
Journal of Agricultural and Applied Economics, 49, 1 (2017): 66–82
© 2017 The Author(s). This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the
original work is properly cited. doi:10.1017/aae.2016.40

YIELD UNCERTAINTY AND MILK SUPPLY
RESPONSE IN TWO-TIER PRICE SYSTEMS
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Abstract. In two-tier price systems, yield uncertainty creates incentives to
overproduce quantity-restricted outputs even when prices for surplus output are
very low. These incentives arise from precautionary motives against expected
losses from quota shortfalls. Using an approach augmented for multiple input
applications, the likelihood of excess production and the relative importance of
price changes in different markets are estimated for Icelandic dairy farms. The
results indicate that the average farm plans to exceed its quota, and price changes
in the surplus milk market are approximately three times more effective in
generating supply response than price changes in the quota milk market.
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1. Introduction

One way quota programs imposed on producers are enforced is a two-tier price
system. Under this system, a quota-restricted output receives different prices
depending on whether it is delivered inside or outside the quota. Usually prices
for surplus output are unprofitably low. However, producers may still plan to
overproduce their allotted quota if yields are uncertain (Fraser, 1986, 1995).
Such excess production protects producers from two potential losses that are
associated with yield uncertainty (Alston and Quilkey, 1980). These losses are
the loss of revenue from forgone sales when quota shortfalls occur and the loss
of unused quota in future allocations of production rights. In the context of
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dairy production, Alston and Quilkey (1980) termed such excess production as
“insurance milk.”

Fraser (1986, 1995) provided a more formal treatment of yield uncertainty
when modeling the relationship between planned production and yield
uncertainty. Babcock (1990) extended the treatment to risk-averse producers.
Building on Babcock’s framework, Borges and Thurman (1994) proposed an
approach to compute the probability of planned production exceeding quota
and the relative importance of price incentives for supply response in the two-tier
price setup. Using data from peanut production in North Carolina, Borges and
Thurman (1994) found that planned production was likely to exceed the quota
with a high probability, ranging from 0.87 to 0.97. Furthermore, the relative
importance of price changes in the quota peanut market for supply response was
at least 30 times higher compared with equivalent price changes in the surplus
peanut market.

Similar empirical studies are lacking for the dairy sector. This deficiency is
surprising given that the pioneering work of Alston and Quilkey (1980) was
on dairy production, and milk supply management using marketing quotas
has been pervasive (e.g., in Canada, the European Union until April 2015,
Norway, Iceland, and California in the United States). Furthermore, though to
a lesser extent, dairy production can be affected by yield uncertainty, arising
from different sources. For example, in relatively small dairy enterprises, a
significant portion of forage is produced on the farm. The implication is that
weather-related risks that are usually associated with crop production can also
be sources of yield uncertainty in dairy production. Weather-related sources of
uncertainty are especially likely in areas where dairy production takes place
under difficult agroecological conditions. In such cases, adverse weather can
also have implications beyond forage production such as on animal health
because dairy cows may have to be kept indoors for extended periods of
time (Jóhannesson, 2010). Other sources of milk yield uncertainty are random
occurrences of dairy cow diseases such as mastitis, death of cows, incorrect
detection of ovulation for artificial insemination, and optimization errors.

This article has four objectives. First, the Borges and Thurman (1994) model
is augmented to consider multiple inputs. The consideration of multiple inputs
is important for two reasons. First, when any single input is chosen to compute
yield in a multiple input setting, the underlying assumption is that the probability
distribution of yield per this single input is unaffected by the application of the
remaining inputs (Babcock, 1990). However, the probability distribution of yield
per any single input in agriculture is likely to be affected by the application
of other inputs. For example, Nelson and Preckel (1989) showed that the
application of fertilizer in five Iowa counties had a significant effect on the first
three moments of a corn yield distribution. Similarly, Babcock and Hennessy
(1996) found that the application of fertilizer up to 200 pounds an acre decreased
the probability of low yields on experimental Iowa corn farms. Second, yield data
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constructed based on a single input portray the chosen input as more productive
than it actually is as long as the marginal product of all other inputs is positive.
To the contrary, farmers are likely to perceive the chosen input as less productive
than portrayed by the yield data. An implication is that the observed level of the
chosen input is larger than what farmers would have used if they had perceived it
as productive as implied by the yield data. Because the observed input levels are
used to infer planned production, the seemingly overapplication of the chosen
input will exaggerate the likelihood of overproduction.1

With the increasing availability of detailed farm management data, one way
to address these problems is to compute yield levels in such a manner that
the contribution of other inputs to total output is accounted for. This result is
achieved by computing yield per aggregate input rather than any particular single
input. Aggregation over multiple inputs is achieved using weights obtained from
a parametric production frontier. In addition to facilitating the aggregation of
inputs, estimating a parametric frontier has an additional benefit in the context
of yield density estimation. This benefit relates to the fact that yield data come
from farms that are not always fully technically efficient. Therefore, by providing
farm- and time-specific technical efficiency scores, the estimation of a parametric
frontier facilitates data pooling under fewer assumptions than are required when
aggregate data are used.

