≤Δ′ ≤Δ;

(iv) on every connected component of S, if there exists an irreducible component E such that
A|E is g|E-big.

Then R1g∗OS(D) = 0.

Proof. As in the proof of Proposition 2.46, it sufficient to combine Lemma 2.45 and Proposition
2.49 with the Leray spectral sequence. �

Theorem 2.51. Let (S,Δ) be a slc surface pair such that 1
2 ∈OS , and let g : S→C be a

projective morphism onto a normal curve C. Let D be a Q-Cartier Z-divisor on S. Suppose that

(i) every log canonical centre Z of (S,Δ), including the components of Z, dominates C;

(ii) A is a Q-Cartier Q-divisor on S, which is g-nef;

(iii) D∼g,QKS +Δ′ +A, where 0≤Δ′ ≤Δ.;

(iv) on every connected component of S, there exists an irreducible component E such that A|E
is g|E-big;

Then R1g∗OS(D) = 0.

Proof. We can repeat the same proof of Corollary 2.48 using Proposition 2.50. �

2.8 Grauert–Riemenschneider theorem for dlt 3-folds

We recall the Grauert–Riemenschneider (GR) vanishing theorem for excellent dlt 3-folds proven
by Kollár and the second author in [BK23].
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Theorem 2.52. [BK23, Theorem 2]. Let (X,Δ) be a 3-dimensional dlt pair whose residue fields
of closed points are perfect with characteristic p �= 2, 3, 5. Then G–R vanishing holds on (X,Δ).

Precisely, let g : Y → (X,Δ) be a log resolution, and let D be a Weil Z-divisor on Y such
that D∼g,RKY +Δ′ for an effective R-divisor Δ′ on Y such that g∗Δ′ ≤Δ and 
Ex(Δ′)�= 0.
Then, Rig∗OY (D) = 0 for i > 0.

The main techniques are the vanishing theorem for surfaces of del Pezzo type over perfect
fields proven in [ABL22] and the MMP for 3-folds [BMP+23]. From the G–R vanishing theorem,
one can deduce various rationality and Cohen–Macaulay properties for dlt 3-fold singularities,
a result we will frequently use to study depths of log canonical 3-fold singularities in terms of a
dlt modifications.

Corollary 2.53 [BK23, Theorem 17]. Let (X,Δ) be a 3-dimensional dlt pair whose residue
fields of closed points are perfect with characteristic p �= 2, 3, 5. Then

(i) X is Cohen–Macaulay, and has rational singularities;

(ii) every irreducible component of 
Δ� is normal;

(iii) if D is a Z-divisor such that D+Δ′ is Q-Cartier for some Q-divisor 0≤Δ′ ≤Δ, then
OX(D) is C–M.

3. Depth of log canonical 3-fold singularities

Setting 3.1. Throughout this section, we suppose (R,m) is a local ring whose residue field is
perfect of characteristic p �= 2, 3, and 5. Let (X =Spec(R), x) be the associated local scheme,
and suppose that there exists a Q-divisor Δ≥ 0 such that (X,Δ) is a log canonical 3-dimensional
pair.

We are interested in computing the local cohomology group H2
x(X,OX) when the closed

point x is not a minimal log canonical centre of (X,Δ). We first show that we can reduce to the
case where the minimal log canonical centre is 1-dimensional.

Lemma 3.2. Let C be the minimal log canonical centre of (X,Δ) passing through x. Suppose
one of the following conditions hold:

(i) x /∈ nklt(X,Δ) (that is, C is empty);

(ii) x∈ nklt(X,Δ) and dim(C) = 2.

Then X satisfies Serre’s condition (S3).

Proof. Case (a) is proven in Corollary 2.53. In case (b), we deduce (X,Δ) is plt by 2.26 and we
conclude by Corollary 2.53. �

By Lemma 3.2, the case of interest, when studying the behavior of local cohomology of OX ,
is when dimC = 1. In this case, our main technical result relates the non-vanishing of local
cohomology H2

x(X,OX) to the torsion of R1g∗OE , where E is an exceptional divisor over X.
More precisely:

Theorem 3.3. Let C ⊂X be a 1-dimensional minimal log canonical centre for (X,Δ) passing
through x. Then there exists a projective birational morphism g : Z→ (X,Δ) with reduced
exceptional divisor E such that
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(i) Z is Q-factorial klt with KZ + g−1∗ Δ+E ∼Q g
∗(KX +Δ);

(ii) E is (S2);

(iii) H2
x(X,OX)	H0

x(C, R
1g∗OE).

As the rest of the section is devoted to showing Theorem 3.3, from now on we assume the
following:

Setting 3.4. Besides the assumptions and the notation of Setting 3.1, let us also fix a 1-
dimensional minimal log canonical centre C of (X,Δ) passing through x. Moreover, C is
irreducible by Lemma 2.26, and we denote by η its generic point.

3.1 Construction of minimal étale-dlt modifications

The hypothesis of minimality on C allows us to prove the following technical results, which we
will use repeatedly:

Lemma 3.5. Let π : (Y,ΔY )→ (X,Δ) be a crepant proper birational morphism of normal log
pairs where (X,Δ) is as in Setting 3.4. Suppose Y is Q-factorial, and let 0≤ Γ≤ΔY . If (Yη, Γη)
is dlt (resp. étale-dlt), then (Y, Γ) is dlt (resp. étale-dlt).

Proof. Suppose that (Yη, Γη) is dlt. If (Y, Γ) is not dlt, then there exists an exceptional divisor
E with discrepancy a(E, Y, Γ) =−1 such that centY (E)⊂ Y \ snc(Y, Γ). Since (Yη, Γη) is dlt, we
deduce that centY (E) must be disjoint from Yη. In particular, centX(E) is a closed point c in C.
As a(E, Y,ΔY )≤ a(E, Y, Γ) =−1, this contradicts the minimality of C among the log canonical
centres of (X,Δ).

