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QUOTIENTS OF THE NOTTINGHAM GROUP
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We determine the number of conjugacy classes in the natural quotient groups of the Nottingham group over
the p-element field up to the quotient of order p3p+l.
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Introduction

The number of conjugacy classes, k(G), is a measure of commutativity of a finite
group G, since it is equal to the number of commuting pairs of elements in G, divided
by the order of G. Finite p-groups tend to have a relatively large degree of
commutativity in one sense or another, hence it can be expected that they have a
relatively large number of conjugacy classes. If \G\ = p2"*' with n > 0, e € {0, 1}, then a
nice result of Philip Hall (see [3, p. 549]) states that

KG) = (P2 - 1)" + P' + (P2 ~ 1)(P - IK (1)

where a is a non-negative integer, called the abundance of the finite p-group G. This
yields a logarithmic lower bound

/c(G)>(p2-l)n + p<

for the number of conjugacy classes in a p-group. However, for many types of finite p-
groups a lower bound of the form k(G) > |G|£ (for some e. > 0) has been established; see
the excellent survey paper of A. Shalev [10], in particular Propositions 4.8, 6.4 and 7.6
there. It is unknown how sharp the logarithmic bound obtained from Hall's formula is. L.
Pyber [6] formulated the problem of deciding whether there exists an infinite series of p-
groups (with fixed p) such that fc(G) < clog |G| for some constant c. Concerning this
question A. Shalev (see [10, p. 409]) writes: "It is a common belief that the finite quotients
of the Nottingham group have this property; this has not been verified." (For the
definition of the Nottingham group and its natural quotients see Section 1 below.)
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I. O. York proved in his thesis ([11, p. 105]) that for the natural quotient group of
order p2""1"' with 2n + e < p + I of the Nottingham group over the p-element field the
number of conjugacy classes is (p2 - l)n + p', so these quotients have abundance 0. (In
fact York determined the number of conjugacy classes in the natural quotients of the
Nottingham group over the pr-element field up to the order pr<p+1).) However, no p-
group of order more than pp+2 can have abundance 0 (see Poland [5]). In fact, groups
of order pp+2 and abundance 0 exist only for p = 2, 3, 5, and 7 (see Rothe [7] for their
construction; and Fernandez-Alcober [2] for their nonexistence if p > 11). It is an open
problem (see [10, Problem 4]) if there are only finitely many p-groups (with fixed p)
of any given abundance.

In the present paper we extend the calculation of the number of conjugacy classes
of the natural quotients of the Nottingham group up to the quotient of order p3p+i and
show the following

Theorem. The abundance of the natural quotient of order p' of the Nottingham group
over the p-element field is

[-
0 if 1 < t <p+ 1;

if p + 2<t<2p+l; ,„

i/ 2p + 2 < t < 3p + 1.

These formulae have been anticipated on the basis of extensive computer calculations
by A. Caranti (for p = 3) and by L. Levai (for p = 3, 5, 7, 11, 13, 17) using the GAP
package [9].

J. Sangroniz [8] has independently determined the number of conjugacy classes in
the natural quotients of the Nottingham group over an arbitrary finite field of q
elements for the quotients of order q' with p + 2<t<2p+\, where p > 2 is the
characteristic of the field. He obtained (using the notation t — 2n + e, n > 0, e e {0, 1})
that the number of conjugacy classes is

(q2 - l ) n + q ' + (q2 — \)(q — l ) l n + e — I — (q — p){q — I)2.

Although our result has only limited scope, it does not seem to substantiate the
expectation that the finite quotients of the Nottingham group would provide a series of p-
groups with k(G) < clog\G\. Notice also that for the (not typical) prime p = 2 there are
finite 2-groups with the same order but with smaller number of conjugacy classes than
certain quotients of the Nottingham group, notably of orders 24, 26, 27, where our result
gives 10, 22, and 23 conjugacy classes, whereas the minimum number of conjugacy classes
for groups of these orders are 7, 13, and 14, respectively. (See Boston and Walker [1],
where they determine this minimum for the groups of order 2',t < 14.)
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In Lemma 4 we will show that every nonidentity element of the Nottingham group
is conjugate to an element of the form

x + axl+i+r" + b0x
l+2i+rp + &,x1+2)+('+1» + • • • (3)

where a ^ 0, b0, bu ... e F are arbitrary elements, 1 <j<p,r>0. Later (see Remark
14) we show that in the natural quotient group of order p3p+1 or less the corresponding
elements form a set of class representatives. Counting these elements will give the result.
For the quotient of order plp+2 this is, however, no longer true; see Example 15. Attacking
the latter case would require more sophisticated calculations, hence we had to stop at
the quotient of order p3(>+1. The numerical data suggest that the abundance of the quotient
of order p3p+2 is^p2 + \p + 2, but we haven't yet been able to verify this in general.