Using the augmented approach, a second objective is to compute the
probability of planned production exceeding quota on Icelandic dairy farms.
Third, the relative marginal importance of price changes in the quota and surplus
milk markets is computed. These estimates are the primary policy-relevant
outputs of this exercise because they are useful for evaluating, for instance, the
supply effects of price changes in the quota milk market, which are usually
determined administratively. Finally, the implication of allowing for multiple
inputs is evaluated by comparing the results from the augmented approach with
the results from an approach that considers a single input only.

2. Model

The theoretical model used in this article is a modified version of the model in
Borges and Thurman (1994).Themodification relates to the lack of opportunities
for Icelandic dairy farms to carry over their unused milk quota to a subsequent
production period.2 In the remainder of this section, the Borges and Thurman

1 This effect is presented in detail and graphically in Appendix A.
2 As indicated correctly by a referee, the possibility to rent quotas can affect the precautionary motives

of the farmer and, therefore, the likelihood of overproduction.However, in the Icelandic case there is only a
quota sales market, and short-term quota rentals are illegal. However, the scale adjustment the quota sales
market allows may still exaggerate the chances of precautionary overproduction if there are investments
for additional production capacity. The reverse could be true for farms scaling down their production
capacity, for example, because of retirement plans.
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(1994) model based on an aggregate input is presented first. A discussion on the
construction of the aggregate input follows.

2.1. Probability of Surplus Production and Relative Marginal Importance of
Price Changes

Let y be the milk yield per unit of an aggregate input x, and Y be the total
milk that is produced by a dairy farm, which is constrained by a farm-level
quota q. Then, q/x is the yield that is required per unit of an aggregate input
to meet the quota exactly or the yield requirement. Yield is random, and f (y)
is its probability density function. Consequently, Y = x · y, and the production
problem of the farm reduces to a choice of aggregate input quantity. In this
setting, the observed levels of the aggregate input provide information concerning
the unobservable planned production given the yield density, which then allows
evaluation of planned production relative to each farm’s quota. For example, if
the yield requirement is smaller than the expected yield at the chosen level of
the aggregate input, then we can infer that the dairy farm must have planned to
overproduce its quota.

Under risk neutrality, no price uncertainty, and no carryover of unused quota,
the economic problem of the dairy farm can be presented as a maximization of
expected profit, as given in Borges and Thurman (1994):

E (�) =
∫ q/x

0

[
pqxy

]
f (y) dy

+
∫ ∞

q/x

[
pqq+ pa (xy− q)

]
f (y) dy−C (x) , (1)

where pq is the milk price in the quota milk market, pa is the milk price in the
surplus milk market, and C(x) is the cost of employing x. That is, the expected
profit is the excess of a weighted sum of revenues over production cost. The
probabilities that the milk yield will be within or above the quota are used as
weights. As in Borges and Thurman (1994), � = ∫ ∞

q/x f (y) dy is an estimate of
the probability that planned production may exceed the farm’s quota.

Following the same procedure as in Borges and Thurman (1994), the relative
marginal importance of price changes in the quota and surplus milk markets
would be the following:3

�q = ∂x
/
∂pq

∂x
/
∂pq + ∂x

/
∂pa

=
∫ q/x
0 y f (y) dy∫ ∞
0 y f (y) dy

, 0 ≤ �q ≤ 1, (2a)

�a = 1 − �q. (2b)

3 The derivation of �q is the same as in Borges and Thurman (1994).
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�q measures the relative marginal importance of a price change in the quota
milk market relative to an equivalent and simultaneous price change in the quota
and surplus milk markets. Therefore, �q implies the increasing importance of
price changes in the quota milk market as it gets closer to unity and vice versa.
Furthermore, as noted by Borges and Thurman (1994), lim q/x→0 �q = 0 and
lim q/x→∞ �q = 1. This outcome is intuitive because for a given quota size, the
relativemarginal importance of a price change in the quotamilkmarket decreases
as q/x gets smaller, which indicates a producer that is planning to overproduce its
quota. In contrast, when a producer seeks to avoid overproduction, q/x increases
and the relative marginal importance of a price change in the quota milk market
increases.

