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Abstract. The upward propagation of linear acoustic waves in a gravitationally stratified atmo-
sphere is studied. The wave motion is governed by the Klein-Gordon equation which contains
a cut-off frequency introduced by stratification. The acoustic cut-off may act as a potential
barrier when the temperature decreases with height. It is shown that waves trapped below the
barrier could be subject to a resonance which extends into the entire unbounded atmosphere.
The parameter space characterizing the resonance is explored.

Keywords. waves, hydrodynamics, Sun: atmosphere, Sun: photosphere, Sun: chromosphere,
Sun: Corona, Sun: oscillations

1. Introduction
Acoustic waves have often been invoked as possible candidates for the heating of solar

and stellar chromospheres and coronae (see e.g. Banerjee et al. 2007 for the latest review
on observations; and Erdélyi 2004; 2007 on theory). Until recently it was thought that
high frequency waves could be responsible for the heating of the non-magnetic chromo-
sphere. On the other hand, low frequency waves were believed to play little role as far
as the dynamics and energetics of the atmosphere are concerned due to reflection from
regions with steep temperature gradients. Recent works have changed these views. It
was established that the power of the observed high frequency propagating (> 5 mHz)
acoustic waves is not enough to balance the radiative losses in the chromosphere (Fossum
& Carlsson 2005). On the other hand, new observations have shown that the energy flux
carried by the low frequency (< 5 mHz) acoustic waves into the chromosphere is about
a factor of 4 greater than that carried by high frequency waves (Jefferies et al. 2006). It
was argued that these low frequency waves could propagate and carry their energy into
the higher layers of the atmosphere through portals formed by the inclined magnetic field
lines. Further, it was demonstrated that dynamic features such as solar chromospheric
spicules or fibrils could be associated with the leakage of global p-modes into the atmo-
sphere along inclined field lines (De Pontieu et al. 2004). A strong correlation was also
found between propagating intensity oscillations in the corona and p-modes (De Pontieu
et al. 2005). These and other results have prompted renewed strong interest in the theory
of low frequency acoustic wave propagation in stratified media.

The present paper deals with a two-layer model (Fig. 1) to study the vertical propaga-
tion of acoustic waves in a stratified atmosphere (either plasma or gaseous). The waves
are described by the Klein-Gordon (KG) equation. The main result here is the discovery
of a resonance occurring at low frequencies which extends into the entire unbounded
atmosphere. This previously unknown resonance may be responsible for the transfer of
wave energy which could have dynamic consequences and heat the higher atmospheric
layers. The KG equation is widely used in a range of fields such as atmospheric physics,
cosmology, quantum field theory, solid state physics, solar/stellar physics. Therefore, the
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presented results may have wider applicability in distinct areas of physics and astro-
physics.

Figure 1. Two-layer model depicting a stratified solar atmosphere. The lower part of the at-
mosphere (index 1) is separated from the upper part (index 2) by a density and temperature
discontinuity at z = L. Waves are launched at z = 0 and propagate in the vertical z-direction.

2. Model and Governing Equations
The proposed one dimensional model is shown in Fig. 1. The atmosphere is stratified

under gravity in the z direction. The temperature T = T (z) linearly decreases in the
lower part and remains constant in the upper part of the atmosphere:

T =

⎧⎨
⎩

T0(1 − az), 0 < z < L,

T2 , z > L,
(2.1)

where the constant a (aL = 1 − TL/T0 > 0) characterizes the steepness of temperature
decrease from T0 = T (0) to TL = T (L), and L is the thickness of the nonuniform layer.
The wave motion is governed by the KG equation:

∂2Q

∂t2
− c2(z)

∂2Q

∂z2 + Ω2(z)Q = 0 (2.2)

where Q is the scaled velocity (Roberts 2004) and c = (γRT )1/2 is the sound speed. The
quantity Ω represents the acoustic cut-off frequency, which imposes a time-scale on the
system:

Ω2 =
c2

4Λ2

(
1 + 2

dΛ(z)
dz

)
, (2.3)

where Λ is the pressure scale-height proportional to the temperature. An extensive review
on solar applications of the KG equation is presented by Roberts (2004). In the present
work, the KG equation (2.2) is applied to the study of waves driven at a boundary of a
semi-infinite non-isothermal atmosphere:

lim
z→0

Q(z, t) = I(ω) cos(ωt), (2.4)

where ω is the driver frequency and I = I(ω) is the frequency dependent amplitude
of the driver. For simplicity, we assume that Q is a complex variable. The boundary
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condition (2.4) is then replaced with

lim
z→0

Q(z, t) = I(ω)e−iω t . (2.5)