The methods of the present paper are elementary but involve tedious calculations.
Unfortunately, they do not offer any insight.

In Section 1 we gather the basic properties of the Nottingham group. In Section 2
we show that each conjugacy class contains at least one element of the special form
(3). Then we determine the order of the centralizer of each element in the quotient
groups Gk for k— 1 < 3p 4- 1. The crucial point of the whole proof lies in Lemma 7,
where the coefficient of a\ in b$ miraculously vanishes, allowing us to prove Lemma 8.
Section 4 just sums up the results.

1. The Nottingham group

Let us fix a prime number p. (In some calculations we will require p > 5, although
all results - with slightly modified proofs perhaps - are valid for p < 5 as well.) Let F
be the p-element field.

Let R — F[[x]] be the ring of formal power series over F. Formal power series will
be denoted by lower case Greek letters:

In R we have a chain of ideals

Let now

Composition of elements a, ft e G is defined in the obvious way:
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a o p = ,
i=2

which makes sense, since /? has constant term 0. Equipped with this operation G
becomes a group (see [4]), which is called the Nottingham group (over the p-element
field). Powers in this group will be denoted by aw (i.e. a(2) = a o a, etc.). We will
frequently use group commutators [a, /S] = a("° o /?(~° o a o /?. In G we have a chain of
normal subgroups

= a

I
Nk = {a e ^[[x]] | a = x +

We will consider the natural quotient groups

Gk = G/Nk.

Obviously, we have

|G*I = P*"'- (4)

It is easy to verify (see [4, Lemma 1]):

It follows that

[x,P]eNk-t=*<xop-Po<xeIk. (5)

We shall write a = x + axk H to indicate that the coefficients of x2 , . . . , x*~" are
all zero (a e F is not necessarily different from zero). The basic commutator formula
(see [4], (3)) says:

[x + ax" -{ , x + bx" H ] = x + (m - n)abxm+"-1 +•••. (6)

H e n c e w e h a v e

[Nm, Nn] c Nm + n,

and even

[Nm, Ntt] c JVm+n+1 whenever m s n (mod p). (7)

We shall need more detailed information about nonzero terms in commutators. For
a = J2 ar*' e F[[x]] let us define
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£(«) = {j > 1 | aj+i ? 0}. (8)

Lemma 1. Let a, /? e G. 7Vie/i

"=' v=1 (9)

( M = \,N > l)or(M > l,N= 1) or (M = N = l , i , # ; , ( m o d p ) ) |

Proof. Let a = x + £,eE(ci) a,+1xI+l ,0 = x + E ; € E ( « ^y+i^^1 • T h e n w e n a v e

= Y ^ a xi+>((l+y^b- x'\+ - 1 - (i•+1) Y^ b x y | ( 1 0 )

' _ !_ + i y-fl x-\
ic£(s) /

- x -

S^ h x'+il

+ E
ie£(o[)

from which the statement follows. •

In order to compute powers we shall need the following two formulae. The first
one can be checked by induction easily.

Lemma 2. Let a = x + amxm H (- anx" H w//A 2<m<n<2m-2. Then for
any integer k we have

aw = x + kamxm + --- + kaX + -- (11)

Lemma 3. Let a. = x + x2 + ax3 + • • •. Then we have

( ) 2 + " - . (12)

Proof. We apply the method of I. O. York [12], which goes back to an insight of
R. W. K. Odoni. Let the infinite triangular matrix M be defined by
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Then a(rt is the first component of

X

\ :

Write M = I + N, where I is the identity matrix. Then M ^ I + N" and (N% =
£N|;iN/iA • • •N^.j , where the summation is taken for all (p-l)-tuples satisfying
1 <j\ < h < • • • < Jp-\ < d. This sum is empty for d < p; hence (Np)1(i = 0 for these d.
For the ith row of M we have a1=x'(l + x + ax2 + • • •)' =x' 4- ix1+1 + (Q + ia)x'+2 + • • •,
so NM+1 — i, N,-1+2 = Q) + /a. Hence

(N'),,p+1 - NI2N23 • • • Np,p+I = 1 • 2 • • • p = 0,

and

( N ) i p + 2 = / y N 1 2 • • • N,_i jN,- 1+2jN|+2,i+3 • • • Np+|,p+2

(»• +2) - - - (p+ l ) .