The same proof works in the étale-dlt case by replacing Y \ snc(Y, Γ) with the closed subset
Y \ etsnc(Y, Γ). �

Lemma 3.6. Let (X,Δ) as in Setting 3.4. For every exceptional log canonical place E over X,
we have centX(E) =C.

Proof. If centX(E) �=C, we have centX(E)∩C = {x}, as E is exceptional. Therefore, x is a log
canonical centre by Lemma 2.26, contradicting the minimality of C. �

In the next propositions, as in the article in general, Ex(π) denotes the divisorial part of the
exceptional set of a proper birational morphism π, not the entire exceptional set.

Lemma 3.7. Let π : (Y,ΔY )→ (X,Δ) be a crepant proper birational morphism of normal log
pairs, where (X,Δ) is as in Setting 3.4. Suppose that Y is Q-factorial and that ΔY ≥E := Ex(π).
If E �= 0, then the pair (Y,ΔY − εE) is plt for every rational number ε∈ (0, 1].

Proof. Note that as πη : Yη → Spec(OX,η) is a proper birational morphism of normal surfaces,
the support of Eη coincides with Ex(π)η also set-theoretically.

Write ΔY − εE =Δ′
Y + (1− ε)E ≤ΔY , where Δ′

Y and E are effective Q-divisors and they
have no irreducible components in common. Suppose by contradiction that (Y,Δ′

Y + (1− ε)E)
is not plt. By definition, there exists a proper birational modification f : Z→ Y extracting an
exceptional divisor F with discrepancy a(F, Y,Δ′

Y + (1− ε)E) =−1. By the monotonicity of
discrepancies [KM98, Lemma 2.27],

a(F, Y,ΔY )≤ a(F, Y,Δ′
Y + (1− ε)E) =−1.
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As (Y,ΔY ) is log canonical, we conclude a(F, Y,ΔY ) =−1. As F is an exceptional log canonical
place over X, then centX(F ) =C by Lemma 3.6. As centY (F ) dominates C, we deduce that
centY (F )⊂E (as Eη coincides set-theoretically with Ex(π)η). This last containment implies by
[Kol13, Lemma 2.5] that

a(F, Y,Δ′
Y + (1− ε)E) = a(F, Y,ΔY − εE)>a(F, Y,ΔY ) =−1,

contradicting the starting assumption a(F, Y,ΔY − εE) =−1. �

Proposition 3.8. Let (X,Δ) be as in Section 3.4. Then there exists a projective birational
morphism g : Z→X such that

(i) (Z, g−1∗ Δ+Ex(g)) is a Q-factorial log canonical pair such that KZ + g−1∗ Δ+Ex(g) =
g∗(KX +Δ);

(ii) the pair (Z, g−1∗ 
Δ�+Ex(g)) is étale-dlt;

(iii) for every ε > 0, the pair (Z, g−1∗ Δ+ (1− ε) Ex(g)) is plt;

(iv) −Ex(g) is a g-nef Q-Cartier divisor;

(v) g(F ) =C for every irreducible component F of Ex(g).

Proof. Let ϕ : W →X be a log resolution of (X,Δ) such that ϕ−1∗ Δ is regular. In particular,
the pair (W, ϕ−1∗ Δ) is plt. Let π : Y →X be a log minimal model of this pair over X, which is
Q-factorial by the plt assumption. Write

KY + π−1
∗ Δ+E +B = π∗(KX +Δ),

where E is an effective Z-divisor and 
B�= 0. In particular, then −(E +B) is a Q-Cartier nef
divisor over X. We denote by Yη the base change of Y over Xη := Spec(OX,η), and for a divisor
D on Y , we will denote by Dη the localisation D|Yη

. In particular, Yη is NOT the fibre over η.
By Remark 2.15, Yη is a log minimal resolution of the surface (SpecOX,η,Δη). Let G be the

Z-divisor Ex(π)−E, which is supported on the exceptional divisors, which are not log canonical
places. Note that Supp(B)⊆ Supp(G).

Next, we define a birational model h : V →X that satisfies the following properties, where
the sub-index V denotes the strict transform of the corresponding divisor:

• V is Q-factorial;

• Ex(h) =EV ;

• −EV,η is nef;

• (V, EV + h−1∗ 
Δ�)η is étale-dlt.

In particular, as Ex(h) =EV , we conclude (V, h−1∗ Δ+EV ) is crepant birational to (X,Δ).
We construct V separately in the two cases corresponding to the two points of Proposition 2.20,
when Proposition 2.20 is applied to to the minimal resolution πη : Yη → (Xη,Δη).

Case i of Proposition 2.20: in this case we have that Δη =Gη = 0 and that Eη is equal to

Ex(πη), it is irreducible, and it is anti-nef. Note that the pair (Y, π−1∗ Δ+E +B) is Q-factorial
log canonical, crepant to (X,Δ) and by Lemma 3.7 the pair (Y, π−1∗ Δ+ (1− ε)E +B) is plt.
Additionally, as G is exceptional, it does not have any of the codimension 1 components of
π−1∗ Δ in its support. This implies that we may find another rational number ε′ > 0, such that
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(Y, π−1∗ Δ+ (1− ε)E +B + ε′G) is still plt. Let V be a log minimal model over X of the latter
pair. Note that we have

KY + π−1
∗ Δ+ (1− ε)E +B + ε′G≡X ε′G− εE. (6)

In particular, this MMP is the identity on Yη, as

(εG− εE)η =−εEη,

is nef. This also yields that −EV,η is nef. It even implies (V, EV + h−1∗ 
Δ�)η is étale-dlt, as

(Y, E + π−1∗ 
Δ�)η is étale-dlt by point i of Proposition 2.20. Additionally, by the negativity
lemma and by Proposition 6, this MMP turns G anti-effective, which means that it contracts it.
Hence, Ex(h) =EV . Finally, V is Q-factorial as it is a result of a plt MMP.

