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A TWO-SIDED ITERATIVE METHOD
FOR COMPUTING POSITIVE DEFINITE SOLUTIONS

OF A NONLINEAR MATRIX EQUATION
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Abstract

In several recent papers, a one-sided iterative process for computing positive definite solu-
tions of the nonlinear matrix equation X +A'X'] A = Q, where Q is positive definite, has
been studied. In this paper, a two-sided iterative process for the same equation is investi-
gated. The novel idea here is that the two sequences obtained by starting at two different
values provide (a) an interval in which the solution is located, that is, X» < X < Yk for all
k and (b) a better stopping criterion. Some properties of solutions are discussed. Sufficient
solvability conditions on a matrix A are derived. Moreover, when the matrix A is normal
and satisfies an additional condition, the matrix equation has smallest and largest positive
definite solutions. Finally, some numerical examples are given to illustrate the effectiveness
of the algorithm.

1. Introduction

We consider the nonlinear matrix equation

X + A*X~XA = Q, (1.1)

where Q is a positive definite matrix of order n and A is a nonsingular matrix of
order n. Equation (1.1) can he reduced to

X + A'X~*A = I (1.2)

(see [6, 11]), where / is the identity matrix. We can see that (1.1) is a special case of
a discrete-time algebraic Riccati equation

0 = Q + F'XF - X - (F'XB + A*)(K + B'XB)~l(B'XF + A),
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where Q is a positive definite matrix, see [9]. This equation can be reduced to (1.1),
by setting F = 0, B = I and R = 0.

The existence of positive definite solutions of (1.1) arises in a number of applica-
tions such as system theory, control theory, ladder networks, dynamic programming,
stochastic filtering and statistics, see [10] and references therein. Finding an efficient
numerical solution for (1.1) is a problem which has been extensively studied by sev-
eral authors (see [1, 5, 6] for example). Zhan and Xie [11] obtained necessary and
sufficient conditions for the existence of the positive definite solution of (1.2). Zhan
[10] discussed a new algorithm that avoids matrix inversion for solving (1.2). Guo
and Lancaster [7] studied several iterative forms to find the maximal positive definite
solutions of the two matrix equations (1.2) and X — A'X~*A = Q. In [8], some
properties of a positive definite solution of the equation X + A*X~2A = I were inves-
tigated. A set of equations of the form X + A"F(X)A = Q, where F maps positive
definite matrices either into positive or negative definite matrices, and satisfies some
monotonicity property were studied in [4]. It was proved that the iteration method
converges to a positive definite solution under some conditions. The properties of a
positive definite solution of the matrix equation X — A*X~nA = I were investigated
in [3].

In this paper we continue to discuss (1.2) with a two-sided iterative process starting
with two different values. In Section 2, we obtain a sufficient condition for the
existence of a positive definite solution (1.2). In Section 3, we find a sufficient
condition for the existence of the smallest and largest positive definite solutions (1.2),
when the matrix A is normal. Some numerical examples are given in Section 4
to illustrate the effectiveness of the algorithm. Conclusions drawn from the results
obtained in this paper are in Section 5.

The notation X > 0 is here taken to mean that X is a positive definite matrix and
A > B is used to indicate that A — B > 0. Throughout the paper, ||.|| will be the
spectral norm for square matrices unless otherwise noted.

2. The existence solution of the general case

In this section, we will obtain a sufficient condition for the existence of solutions
of the matrix equation (1.2). Also, we will prove that the two iterative processes
converge to the same limit.

THEOREM 2.1. If the spectral norm q = \\A\\ < 1/2, then (1.2) has a positive
definite solution X, which is a limit of a two-sided iterative process.

PROOF. Let us consider the following two iterative sequences:

Xk+l = I - A*X;lA, Xo = (1/2)/, (2.1)

https://doi.org/10.1017/S1446181100013201 Published online by Cambridge University Press

https://doi.org/10.1017/S1446181100013201


[31 Positive definite solutions of a nonlinear matrix equation 147

Yk+l = l-A'Yk
xA, Y0'=I, (2.2)

where it = 0, 1,2,....
In order to prove the theorem, we shall show that

Xk<Xk+l < Yk+X < Yk, it = 0 , 1 , 2 , . . . and (2.3)

\\Yk-Xk\\-»0 i f * - > o o . (2.4)

Let us begin with (2.1). We have X\ = I — 2A'A. But since \\A\\ = q < 1/2, we
haveX, > Xo = (1/2)/.