Here all terms except the one for i = p - 1 are equal to 0 in F, so we get

(N'),p+2 = (p - 2)l(YP ~ M + (p - l )a)(p + 1) = 1 • (1 - a) • 1 = 1 - a,

by applying Wilson's theorem. •

2. Special conjugates

Lemma 4. Every element x + ax1+i+rp H with a / 0, 1 < ; < p, r > 0 is conjugate
to (at least one) element of the form

(13)
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Proof. Let a = x + ax]+i+rp + x2+}+rp<x be given. We want to find a p = x 4- ax]+i+rp+
E ^ M ' + S + ( ' + * and a y = x + £~ 2 c ,x a such that yM) o p o y = a, i.e. / i o y = y o a
holds. Now we have

P oy — yotx = x +
CX=2

(
v=0

- x - ax'+J+rp - x2+i+rpa' ~Y^cX (! 4)
(T=2

^ Co(x" - aff) + a (f x + Y,
\1+;+r(> \

\ - x l + ^ j

^ fcv I x + Y, c°*° - x 2 + ' + ' V .
v=0 \ a=2 /

Up to degree 1 +j + rp we have the terms

(x° - x") + a(x1+J+r" - x1^'") = 0.
a=2

The terms in (14) involving ca and having degree <j + rp + o are

c^x' - x" - <Tx"-'ax1+;+r'>) + a(l +j + rp)x'+rpc<,xa = caa(-o +

The lowest degree term in (14) involving b, is bvx
l+2i+(r+v)p. We can choose the ca's with

a =j +\ (mod p) arbitrarily. Then for each a — 2, 3 , . . . we can find recurrently either
an appropriate ca (for a^j+\ (mod p)) or a fcv (v = (a — j— \)/p for a=j+l
(mod p)) which equates the coefficient of x'+rp+° in (14) with 0. •

3. Centralizers

We will use the notation

Uj=\<xeG\a = x + xi+l + J a,A.
I J

Using the following lemma we will be able to determine the coefficients in some
centralizing elements successively.
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Lemma 5. Let a e C/f, P e G with [a, /?] e Nt. //" fc # 2i (mod p) //ien there exists a
beF such that for /?' = )S + &x*-'+' w Aav<? [a, p"] e Nt+1.

Proof. Let a = x + xi+1 + - - - , a o ^ - j ? o a = cxk+] +•••. Take k F with (k - 2i).
b — c, and let ft = ft + bxk~'+]. Then calculating modulo IM we obtain

x*"l+1) - fi o a - ba*-+l

= a o jS + fcx*-""1 + (i + 1)0W- | + I - / J O B -

= cx*+l + (i + 1 - fc + i - l)fcxl+l = 0.

Hence [«,/r]eAr4+1. D

Proposition 6. Let 1 <j < p, r > 0, s > 0, m = min(r, s). Then for every a e C/;+r/J

exists afie Uj+sp such that [a, )5] 6 N(p+21;.+(r+J+m)p.

Proof. In virtue of Lemma 4 we may assume without loss of generality that

a = x + x1+i+rp + J ] allx
l+2J+"1'.

li=r

We will find an appropriate ft of the form

p = x + x1+;+" + J2 b>+2>+vPxl+2i+"p + E

By (5) we have to find a 0 with a o j j - j 8 o a e /(p+2);+(r+J+m)r Now

v=s+m

c {) + sp) \J{2j + vp | v > s} U t f ; + vp | 3 < ^ < p, v > 5 + m}.

Hence Lemma 1 yields that

£ ( a o jS - p o a ) c {3/+(rp | a > r + s] \J{pj + ap \ 4 < p < p + l , a > r + s +m]

No element k e E(a o p — p o a), /c < (p + 2)j + (r + s + m)p is congruent to 2j modulo
p, and for each such k we have a term of degree k — (j + rp) + 1 in /?, hence by repeated
use of Lemma 5 we can find recurrently suitable coefficients for /? such that
aop-potxe 7(p+2)>+(r+s+m)p will hold. •
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The most difficult task is to find elements centralizing an a 6 I/,. The following
two lemmas are crucial in proving our main result.