Case ii of Proposition 2.20: by point ii of Proposition 2.20, we know that (Y, π−1∗ 
Δ�+E +

B)η is dlt. Hence, by Lemma 3.5, (Y, π−1∗ 
Δ�+E +B) is also dlt. As the coefficients of B are
smaller than 1, we may choose a rational number ε > 0 such that (Y, π−1∗ 
Δ�+E +B + εG) is
dlt. Let h : V →X be a log minimal model of this latter pair over X, where V is Q-factorial as
we run a dlt MMP on a Q-factorial variety. Note that we have

KY + π−1
∗ 
Δ�+E +B + εG≡X εG− π−1

∗ {Δ} .
Therefore, by the negativity lemma [BMP+23, Lemma 2.16] this MMP turns G anti-effective,
which means that it contracts it, and hence it also contracts B. Hence EV =Ex(h), and
(V, h−1∗ 
Δ�+EV ) is dlt. The last property we need to show about V is that −EV,η is nef.
By Lemma 2.20, it is enough to show for this that −Eη −Bη is nef. However, that is immediate
as −E −B ≡X KY + π−1∗ Δ, which is nef by the construction of Y as a log minimal model.

Having finished the construction and the verification of the properties of V in both cases,
by Lemma 3.7 the pair (V, h−1∗ Δ+ (1− ε)EV ) is plt for every small rational number ε > 0. Let
g : Z→X be the log minimal model of this latter pair, which is Q-factorial. This yields point i
and iii. As

KV + h−1
∗ Δ+ (1− ε)EV ≡X −εEV ,

we see that this MMP is the identity in a neighborhood of Vη since −EV,η is nef, and that
−EZ =−Ex(g) is nef. This yields 4. The MMP being identity over η also implies that the
exceptional divisor of Z and V are the same, and that (Z, g−1∗ 
Δ�+EZ)η is étale-dlt. The
former yields point 5 by Lemma 3.6, and the latter together with Lemma 3.5 yields point 2. �

3.2 Computing local cohomology

Setting 3.9. For this subsection, let (X,Δ) be as in Setting 3.4 and let g : Z→
X be the birational modification constructed in Proposition 3.8. Set E := Ex(g) and
ΔZ := g−1∗ Δ+E.

We note that, by Proposition 3.8 Z is Q-factorial and klt. Hence, by Corollary 2.53, for every
Z-divisor D on Z, the divisorial sheaf OZ(D) is Cohen–Macaulay. This also implies that any
divisor on Z is (S2) by [Kol13, Corollary 2.61].

The following is the fundamental tool to relate the local cohomology group H2
x(X,OX) to

cohomological properties of g : Z→X.
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On the properness of the moduli space of stable surfaces over Z[1/30]

Lemma 3.10. There is an exact sequence as follows:

0→H0
x(X,R

1g∗OZ)→H2
x(X,OX)→H2

g−1(x)(Z,OZ).

Proof. Note that the composition of derived functors RΓx and Rg∗ satisfies RΓx ◦Rg∗ =RΓg−1x.
Then we have the usual five-term short exact sequence:

0→R1ΓxR
0g∗OZ →R1Γg−1(x)OZ →R0ΓxR

1g∗OZ →R2ΓxR
0g∗OZ →R2Γg−1(x)OZ .

To conclude, it is thus sufficient to show that R1Γg−1(x)OZ vanishes. By duality for C–M
sheaves (cf. [Kol13, Theorem 10.44] and [KM98, Theorem 5.71]), it is sufficient to show that
R2g∗OZ(KZ) = 0. As every irreducible component F of Ex(g) surjects onto C, the fibres of g are
at most 1-dimensional and we deduce R2g∗OZ(KZ) = 0 by dimension reasons. �

We now prove a Grauert–Riemenschneider vanishing theorem for the birational
contraction g.

Proposition 3.11. Let D be a Z-divisor on Z such that D∼Q,X KZ +Δ′, where 0≤Δ′ ≤
g−1∗ Δ. Then Rig∗OZ(D) = 0 for i > 0.

Proof. For i= 2, it is immediate as the dimension of the fibres of is at most 1 by i of Proposition
3.8. For the case i= 1, as (Z, g−1∗ 
Δ�+E) is étale-dlt we can apply Proposition 2.33 to the divisor
(D−KZ − (m+ 1)E) for every m≥ 0 to obtain the short exact sequence of OZ-modules:

0→OZ(D− (m+ 1)E)→OZ(D−mE)→OE(Gm)→ 0,

where Gm is a Q-Cartier Z-divisor on E. Moreover, there exists a Q-divisor Γm such that
0≤ Γm ≤DiffE(0) and

Gm ∼QKE + (D−KZ − (m+ 1)E)|E +Γm

∼Q (D−mE)|E − (KZ +E)|E +KE +Γm

∼Q (D−mE)|E − Γ′
m,

(7)

where Γ′
m := DiffE(0)− Γm ≥ 0. Passing to cohomology, we obtain the short exact sequence

R1g∗OZ(D− (m+ 1)E)→R1g∗OZ(D−mE)→R1g∗OE(Gm)→ 0. (8)

We now claim that R1g∗OE(Gm) = 0 for all m≥ 0. By applying adjunction, we deduce

(D−mE)|E ∼Q (KZ +Δ′ −mE)|E ∼QKEν +DiffE(Δ
′)− (m+ 1)E|E . (9)

Combining (7) and (9) we conclude that

Gm ∼QKE +Δm − (m+ 1)E|E , (10)

where Δm := DiffE(Δ
′)− Γ′

m ≤DiffE(Δ
′). Note that Δm = (DiffE(Δ

′)−DiffE(0)) + Γm and
therefore Δm ≥ 0. We verify we can apply Theorem 2.51 to g : E→C to show R1g∗OE(Gm) = 0
because