3. Results and Discussion
We seek steady state solutions of the form Q(z, t) ∼ exp(−iωt). In the lower part of

the atmosphere, Eq. (2.2) can be transformed to a Bessel equation. It possesses solutions
of the form

Q(z, t) = exp(−iωt)
√

1 − az

[
A1Jν

(
2ω

c0a

√
1 − az

)
+B1Yν

(
2ω

c0a

√
1 − az

)]
, (3.1)

where Jν and Yν are the Bessel functions of the first and second kind, respectively and
ν = γg/(ac2

0) − 1 is the polytropic index. In the upper layer z > L, the solution has the
form

Q(z, t) = A exp(ikz − iωt), where k =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

i

√
Ω2

2 − ω2

c2
, ω < Ω2 ,

√
ω2 − Ω2

2

c2
, ω > Ω2 ,

(3.2)

with c2 and Ω2 being the constant sound speed and cut-off frequency in the upper layer.
The coefficient A is uniquely determined by appropriately matching the solutions across
z = L. It determines the wave amplitude in the region above z = L. In the WKB limit
the coefficient A is reduced to

A =
I(ω) exp(ikL)

1 − L

2Λ2
+ L

√
Ω2

2 − ω2

c2
,

(3.3)

Eq. (3.3) is valid when the lower layer is thin. It shows that the wave amplitude may be-
come infinite in the adopted linear approximation. A necessary condition for the existence
of a resonance is L/2Λ2 > 1. The waves are resonantly amplified when

ω =
c2

L

√
L

Λ2
− 1, (3.4)

In Fig. 2, the scaled resonant frequency ω is plotted against the scaled thickness L. The
temperature T2 is fixed (and so are the cut-off frequency Ω2 and the scale height Λ2).
Four different cases with different temperature ratios (T0/T2 = 2, 5, 8, 15) are shown. In
all four cases, TL = T2 is set. The resonant frequencies consecutively appear and decrease
as the thickness of the lower layer L increases. In general, the higher the length ratio
L/Λ the lower the temperature ratio T0/T2 > 1 required for the existence of a resonance.

The physical mechanism responsible for wave amplification is the following: the de-
creasing temperature results in an increasing acoustic cut-off frequency Ω = Ω(z) which
forms a potential barrier similar to the one in quantum mechanics (Landau & Lifshitz
1977). Low frequency waves with Ω0 < ω < Ω2 driven at z = 0 are reflected back from
the barrier and trapped in the lower layer 1. When the driver frequency matches the nat-
ural frequency of the cavity where the waves are trapped a standing wave is set up and
amplified resonantly. In the case of a thin layer, only the fundamental mode is present
with a frequency given by Eq. (3.4). The frequency of the fundamental mode decreases
and higher harmonics appear as the thickness L increases. The resonance affects the
evanescent tail of the waves in the upper atmosphere leading to a global resonance.
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Figure 2. Scaled resonant frequency ω as a function of the length of the non-uniform layer
L. Four different cases are shown: T0/T2 = 2 (solid line), T0/T2 = 5 (dashed line), T0/T2 = 8
(dotted line) and T0/T2 = 15 (dash-dotted line). In all four cases, TL = T2 is set.

The nonlinear development and dissipation of such waves generated in various physical
systems and their energetic implications must be treated separately. These may include
the generation of spicules or the heating of the lower atmosphere. An important extension
of the present work is the treatment of the problem in 2D and the consideration of a
non-monochromatic driver. The resonant waves presented here arise due to the variation
of the cut-off frequency introduced by stratification. However, such waves could operate
in any other systems with varying cut-off frequencies. The cut-off frequencies of waves,
such as Alfvén, kink and slow waves, in thin magnetic flux tubes vary due to, e.g., cross-
section expansion of the flux tube or the variations in the magnetic field strength and
density (Spruit & Roberts 1983). Therefore, such waves could readily become subject to
a resonance in solar/stellar structures. The applicability of the presented mechanism in
other areas of physics and astrophysics is open for discussion.
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