Lemma 7. There is a bijection W : F"~l ->• Fp~l such that a = x + x2 + a2x
3 -\ h

a,xp+l H and p = x + x1*2 + b2x"+ 3 H \- bpx
2l>+i H commute modulo N2p+2 if and

only if (b2 bp) = Wfa,..., ap). Furthermore, if in (b2,...,bp) = W(a2, ...,ap) each
bj (i = 2,..., p) is written as a polynomial in a2,..., ap then the degree of this polynomial
in a2 is at most 1 for i = 2, 3 ; at most 2 for i — 4, 5; and at most i — 3 for 6 < i < p .

Proof. Given a e t/,, the existence of a suitable p e Up+l is guaranteed by
Proposition 6 (with j = 1, r = 0,5 = 1). To show the uniqueness, assume that there is
another (p - l)-tuple (b'2 b'p) ^ (b2, ...,bp) such that p' = x + x ^ 2 + &2x

p+3 + • • • +
bpX21*1 centralizes a modulo Nlp+1 as well. Then modulo N2p+2, a commutes with
y = j3 M ) o0 ' = x + cx;H , where c ^ 0, p + 3 <j < 2p+ 1. Now (6) yields [a,y] =
x + (2 — j)cx'+i H & N2p+2, a contradiction. So the mapping *P is well-defined.
Proposition 6 (with j = l,r — l , s = 0) also implies that ¥ is surjective, hence by
finiteness it is injective as well.

Now we want to determine some ft, explicitly. Write a, = 1, b, — 1. Direct calculation
modulo I2p+2 yields (cf. (10)):

= (oj - b2)x'+4 + (2a3 -

+ (4a5 + 2a4fc2 - 2a2b4 - 4fe5)xp+7 + • • •

- xp + 2(x2 + 2a2x3 + (2a3 + a2)x4 + (2a4 + 2a2a3)x5 + • • •)

- fe2x
p+3(3x2 + (6a2 + l )x3 + (6a3 + 3a2 + 3a2)x4 + • • •)

- />3xp+4(6x2 + (12a2 + 4)x3 + • • • ) - fe4x'+5(10x2 + • • •)

= (a2 - b2 - l ) x ^ 4 + (2a3 - 2fc3 - 2a2 - 3fe2)x
(>+5

+ (3a, + a 3 i 2 - a2ft3 - 3b4 - 2a3 - a\ - b2(6a2 + 1) - 6fe3)xp+6

+ (4a5 + 2a4fc2 — 2a2fe4 — 4bs — 2a4 — 2a2a3 — f»2(6a3 •+- 3a2 + 3a2)

- b 3 ( 1 2 a 2 + 4 ) - 1 0 f t 4 ) x " + 7 + - - )

assuming p > 5.
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By equating the coefficients with 0 we obtain

b2 = a2 - 1

5 3

3 2 37 „ 8
a2 + aA3a^

49 , / 7 46\ 7
= -g-«2 + I ~ 2 a 3 - y 1̂ 2 + a5 - - a 4

31
—

where in b5 the coefficient of a\ vanishes. (For p < 5 we have to add 1 to the given
formula for bp due to the term — btx

p+2 • xp in (15).) Now for i = 6 , . . . , p we can show
by induction that the degree of ft, in a2 is at most i - 3. Indeed, the coefficient of
XP+2+> m (]5) [s a polynomial in a2,..., a:, b2,..., bit more precisely all terms are linear
in the bv's and the degree in a2 of the coefficient of bv is [(i + 1 — v)/2], hence the
estimate for the degree follows by induction. •

Lemma 8. Let a = x + x2 + a2x
3 H + apxp+l H and P = x + xp+2 + b2x/H"3 H

+ 6 , x ^ ' + • • • with (b2, ...,b,) = V(a2 a,). Then [a, fi\ g N2p+3.

Proof. We know by Lemma 7 that [a, P]eN2p+2, hence a o )3-)8 o a = x + cx2f>+3 H ,
where c is a polynomial in a2,..., ap, b2,..., bp, hence in a2,..., ap. (Observe that c does
not depend on the further coefficients of a or ^ by (10).) As in the proof of Lemma 7
it follows that the degree of this polynomial in a2 is at most p — 2. We have to show
that this polynomial is in fact zero.

Let first a2 ^ 1 and take a positive integer k with k(l —a2) — \. Then using (12)
and (11) we get that the p/cth power of a has the form

a " " 0 = ( a ( ( " ) w = ( x + ( 1 - a 2 ) x " + 2 + • • - f = x + k ( \ - a 2 ) x p + 2 + ... = x + x p + 2 + •••.