• every log canonical centre of (E,DiffE(Δ
′)) dominates C by v of 3.8;

• Gm ∼QKE +Δm +A, where 0≤Δm ≤Diff(Δ′) and A := (−(m+ 1)E)|E is g-nef by
assumption;

• there is an irreducible component F of E such that A|F is g-big. If this is not the case then,
as the fibres of g|E are 1-dimensional, −Eη is gη-trivial and thus Eη = 0 by the negativity
lemma.
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Combining the vanishing R1g∗OE(Gm) = 0 with the sequence (8), it is sufficient to show
R1g∗OZ(D− nE) = 0 for n sufficiently large to conclude that R1g∗OZ(D) = 0 by descending
induction. As the pair (Z, g−1∗ Δ+ (1− ε)E) is plt and

KZ + g−1
∗ Δ+ (1− ε)E ≡X −εE,

is g-nef, we can consider the birational contraction p : Z→ T to its canonical model h : T →X.
By construction, the pair (T, h−1∗ Δ+ (1− ε)ET ) is plt and −E ∼Q p

∗(−ET ) where −ET is ample
over X. In particular, as

D− nE ∼QKZ +Δ′ − nE ∼Q,T KZ +Δ′,

by Theorem 2.52 we deduce Rip∗OZ(D− nE) = 0 for i > 0. For n sufficiently large and divisible,
nE ∼ p∗nET and thus by the Leray spectral sequence and the projection formula we have

R1g∗OZ(D− nE)	R1h∗(p∗OZ(D− nE))	R1h∗(p∗OZ(D)⊗OT (−nET )),

which is zero for n sufficiently large by Serre vanishing. �

As an application of the G–R vanishing, we can finally compute the second local cohomology
group at x.

Proposition 3.12. The following equalities hold:

(i) H2
g−1(x)(Z,OZ) = 0;

(ii) H0
x(X,R

1g∗OZ)	H0
x(C, R

1g∗OE).

Proof. To prove i, we note that H2
g−1(x)(Z,OZ) =R1g∗OZ(KZ)x by local duality for Cohen–

Macaulay sheaves and R1g∗OZ(KZ)x vanishes by Proposition 3.11.
To prove ii, as −E ∼Q,X KZ + g−1∗ Δ we can apply Proposition 3.11 to deduce Rig∗OZ(−E) =

0 for i > 0. Then the long exact sequence of cohomology associated to 0→OZ(−E)→OZ →
OE → 0 implies that R1g∗OZ

∼=R1g∗OE . If i : C→X denotes the closed immersion, the equality
ΓC,x =ΓX,x ◦ i∗ holds, which implies H0

x(X,R
1g∗OE)	H0

x(C, R
1g∗OE). �

Proof of Theorem 3.3 This is a consequence of Proposition 3.8 and Proposition 3.12. �

4. (S2)-condition for locally stable families of surfaces

In this section, we prove the (S2)-conjecture for locally stable families of surfaces in characteristic
p �= 2, 3 and 5. An alternative proof of this theorem also appears in [Arv23, Corollary 23]. In
Subsection 4.2, we use this result to show the properness of M2,v over Z[1/30], contingent
upon the existence of semi-stable reduction for family of stable surfaces in positive and mixed
characteristic.

4.1 Wild fibres

Setting 4.1. In this section, (R,m) is a DVR of perfect residue field k=R/m. We denote by C
the spectrum of R and x is its closed point. Given a morphism f : S→C, we denote by Sx the
fibre over x.

The terminology of wild fibres was introduced by Bombieri and Mumford in [BM77] to study
elliptic surface fibrations. We present a more general definition for fibrations of surfaces over
curves and we collect some foundational results proven by Raynaud in [Ray70].
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On the properness of the moduli space of stable surfaces over Z[1/30]

Definition 4.2. Let S be a reduced connected surface and let f : S→C be a proper flat
morphism such that f∗OS =OC . Consider the decomposition

R1f∗OS =M⊕T ,
whereM is a locally free sheaf of rank dimk(C)H

1(Sk(C),OSk(C)
) and T is torsion sheaf supported

at x. If Tx �= 0, we say that the schematic fibre f−1(x) is a wild fibre of f .

Given a proper flat morphism f : X→ Y , we say it is cohomologically flat in degree 0 if for
any morphism g : Y ′ → Y inducing the base change f ′ : X ′ :=X ×Y Y

′ → Y ′, then the canonical
homomorphism of OY ′-modules g∗f∗OX → f ′∗OX′ is an isomorphism (see [FGI+05, 8.3.10]).

Lemma 4.3. Let S be a reduced connected surface and let f : S→C be a proper flat morphism
such that f∗OS =OC . If x is a closed point of C, then

Tx �= 0⇔ dimk(x)H
0(f−1(x),Of−1(x))≥ 2.

In particular, a wild fibre is not reduced. Moreover, T �= 0 if and only if f is not cohomologically
flat in degree 0.

Proof. For each i≥ 0, consider the natural homomorphism of k(x)-vector spaces obtained from
the base change Spec(k(x))→C:

αi(x) : Rif∗OS ⊗ k(x)→H i(f−1(x),Of−1(x)).

As the fibres of f have dimension 1, clearly α2(x) is surjective and R2f∗OS = 0. Thus we deduce
that α1(x) is surjective by cohomology and base change for proper morphism [FGI+05, Corollary
8.3.11.b]. Applying once more [FGI+05, Corollary 8.3.11.b], we deduce that α0(x) is an isomor-
phism if and only if T = 0. To conclude, by hypothesis f∗OS ⊗OC

k(x)	 k(x) and therefore α0(x)
is an isomorphism if and only if dimk(x)H

0(f−1(x),Of−1(x)) = 1.
Note that if f−1(x) is wild, then dimk(x)H

0(f−1(x),Of−1(x))≥ 2. As f−1(x) is geometrically
connected, we conclude f−1(x) is not reduced. The final assertion is shown in [FGI+05, Corollary
8.3.11.a]. �

A more precise characterisation of wild fibres for (S2)-surfaces was proven by Raynaud
[Ray70] while investiganting representability criteria for Picard schemes of proper schemes over
a DVR.