2.2. Construction of Aggregate Input

In this section, the construction of weights required to compute an aggregate
input is presented. Given that yield data imply a technical relation between an
input and an output, an obvious candidate for generating aggregation weights is a
production frontier. A production frontier represents the best available technique
for transforming inputs into outputs. To obtain an econometric estimate of the
production frontier, a mathematical relation between inputs and an output is
specified in a translog form, which provides a second-order approximation to
any unknown function (Christensen, Jorgenson, and Lau, 1973):

lnYit = α0 +
n∑
j=1

α j lnxjit + ρt + 1
2

n∑
j=1

n∑
k=1

α jk lnxjit lnxkit

+
n∑
j=1

α jtt lnxjit + 1
2

ρttt2 + εit . (3)

The xjit ’s are the j inputs used to produce milk, t is a time trend introduced
to capture the effect of technical change, and εit is a composite error term
that contains a random noise component, vit , and a nonnegative time-varying
technical inefficiency component, uit , or εit = vit − uit . The farm- and time-
specific technical efficiency scores (TEit) for each farm are obtained by TEit =
exp(−uit ). Following Battese and Coelli (1992), the temporal pattern of technical
inefficiency is specified as uit = exp{−η(t − T )} · ui, where η is a decay parameter
andT is the terminal period in the data.When η > 0, technical efficiency increases
over time, and it decreases when η < 0. Furthermore, the random noise term vit
is symmetrical and assumed to be normally distributed—that is, vit ∼ N(0, σ 2

v ).
In contrast, technical inefficiency is assumed to follow a truncated normal
distribution; that is, ui ∼ N+(μ, σ 2

u ), which also nests the commonly used half-
normal distribution or ui ∼ N+(0, σ 2

u ). Therefore, one can use nested hypothesis
testing to choose the distributional assumption that fits the data best. In addition,
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the two error terms are assumed to be independently and identically distributed
and orthogonal to one another as well as the independent variables of the model.

Given the parameters of the production frontier, the aggregate input is
constructed as follows:

xit =
n∑
j=1

(
δ jit

/
δit

) · xjit, (4)

where δ jit = ∂ lnYit
∂ ln xjit

and δit = ∑n
j=1 δ jit . When markets are competitive, inputs

are paid their marginal product, and profits are maximum, the weights can be
understood as follows (Kim, 1992):

δ jit

δit
= ∂ lnYit

/
∂ lnxjit∑n

j=1 ∂ lnYit
/
∂ lnxjit

= w jtx jit
Cit

, (5)

where w is the input price and C is the minimum cost of production. Therefore,
the weights that are attached to each input can also be understood as the cost
share of the input from total cost.

3. Empirical Strategy

Under the methodology specified, a milk yield density function has to be
estimated. However, two problems arise for this estimation. First, ideally, farm-
level yield densities should be estimated (Ker and Coble, 2003). However, a
common problem is that yield observations per farm are usually too few to
support reliable estimation (Goodwin and Ker, 2002). Therefore, data pooling
under certain assumptions, such as equal yield variance, or using yield data
from some aggregate levels, such as counties, is commonly considered to ensure
sufficient observations for yield density estimations (Borges and Thurman, 1994;
Ker and Coble, 2003). The number of observations per farm is also too few
in the data used here, and thus data pooling in some form is unavoidable. We
start by assuming that the yield density is identical for all farms in a given year,
although it may vary across years, for example, because of technical change.
However, technical efficiency can vary across farms in a given year as well as over
time.4 This can be addressed using farm- and time-specific technical efficiency
scores that are obtained from equation (3). In particular, the observed output
levels are corrected for technical inefficiency as Y∗

it = Yit/exp(−uit ), where Y∗
it is

the output level that will be observed if the farms are technically efficient or
TE = exp(−uit ) = 1. Given the emphasis to learn about planned production,
generating the yield data based onY∗ rather thanY is logical because no rational
farm will choose input levels aiming to be technically inefficient.

4 Borges and Thurman (1994) allowed for technical efficiency difference across counties. However,
they did not allow for technical efficiency differences over time and for the effects of technical change.
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Under the assumption that technical change affects the expected yield only,
while leaving higher moments unaffected, a simple approach is used to handle the
effect of technical change. This approach involves three steps: First, the annual
average yields are computed and subtracted from the yield data of the respective
years. Second, the lowest annual average yield is added back to the demeaned
yield data. Finally, the pooled data are used to estimate the yield density function
of the year with the lowest annual average yield. Yield density functions of the
other years are then recovered by scaling the yield density function of the year
with the lowest annual average yield by the difference in average yields between
the year under consideration and the least productive year. This approach is the
same as the one used by Borges and Thurman (1994) to control for assumed
differences in technical efficiency between counties.