Since a0"*' commutes with a, we must have by the uniqueness stated in Lemma 7 that

a " " ° = x + x " + 2 + b 2 x ^ + ••• + b p x 2 p + x + • • • .

Hence ft centralizes a modulo N2p+i in this case. This means that the value of the
polynomial c is 0 whenever a2 / 1. Since the degree of c in a2 is at most p - 2, it
implies that c = 0 identically. •

Now we can summarize our results on the existence of centralizing elements.
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Proposition 9. Let 1 < u, v < 3p + 1 with u = v (mod p). Then for every a. e Uu there
exists a ft e Uv such that [a, /?] e NJp+2.

Proof. Let u—j + rp,v=j + sp with \<j<p,r,s>0 and set m — min(r,s). If
u = v then we can take P = a, so assume u / v.

If j / p, then Proposition 6 can be applied to obtain a P that commutes with a
modulo N(JH.2)/+(r+J+Bl),. Now for./ > 2 we have

(p + 2); + (r + s + m)p > 2(p + 2) + p > 3p + 2,

so the result follows in this case. If j = 1 then

l)p + 2,

hence we get the result unless r + s + m+ 1 < 2 , that is m = min(r, s) = 0 and
max(r, s) = 1. So we have to consider the cases (w, v) = (1, p + 1) and (u, u) = (p + 1, 1).
Let « = 1, v = p + 1, then a = x + x2 + a2x

3 H . Choose 0' = x + xp+2 + ^ x ^ 3 H h
bpx2|Hl with (b2 , bp) — T f o , ...,ap) (see Lemma 7). Then [a, 0] e N2p+i by Lemma
8. Repeated application of Lemma 5 yields then a /? e L/p+1 such that [a, /?] e N3p+2. We
can proceed similarly for (u, y) = ( p + 1, 1), ix — x + x1^2 + a2x

p+i-\ by taking
? = x + x2 + b2x* + --- + bpx

p+l with (b2,... ,bp) = ^-\a2 ap) and finishing the
proof as above.

Finally consider the case j = p. Then Lemma 4 allows us to assume without loss of
generality that a = x 4- J2™=r+i a

/i*'"'+''• We show that [a, /?] e N(r+J+m+3)p for every /J of
the form ft — x + J27=,+\ bvx

vp+l. Indeed, by Lemma 1 we have

£ ( a o p - p o a ) c II > i + ) j \ p \ i p e £ ( a ) , Lp e E(B), M + N > 2 } ,

[v^r t? / J
where each element is at least

(r+ 1 + s + l + m + l ) p > 4 p > 3p + 2. D

An obvious "Gaussian elimination" easily yields the following observation.

Lemma 10. Let H/Nk be a subgroup of G/Nk. Then \H/Nk\ — p", where ft stands for
the number of indices j , 1 <j<k—\, such that H n Uj ^ 0.

Lemma 11. Let i and n be natural numbers. Then the number of those integers j for
which j = i (mod p) and 1 <j<nis

(16)
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Proof. We have to count those / s for which 1 — i < j — i < n — i holds and j — i is
divisible by p. Their number is clearly the one given by (16). •

Proposition 12. Let I < i < k < 3p + 2andae Nt\Ni+l. Then we have

| = p"K*-*-'>/>H-M (17)

Proof. Let a — x + ax'+1 H with a / 0, and take an integer m with ma = 1 in F.
Then a. and a(m) generate the same cyclic subgroup and (11) yields a(m) =
x + max'+l -\ = x + x'+l + • • • e Uit so we may (and will) assume without loss of
generality that a e Ut. In virtue of Lemma 10 we have to count those/s (1 <j < k — 1)
for which there is a 0 e U} with [a, 0] e Nk. Now (6) gives [a, 0] = x + (i -j)xi+i+x H .
Hence if [a, /?] € Nk then either i=y(modp) or i+j>k holds. Conversely, if i = ;
(mod p) then there is a suitable /? e Uj by Proposition 9; if i +j > k then [a, /?] e Nk for
every /? e Uj. Hence the set of the /s in question is

{./ I 1 <j <k-i-\J = i (mod p)} U {k - i , . . . , k - 1}.

Lemma 11 then yields (17). •

4. The class number

First we count the number of conjugacy classes in different "layers" of the natural
quotients Gk = G/Nk, k<3p + 2.

Proposition 13. Let 1 < i < k < 3p + 2. Then Nt/Nk \ NM/Nk splits into

(p - i)pK*-a-»/ri-H/ri

conjugacy classes in Gk — G/Nk.