Proposition 4.4. Let f : S→C be a proper flat morphism such that f∗OS =OC . Suppose that

(i) S is an (S2)-surface such that its non-normal locus dominates C;

(ii) the greatest common denominator of the multiplicities of the geometric special fibre
Sk := Sk ×k k is equal to 1.

Then f is cohomologically flat in degree 0 and T = 0.

Proof. To verify the statement we can pass to a strict henselianisation Ash of A. The hypothesis
guarantee that S satisfies assumption (N)∗ of [Ray70, Definition 6.1.4]. Indeed, Sx is S1 as it
is a Cartier divisor on the (S2)-surface S. Moreover, at every generic point η of an irreducible
component of Sx we have that OS,η is regular. Then the statement is proven in the implication
(i)⇒ (iv) of [Ray70, Theorem 8.2.1]. �

We recall that no wild fibres appear when the generic fibre of f : S→C is a tree of conic
curves.
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Proposition 4.5. Let f : S→C be a proper morphism onto a regular curve such that f∗OS =
OC . Suppose that S is an (S2)-surface such that each of its irreducible components Si dominates
C and the non-normal locus of each Si dominates C. If H1(Sk(C),OSk(C)) = 0, then T = 0.

Proof. As every irreducible component of S dominates C, the morphism f is equi-dimensional.
As S has dimension 2, it is Cohen–Macaulay and, as C is regular, f is flat by miracle flatness
[Sta, Tag 00R4]. We can thus apply [Ray70, Proposition 9.3.1]. �

Remark 4.6. The conditions imposed on S in Proposition 4.4 and Proposition 4.5 are optimal
as shown in the examples of [Ray70, Section 9].

If the generic fibre has arithmetic genus at least 1, then wild fibres can appear when the
residue field has characteristic p > 0.

Example 4.7. Suppose k is algebraically closed of characteristic p > 0. We recall the construc-
tion of wild fibres explained by Raynaud [Ray70]. Let Ek(C) be an elliptic curve (ordinary if
char(k(C))> 0) such that the special fibre of its Néron model is either a supersingular elliptic
curve Ek or the multiplicative group Gm,k. Let Sk(C) be a regular torsor over Ek(C) of order p

n

for n> 0 and let f : S→C be its minimal model. Then T �= 0 by [Ray70, Théoréme 9.4.1.b].
Another set of examples, based on Artin–Schreier coverings, is discussed in [KU85,

Section 8].

4.2 Cohen–Macaulay criteria for log canonical 3-fold singularities

Throughout this section, we suppose (X,Δ) is 3-dimensional log canonical singularity as in
Setting 3.1.

Note that, as proved in [AP23, Theorem 1], the 1-dimensional scheme C is normal and thus
regular. Using Theorem 3.3 the failure of Cohen–Macaulay-ness is explained by the presence of a
wild fibre on a proper birational modification. We use this to show that if the surface singularity
at the generic point of C is rational, then X is Cohen–Macaulay.

Proposition 4.8. Let C ⊂ (X,Δ) as in Setting 3.4. If OX,η is a rational surface singularity,
then X is (S3) at x. In particular, if C ⊂ Supp(Δ), then X is (S3) at x.

Proof. Let g : (Z, g−1∗ Δ+E)→ (X,Δ) be the crepant proper birational morphism constructed
in Theorem 3.3. It is sufficient to show that H0

x(E, R
1(g|E)∗OE) vanishes to conclude. Note that

E is (S2). Moreover, the irreducible components of E and their non-normal loci dominate C as
it is the minimal log canonical centre passing through x. As OX,η is a rational singularity and
C is regular, we apply Proposition 4.5 to conclude H0

x(C, R
1g∗OE) = 0. For the last assertion,

we just observe that OX,η is a rational singularity by [Kol13, Proposition 2.28]. �

Corollary 4.9. Let C ⊂ (X,Δ) as in Section 3.4. Let g : (Z, g−1∗ Δ+E)→ (X,Δ) be the
modification constructed in Theorem 3.3. If H2

x(X,OX) �= 0, then

(i) OX,η is not rational and C is not contained in Supp(Δ),

(ii) the fibre Ex is wild.

Proof. (a) is proven in Proposition 4.8. As h1(Eη,OEη
) �= 0 and OX,η is log canonical, then

degη ωEη
= 0. By Theorem 3.3.iii we have H0

x(C, R
1g∗OE)	H2

x(X,OX) �= 0, and thus Ex is a
wild fibre for g : E→C. �
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On the properness of the moduli space of stable surfaces over Z[1/30]

As a byproducts of the results of Section 3 and the properties of wild fibres Proposition 4.4.1,
we can prove the (S3)-condition of log canonical 3-folds pairs in the case where a Cartier divisor
is an addendum of the boundary divisor. This answers [Kol23a, Question 8] affirmatively if the
characteristic of the residue field is different from 2, 3 and 5.

Theorem 4.10. Let (X,X0 +Δ) be a 3-dimensional log canonical pair and let x be a closed
point of X. Suppose X0 is a non-zero effective Cartier divisor such that x∈X0. Then X is (S3)
at x.

Proof. We can localise at the closed point x. As X0 is effective, x cannot be a minimal log
canonical centre for (X,Δ). By Lemma 3.2 and Corollary 4.9, we can suppose that

(i) the minimal log canonical centre C of (X,X0 +Δ) passing through x has dimension 1;

(ii) if η is the generic point of C, then OX,η is a non-rational surface singularity and η /∈
Supp(X0 +Δ).