Suppose that for a fixed k the inequality Xk_\ < Xk is fulfilled. Then, using the
inductive argument and the fact that Xk > 0 for any k, we have

xk-i > xkl> 7 - A*Xk-\A > l ~ A'X;lA.

Then we get Xk < Xk+\. We can prove that Yk+l < Yk [6] in a similar manner.
Next we shall show that

Xk < Yk and || Yk - Xk\\ < I ( ( 1 _ ^ 1 ) 2 ) . (2-5)

when it = 0, 1, 2, Indeed,

Yo - Xo = (1/2)/ > 0, that is, Xo < Yo,

Yx - Xi =A*A > 0, that is, Xx < Yx.

Let us assume that for a fixed k > 1, we have Yk-i — Xk-\ > 0. Thus we have
Yk-Xk = A*(Xk\ - Yk~^)A > 0, that is, Xk < Yk. Now we have

since q2/(l - 2q2)2 < 1.
So we have proved (2.3) and (2.4) hold. This implies that

lim Xk = lim Yk = X = I - A*X~lA > 0.

The theorem is proved.
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3. The existence solution of the special case

In this section, we propose in addition that A A* = A* A, that is, that the matrix A
is normal.

LEMMA 3.1. If the matrix A is normal, then AX = XA, where X is the solution
of (1.2).

PROOF. From [3, Lemma 4], we have AXS = XSA, s = 0, 1 , . . . , where the
sequence {Xs} is generated from (2.1) or (2.2). Furthermore, from Theorem 2.1 the
matrix X is the limit of Xs and Ys. Then the lemma is proved.

In this special case, by some matrix manipulation it can be shown that

/ + V/ - 4AM / - V7 - 4AM
Xoo = - and X_oo = - (3.1)

are always positive definite if ||A|| < 1/2. These expressions clearly generalize the
scalar case.

THEOREM 3.2. If q = \\A\\ < 1/2 and A is a normal matrix, then the two iterative
processes (2.1) and (2.2) converge to Xoo.

PROOF. TO prove the theorem, it is sufficient to show that Xk < XM < Yk for every
k > 0 and to apply Theorem 2.1.

Indeed, we have

/ I + JI- 4AM
2 < 2 =

Suppose that for a fixed k > 1, we have X^-i < X^. Hence

I -A*X;\A < I -A*X^A.

Then we get Xk < XTO. So, by induction, we have proved that Xk < X^.
Similarly we can prove that XM < Yk, k = 0,1, 2 From these properties of

the two sequences Xk and Yk and Theorem 2.1, we get Xk -*• X^ and Yk -> .X^.
This concludes the proof of the theorem.
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If we know that XQO (X_OO), it is easy to find X_oo (XTO) from XooX-x, =

^-oo(^oo) = A'A or from X_oo = / — X,*,. Nevertheless it is interesting to construct

a two-sided iterative process for finding the positive definite solution X_x of (1.2). In

order to do this, we rewrite (1.2) in the form

X = A(/ -XyxA\ (3.2)

Now we shall show that

Xk+X=A{1 -XkY'A\ k = 0 , 1 , 2 , . . . , X 0 = 0, (3.3)

Yk+l=AU-Yk)-
lA', k = 0 , 1 , 2 , . . . , K0 = / / 2 , (3.4)

give a two-sided iterative process, which tends to X_oo.

THEOREM 3.3. Ifq = \\A\\ < 1/2 and A is a normal matrix, then the two iterative
processes (3.3) and (3.4) tend to X^.

PROOF. In order to prove the theorem, it suffices to show that

%k < Xk+l < -^-oo < Yk+\ < Yk,

for it = 0, 1, 2, Let us start to prove that Xk < Xk+l. We have from (3.3) that

X , = AA* > 0 = X 0 ,

since det A ^ 0. If we now assume that for a fixed k we have Xk_\ < Xk, it is easy

to show that Xk < Xk+i by Theorem 2 .1 . So we get that the last inequality will be

fulfilled for every k.

Continue with Xk < X_oo. For k = 0, the last inequality holds, because Xo = 0 <

X_0O. Let us now suppose that for a fixed k, we have Xk_\ < X.x. F rom the last

inequality we get

A(/ X t _ , ) A < A( / X - o J A .

This leads to Xk < X_TO. In such a way we prove that Xk < Xk+\ < X_oo. The proof
for X_oo < Yk+i < Yk is similar. The proof of Theorem 3.3 is now complete.

REMARK 1. IF || A || = 1/2, it is easy to prove that

(i) The two iterative processes (2.1) and (2.2) converge to the largest solution
which is Xx = Xo = (1 /2) / .