Proof. Let S = Ni/Nk\Ni+i/Nk, then we have \S\ - (p - \)pk~'~l. By Proposition
12 each element in S has centralizer of the same order; hence each conjugacy class
contained in S has the same size

fc-1 -i-[(*-2i-l)/p]-[-i/p]

from which the statement follows. •

Remark 14. If k < 3p 4- 2 then every conjugacy class of Gk contains exactly one
element <xNk, where <x has the special form (13).
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Proof. Let i=j + rp < k with 1 < ; < p, r > 0. Then the number of special elements
(modulo Nk) in Nt \ Ni+l is

since we have to choose a nonzero coefficient for x'+l and arbitrary ones for x1+2;+(r+v)p

for each v such that 0 < v and 1 4- 2/ + (r 4- v)p < k. Every conjugacy class contains at
least one such element by Lemma 4. On the other hand, the number of conjugacy
classes as given by Proposition 13 is

the same as in (18), since [-j/p] = — 1 as - p < —y < — 1. •

However, the preceding statement is no longer true for k = 3p 4- 3.

Example 15. The elements a = x 4- x2 and jS = x + x2 + x3(>+3 (both of the form
(13)) are conjugate in G3))+3.

Proof. We will find an element y = x 4- 5X<> c,-x2p+2+i such tha t ( y M ) o p o y)NJp+i =
(xN3p+i, i.e. Poy — yoa e /3p+3. Calculating m o d u l o /3 p + 3 we ob ta in

p-i p-i
o , , , . „ « , v-_l_ \ ' ^ v.2p+2+i î  ^,2 î  T \ ' v2(H-3+i _i v3p+3

p o y — y o a = x-f- ^ c,x r + x 4" ̂  / c,x r + x
i=0 i=0

P-I

i=0

4- V c,(x2''+2+'' 4- 2x2p+3+1 - (x + x2)2p+2+1).
i=0

Here the coefficients of x x2p+3 are all zero, and we get a system of linear equations
for c0, . . . , cp_t by equating the coefficients of xlp+A,.... x3p+i with zero. It can be
checked that the determinant of the system is nonzero, hence there does exist an
appropriate y. For the sake of simplicity we give the suitable conjugating element only
for the case p = 3, when we obtain y = x + x8 4- 2x9 4- 2x10. •

Now we can give the proof of our main result.

Proof of the Theorem. We consider the quotient group G,+] of order p' (see (4)),
where t < 3p 4- 1. Proposition 13 yields that
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(19)

_ V ^ p[(i-2/)/Pl+2 + [ 1 _ V ^ p[(r-2/-)/pl-[(i-;-)/p]+l I

For odd p the term in parenthesis does not depend on t; its value is always ^(1 -p2) .
If p = 2 then this term is —2 for even t and —1 for odd t.

Let a, denote the abundance of G,+,. For t — 1, 2 the group G,+1 is abelian of order
p', hence it has abundance 0. Now for 3 < t + 2 < 3 p + l we compare al+2 and a,. Let
t = 2n + e with n > 0, e € {0, 1}. Then by definition (see (1)) we have

) = (P2 - 1)(» + 1) + P° + (P2 -

.) = (P2 - 1)» + P' + (P2 -

hence

KG,+i) - fc(G,+1) = p2 - 1 + (p2 - l)(p - l)(al+2 - a,). (20)

At the same time we infer from (19) that

(21)

Now (20) and (21) together yield

_[>/p| _ ! [a,. if t < p;
a.+2 = a, + — — j - = j a, + 1, if p < t < 2p;

p [a, + p+\, i f 2 p < t < 3 p ,

in accordance with (2). D

Since the same calculation gives the number of elements of the form (13) for any t,
in virtue of Lemma 4 we obtain an upper bound for the number of conjugacy classes.
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Corollary 16. The number of conjugacy classes ofGl+l (t > 1) satisfies

Up2-l) (22)

for p odd; and

klG )< 3 • 2[I/21 - ( 2 l jftiseven'/ c ( t W - l \\, if t is odd,

for p = 2. Equality holds if and only ift<3p+l.

For the order of magnitude of this upper bound we have the following.

Corollary 17. There is a constant Cp such that for all t > 1 we have

Proof. Since \Gt+l\ = p' we can choose C2 = 3 and Cp = pi (or an even smaller
constant) for p > 2 to get an upper estimate of the form Cpp'/P for the right hand sides
of (22) and (23). •
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