If g : (Z, g−1∗ Δ+E)→ (X,Δ) is the crepant proper birational morphism constructed in
Theorem 3.3, it is sufficient to show that H0

x(E, R
1(g|E)∗OE) vanishes to conclude. For this

we argue by contradiction.
First we note that the pair (Z, g−1∗ Δ+E + g∗X0) is log canonical and E is (S2). By adjunction

[Kol13, Lemma 4.8] the pair (E,DiffE(g
∗X0 + g−1∗ Δ)) is slc and, as X0 is Cartier, we have

DiffE(g
∗X0 + g−1∗ Δ)= (g∗X0)|E +DiffE(g

−1∗ Δ) by [Kol13, Lemma 2.5]. As Ex is a wild fibre,
by Proposition 4.4 each of its irreducible components is non-reduced. As X0 is an effective
Cartier divisor not containing C, then (g∗X0)|E must have coefficients strictly larger than 1,
contradicting that (E,DiffE(g

∗X0 + g−1∗ Δ)) is slc. �

4.3 Properness of the moduli space of stable surfaces

We briefly recall the natural set-up for the study of stable and locally stable families and we
refer to [Kol23b, Chapter 2] for a thorough discussion.

Let C =Spec(R), where (R,m) is a DVR with perfect residue field k :=R/m of characteristic
p > 0, and fraction field K := Frac(R). We say that a morphism f : X→C is family of varieties
is f is a flat morphism of finite type such that for every c∈C the fiber Xc is pure dimensional,
geometrically reduced and geometrically connected. We denote the special (resp. generic) fibre
of f by Xk (resp. XK). A family of pairs is f : (X,Δ)→C is a family of varieties f : X→C
together with an effective Mumford Q-divisor Δ on X such that Supp(Δ) does not contain
any irreducible components of Xk and none of the irreducible components of Xk ∩ Supp(Δ) is
contained in Sing(Xk).

Definition 4.11. We say f : (X,Δ)→C is a locally stable (or slc) family if f is a family of
pairs and (X,Δ+Xk) has slc singularities. We say f is a stable family if f is a projective locally
stable family such that KX +Δ is ample over C.

In [BMP+23, Corollary 10.2], M2,v is shown to exist as a separated Artin stack of finite type
over Z[1/30] with finite diagonal. The main open question on M2,v is whether it is a proper
stack over Z[1/30] (some cases are discussed in [BMP+23, Theorem 10.6]).

To prove properness, one has to prove the valutative criterion for families of stable surfaces.
As explained in [Pos21b, Section 6], this can be reduced to two problems on locally stable
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families: the existence of a locally-stable reduction and the (S2)-condition on stable limits. We
recall their precise formulation.

(LSR) Let X→C be a flat projective morphism where X is a regular 3-fold. Let E be a
reduced effective divisor on X such that (X, E + (Xk)red) is snc for every closed point
c∈C. Then there exists a finite morphism C ′ →C such that: if Y is the normalization
of X ×C C

′ and EY is the pull-back divisor, then every closed fiber Yk′ is reduced and
every (Y, EY + Yk′) is log canonical.

(S2) Let (X,Δ)→C be a stable family of surface pairs. Then Xk is (S2).

In equicharacteristic 0, existence of semi-stable reduction is proven in [KKM+73] (see also
[KM98, Theorem 7.17]) and the (S2)-property is proven in [Ale08] (see also [Kol23b, Definition-
Theorem 2.3]). While semi-stable reduction of surfaces is still an open conjecture, the results of
[BK23] can be used to prove the (S2)-condition for the closure of the locus of klt stable varieties
(see the last lines of the proof of [BMP+23, Theorem 10.6]). We now settle the general semi-log
canonical case.

Theorem 4.12. Suppose p �= 2, 3 and 5. If f : (X,Δ)→C is a stable family of surfaces, then
Xk is (S2) and (Xk,DiffXk

(Δ)) is slc.

Proof. If X is normal, then (X,Δ+Xk) is a log canonical pair. For every closed point p∈Xk,
the local ring OX,p is (S3) by Theorem 4.2.3. As Xk is a Cartier divisor, we deduce Xk is (S2) by
[Kol13, Corollary 2.61]. By performing adjunction [Kol13, Definition 4.2], we deduce that the nor-
malisation (Xν

k ,DiffXν
k
(Δ)) is log canonical by [Kol13, Lemma 4.8]. Therefore (Xk,DiffXk

(Δ))
is semi-log canonical by definition.

SupposeX is demi-normal and let π : Y →X be its normalisation. We writeKY +D+ π∗Δ=
π∗(KX +Δ), where D is the divisorial part of the conductor. Then (Y, D+ π∗Δ)→C is a stable
family of pairs, where Y is normal. By the previous step, Yk is (S2) and the pair (Yk,DiffYk

(π∗Δ))
is slc. We conclude Xk is S2 and (Xk,DiffXk

(Δ)) is slc by [Pos21a, Proposition 4.2.6]. �

We now have all the ingredients to prove the main result of this article.

Theorem 4.13. Assume (LSR). Then the moduli stack M2,v is proper over Z[1/30] and the
coarse moduli space M2,v is projective over Z[1/30].

Proof. The proof of [Pos21b, Theorem 6.0.5] works also in mixed characteristic and thus the
(LSR) hypothesis together with Theorem 4.12 conclude the properness of M2,v. The projectivity
of M2,v is then shown in [Pat17, Theorem 1.2]. �

We conclude by giving an application to the asymptotic invariance of plurigenera for log
canonical minimal surface pairs of general type. This generalises the klt case proven in [BBS24,
Theorem 4.1].