(ii) If we use the two iterative processes (3.3) and (3.3), they converge to the
smallest solution which is X_oo = Yo = (1 /2) / .
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4. Numerical experiments

[6]

In this section, the numerical examples in [10] are given to illustrate the effectiveness
of the present algorithms. In the following tables we denote e(X) = \\X + ATX~iA —
/jloo, eXk = Poo - X*lloo and e = \\Xk - YtW^. First, we will obtain the solution X
by the iterative methods (2.1) and (2.2) in the general case (that is, A is nonnormal).

EXAMPLE 1. We define the nonnormal matrix

The maximum solution is

.946873 -.0448677 -.00670385 -.0571869X
-.0448677 .898174 -.0431112 -.119047
-.00670385 -.0431112 .90855 -.0354448 '
-.0571869 -.119047 -.0354448 .827281 /

Experimentally, if a scalar multiple of the matrix A is less than 35, then the equation
has no positive definite solution, but if it is greater than or equal to 36, then the equation
has a positive definite solution. Table 1 gives the error analysis of Example 1.

TABLE 1.

iter
2
6
10
14
18
22
26
30
34

e(X)
2.70912E-02
3.66368E-04
1.96534E-06
9.99701E-09
5.06288E-11
2.56350E-13
1.33227E-15
1.38778E-17

0.0E00

e(Y)
1.08620E-02
7.14647E-05
3.71656E-07
1.88586E-09
9.54858E-12
4.84057E-14
2.22045E-16

O.OEOO
O.OEOO

E

2.34963E-02
1.64376E-04
8.52334E-07
4.32361E-09
2.18914E-12
1.10800E-13
5.55112E-16
1.38778E-17
1.38778E-17

E X A M P L E 2. We define the normal matrix

( 0.1 - 0 . 1 5 -0.2598076X

0.15 0.2125 -0 .0649519
0.2598076 -0 .0649519 0.1375 /
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From (3.1), the maximum solution is

151

0.88729835
0.0
0.0

0.0
0.92158407

-0.01979489

0.0 \
-0.01979489 1
0.89872694 /

Here we will use the iterative processes (2.1) and (2.2) to find the largest solution of
the matrix equation. We can obtain the same results by using the iterative processes
(3.3) and (3.4) to find the smallest solution X_oo = / — Xoo.

TABLE 2.

iter
2
4
6
8
10
12
14
16
18
20

1.58405E-03
2.56088E-05
4.14565E-07
3.98173E-08
4.14895E-08
4.15161E-08
4.15165E-08
4.15165E-08
4.15165E-08
4.15165E-08

2.01664E-04
3.25126E-06
5.50941E-08
4.17305E-08
4.15200E-08
4.15166E-08
4.15165E-08
4.15165E-08
4.15165E-08
4.15165E-08

e
1.78571E-03
2.88600E-05
4.65618E-07
7.51193E-09
1.21192E-10
1.95532E-12
3.15303E-14
4.44089E-16
1.11022E-16
1.11022E-16

5. Conclusion

In this paper we consider a nonlinear matrix equation (1.2). The equation can be
viewed as a natural extension of the scalar equation x+a2/x = 1. This scalar problem
is equivalent to equation <p(x) = a2, where tp(x) = *(1 — x). This equation has a
positive solution x so that 0 < x < 1 if

a2 < max<p(x) = q> (1/2).

In the case when A is a normal matrix, (1.2) can be reduced to X2 — X + A* A =0
using Lemma 3.1. We introduce a two-sided recursion algorithm from which a
positive definite solution can be calculated. We calculate the extremal positive definite
solutions of the matrix equation. The numerical experiments demonstrate that the
described iterative methods are efficient. We observed that the iteration (2.1) is
equivalent to the iteration (3.3) when X = I — X.
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The two-sided iteration method described above possesses some advantages. We
can compute Xk+t and Yk+i in parallel. We can obtain and prove that X^, and X_oo
are the solutions of the equation when the matrix A is normal, while this cannot be
proved for one-sided iteration methods. It is also easy to propose a stopping criteria,
using

max(|| Yk - X||, p - Xk\\) <\\Yk- Xk\\,

which is not applicable for one-sided iteration methods.
Here we consider the case when A is a nonsingular. If A is singular, the problem of

obtaining the extremal solutions is not solved. This problem is still a topic for future
research. The problem of how to compute the iterative positive definite solution of
(1.1) without calculating the matrix inversion is currently under consideration.
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