Corollary 4.14. Suppose p > 5. Let (X,Δ) be a 3-dimensional pair and let π : (X,Δ)→C
be a projective contraction such that (Xk,DiffXk

(Δ)) is log canonical. If KX +Δ is nef and big
over C, then there exists m0 > 0 such that

dimk H
0(Xk, m(KXk

+Δk)) = dimK H0(XK , m(KXK
+ΔK)) for all m∈m0N

Proof. By inversion of adjunction [BMP+23, Corollary 10.1], we conclude (X,Xk +Δ) is a log
canonical pair. We first claim that KX +Δ is semi-ample over C. Since the characteristic of
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the residue field of R is p > 0, by [Wit21, Theorem 2.2] it is sufficient to check semiampleness
fiber-wise. For this, note that KXK

+ΔK and (KX +Δ)|Xk
∼QKXk

+DiffXk
(Δ) are semiample

by the abundance theorem for log canonical surfaces [Tan20]. Let f : (X,Δ)→ (Z,ΔZ = f∗Δ)
be the semiample birational contraction associated to KX +Δ. Note that f : (X,Xk +Δ)→
(Z, Zk +Δ) is also crepant.

By [BBS24, Lemma 2.17], it is sufficient to check that (fk)∗OXk
=OZk

to conclude. By consid-
ering the Stein factorisation fk : Xk → Y →Zk, we are left to show g : Y →Zk is an isomorphism.
As the morphism g : Y →Zk is a birational morphism and Y is normal, it is sufficient to verify
that Zk is normal to conclude. By construction (Z, Zk +DiffZ(ΔZ)) is log canonical and thus
Zk satisfies the (S2) condition by Theorem 4.12. By Serre’s criterion for normality, we are thus
left to show that Zk is (R1), and we argue by contradiction. Suppose there exists a codimension
1 point η of Zk such that Zk is not normal. Then by inversion of adjunction η is the generic
point of a log canonical centre of (Z, Zk +Δ) and thus it is nodal. By [Bri22, Lemma 2.7] the
normalisation of Zk is a universal homeomorphism and thus we conclude. �

Remark 4.15. In [Kol23a, Theorem 1], Kollár proves that the moduli space of stable 3-folds is
not proper over any field of characteristic p > 0. In particular, [Kol23a, Example 4] show that
Theorem 4.12, Corollary 4.13 and Corollary 4.14 do not generalise to dimension 3, even for
large p.

Question 4.16. We leave open the question whether Theorem 4.3.2 hold in characteristic p≤ 5.
Note that the examples of non-normal plt centres constructed [CT19] are not Cartier.

5. Counterexamples to local Kawamata–Viehweg vanishing

We conclude by constructing a counterexample to the local Kawamata–Viehweg vanishing
theorem for log canonical 3-dimensional singularities in positive and mixed characteristic
(Theorem 1.3). The counterexample is obtained by taking the relative cone over an elliptic
surface fibration with a wild fibre.

5.1 Relative cone construction

In this section we develop the theory of relative cones, expanding on [Kol13, Section 3.2]. Let
f : X→ T be a projective flat morphism of normal integral schemes with f∗OX =OT and let L
be an f -ample invertible sheaf. We define the affine T -scheme:

Ca(X, f, L) = SpecT
⊕
m≥0

f∗OX(mL)→ T.

The scheme Ca(X, f, L) is the relative cone of f with respect to L. The natural subscheme
VT ⊂Ca(X, f, L) defined by the ideal sheaf

⊕
m≥1 f∗OX(mL) is isomorphic to T and it is called

the relative vertex . The variety C∗
a(X, f, L) =Ca(X, f, L) \ VT 	BC∗

a(X, f, L) \E is called the
relative punctured cone.

We have the following commutative diagram

BCa(X,L) := SpecX m≥ 0 Lm

π

p
Ca(X, f, L)

X
f

T,
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where p is a birational projective morphism with exceptional divisor E 	X onto VT such that

OBCa(X,f,L)(E)|E =L∨.

The following is a generalisation of [Kol13, Proposition 3.14] to the relative setting.

Proposition 5.1. With the same setting as above, we have

(i) Pic(Ca(X, f, L))	Pic(T );

(ii) Cl(Ca(X, f, L))	Cl(X)/〈L〉.

Let ΔX be a Q-divisor on X, and assume KX +ΔX is Q-Cartier. We define ΔBCa(X,L) = π∗Δ
and ΔCa(X,f,L) = p∗ΔBCa(X,L). We have the following

(iii) KBCa(X,L) +ΔBCa(X,L) +E ∼Q π
∗(KX +Δ),

(iv) m(KCa(X,f,L) +ΔCa(X,f,L)) is Cartier iff m(KX +Δ)∼f L
rm for some r ∈Q. In this case

we have

KBCa(X,L) +ΔBCa(X,L) + (1+ r)E ∼Q p
∗(KCa(X,f,L) +ΔCa(X,f,L)).

Proof. Since BCa(X, L) is an A1-bundle over X, we have Cl(BCa(X, L))	Cl(X) and
Pic(BCa(X, L))	Pic(X). Let us note that we have the following commutative diagram:

Pic(X) π Pic(
*

* *

BCa(X, f, L)) Pic(E)

Pic(T )

f

Pic(Ca(X, f, L))

p

Pic(VT ),

where the top arrows are all isomorphisms. We prove (i). Let D be an invertible sheaf on
Ca(X, f, L); then p∗D|E is the pull-back of a line bundle on VT , thus proving (i). Items (ii)
and (iii) are proven in [Kol13, Proposition 3.14]. Recall that since Pic(C∗

a(X, f, L)) ↪→
Cl(C∗

a(X, f, L))	Cl(X)/〈L〉, the kernel of the morphism π|∗C∗
a(X,f,L) : Pic(X)→

Pic(C∗
a(X, f, L)) is the subgroup generated by L.

As for (iv)m(KCa(X,f,L) +ΔCa(X,f,L)) is Cartier if and only if the Weil divisorm(KC∗
a(X,f,L) +

ΔC∗
a(X,f,L)) is the pull-back of a Cartier divisor on T by (i). In turn, this is equivalent to asking

whether π|∗C∗
a(X,f,L)(mKX +mΔ)= π|∗C∗

a(X,f,L)f
∗D for some Cartier divisor D on T. This is

equivalent to m(KX +Δ)− f∗D∼Lrm for some r ∈Q, thus concluding the first part. As for the
last equality, let us write

KBCa(X,L) +ΔBCa(X,L) + (1+ a)E ∼Q p
∗(KCa(X,f,L) +ΔCa(X,f,L)).

By restricting to E, we have KX +Δ+ aE|E ∼Q,f 0, which becomes rL− aL= 0; thus r= a. �

As a corollary we have the following result on the singularities of relative cones (to compare
with [Kol13, Lemma 3.1]).

Proposition 5.2. In the previous setting, assume KX +Δ is Q-Cartier and KX +Δ∼f,Q rL
for some r ∈Q. Then (Ca(X, f, L),ΔCa(X,f,L)) is

(i) klt if r < 0 and (X,Δ) is klt;

(ii) log canonical if r≤ 0 and (X,Δ) is log canonical.
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Proof. By Proposition 5.1, we have

discrep((Ca(X, f, L),ΔCa(X,f,L))) =min
{
−(1 + r), discrep(BCa(X, L),ΔBCa(X,L) + (1+ r)E)

}
.

Since π is a smooth morphism and E is a section for π, we conclude by [Kol13, 2.14, Equation
(4)] that

discrep(BCa(X, L),ΔBCa(X,L) +E) = totdiscrep(X,Δ).

Thus (a) and (b) are automatic. �

5.2 Failure of the (S3)-condition at a non-minimal lc centre

We construct an example showing that Theorem 1.2 is not valid in general in positive and mixed
characteristic, thus showing that the statement of Theorem 4.10 is sharp. We fix C to be the
spectrum of a DVR whose closed point is perfect of characteristic p > 0.

Proposition 5.3. Let S be a regular surface, and let f : S→C be a minimal elliptic fibration
together with a relatively f -ample invertible sheaf L. Then X :=Ca(S, f, L) is a 3-dimensional
log canonical singularity, the map p : Y :=BCa(S, L)→X is a log resolution, and the vertex VC
is the unique log canonical centre of X.

Proof. By Proposition 5.1, we have KY +E ∼Q p
∗KX . Since (Y, E) is log smooth and E is

irreducible, we conclude that E is the unique log canonical place of X. Thus VC is the unique
log canonical centre of X. �

In the next lemmas we compute the local cohomology at a closed point in a log canonical
place.

Lemma 5.4. Let D be a Z-divisor on Y . If D∼p,QKY , then R
1p∗OY (D) = 0.

Proof. By [Tan18, Theorem 3.3], the relative Kawamata–Viehweg vanishing theorem holds for
the morphism p|E : E→ VC . Since −E is p-ample and D∼p,Q (KY +E)−E, we conclude by
[BK23, Proposition 22]. �

Proposition 5.5. Let x∈ VC 	C. Then H2
x(X,OX)	H0

x(C, T ).

Proof. By the Leray spectral sequence for local cohomology H i
x(X,R

jp∗OY )⇒H i+j
p−1(x)(Y,OY ),

we have the exact sequence

H0
x(X,R

1p∗OY )→H2
x(X,OX)→H2

p−1(x)(Y,OY ).

Claim 5.6. The following isomorphisms hold:

(i) H2
p−1(x)(Y,OY ) = 0,

(ii) R1p∗OY 	R1(p|E)∗OE .

Proof. To prove (i), because Y is regular we can apply duality [Kol13, 10.44] to deduce
H2

p−1(x)(Y,OY )	 (R1p∗OY (KY ))x, and we conclude by Lemma 5.4.

To prove (ii), it is enough to show that R1p∗OY (−E) = 0 as R2π∗OY (−E) = 0 since the fibres
of p are at most 1-dimensional. Since −E ∼p,QKY , we conclude again by Lemma 5.4. �
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Using Corollary 5.6, we have

H2
x(X,OX)	H0

x(X,R
1p∗OY )	H0

x(X,R
1(p|E)∗OE).

We denote by i : VC →X the natural injection. Then we have the following isomorphism
H0

x(X,R
1(p|E)∗OE)	H0

x(X, i∗(M⊕T )). Using again the Leray spectral sequence of local coho-
mology for i we have H0

x(X, i∗(M⊕T ))	H0
x(C,M⊕T ) =H0

x(C, T ), since M is locally free
thus concluding. �

Proof of Theorem 1.3. Let f : S→C be a minimal elliptic fibration such that T �= 0 (such a sur-
face exists by Example 4.7). By Proposition 5.3, X =Ca(S, f, L) is a 3-dimensional log canonical
variety, where the relative vertex VC is the unique minimal log canonical centre. By Proposition
5.5, we deduce that the local cohomology H2

x(X,OX) �= 0, thus proving (c). �

Question 5.7. In Theorem 1.3 we construct a log canonical 3-fold singularity X with a minimal
1-dimensional log canonical centre and not C–M, showing optimality of Proposition 4.2.1 and
Theorem 4.2.3 in the case where the exceptional divisor Eη is a regular curve of genus 1. We
do not know if the failure of Cohen–Macaualy-ness can appear in the case where Eη is a nodal
curve. �

Remark 5.8. A guiding principle in birational geometry in characteristic p says that properties
of klt and dlt singularities should behave similarly to characteristic 0 if p is sufficiently large
compared to the dimension [Tot19, Section 6]. This principle does not apply to log canonical
singularities. For example, in [Kol23a, Corollary 6], Kollár shows examples of 4-dimensional log
canonical pairs with non-weakly normal lc centres in every characteristic p > 0. Theorem 1.3
shows that pathological phenomena already appear in dimension 3 for every prime number.
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