A second problem concerning estimating yield densities parametrically relates
to the choice of functional form. The literature employs several functional forms
to model crop yield densities (Goodwin and Ker, 2002; Ramirez,McDonald, and
Carpio, 2010). However, the estimation of yield densities for dairy production is
not as common as it is for crop production.One alternative forminimizing a spec-
ification error is to use a flexible functional form, such as the Johnson distribution
system (Johnson, 1949; Johnson, Kotz, and Balakrishnan, 1994). The Johnson
distribution system is a system of four distributions that can accommodate any
finite and feasible combination of the first four moments. Consequently, it can
approximate a wide range of distributions, including those that are commonly
used for modeling crop yield data. Another alternative is to use nonparametric
estimation (e.g., see Ker and Coble, 2003; Ker and Goodwin, 2000).

The distributions that form the Johnson family are identified by a set
of normalizing transformations that were proposed by Johnson (1949). In
particular, given a continuous random variable with an unknown density
function, Johnson (1949) proposed a set of normalizing transformations with
the general form:

Z = γ + δ · g (u) , (6)

to obtain a unit normal distributed variable Z. The parameters γ and δ > 0
are shape parameters, whereas u = y−ξ

λ
, where ξ and λ > 0 are location and

scale parameters, respectively. The parameter g(u) is a transformation function
that assumes different forms to define the distributions in the Johnson family.
These forms are the following (Johnson, 1949; Johnson, Kotz, and Balakrishnan,
1994):

g (u) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ln (u) , for the SL
(
the log − normal

)
family,

ln
[
u+ √

u2 + 1
]
, for the SU

(
unbounded

)
family,

ln
[

u
(1−u)

]
, for the SB

(
bounded

)
family, and

u, for the SN
(
normal

)
family.

(7)
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As suggested by Hill, Hill, and Holder (1976), the estimated skewness and
kurtosis coefficients of the data determine the particular distribution that fits
the data best. However, such moment-matching estimators are criticized, for
example, because of the sensitivity of the third and fourth moment estimates
to outliers (Slifker and Shapiro, 1980). However, other estimators also exist,
such as the quantile-based estimator that is suggested by Wheeler (1980) where
the best distribution is selected based on five quantiles rather than the first four
moments.

Given the previously discussed strategy, the milk yield density function is
estimated twice: first based on the yield per aggregate input data and second
based on the yield per cow data. The implication of allowing for multiple inputs
is then evaluated by comparing the results from the two empirical yield density
functions.

4. Data

The empirical analysis is based on production data from 324 Icelandic dairy
farms that cover the period from 1998 to 2006.5 Icelandic dairy farms are
small family-owned enterprises with an average herd size of 31 cows in 2006.
Iceland is among the countries identified with high support for agricultural
producers (Organization for Economic Cooperation and Development, 2007).
Consequently, the excess production problem that has followed farm support
programs elsewhere also occurred in Iceland in the 1970s, and the need for
production control measures had becomemore apparent by the end of the decade
(Agnarsson, 2007).

Nontradable farm-level marketing quotas were then introduced in 1980.
However, after the third milk agreement (1992–1997) between the Farmers
Association of Iceland and the Ministry of Agriculture, the dairy quota has
been freely tradable (Bjarnadottir and Kristofersson, 2008). This change has
resulted in the restructuring of the dairy sector toward fewer but larger dairy
farms (Bjarnadottir and Kristofersson, 2008). The quota entitles dairy producers
to direct payments from the government and higher prices for all milk that is
delivered inside the quota according to its composition and hygienic quality.
Surplus milk can be sold in a surplus milk market at usually much lower prices
that are determined by market forces. Additionally, the quota system requires
that dairy farms fill their quota every 2 years or risk losing it. However, it is
also possible to obtain permission not to use the quota for a certain time period
(Agnarsson, 2007). See Atsbeha, Kristofersson, and Rickertsen (2012) for more
details of the Icelandic dairy sector.

5 The raw data contain sensitive farm-level financial information, and its use is subject to strict
confidentiality agreements. Therefore, the data cannot be made publicly available.
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Table 1. Descriptive Statistics, 1998–2006

Variable Units Mean Standard Deviation Minimum Maximum

Milk Liters 145,442.1 67,556.1 29,249.0 520,137.0
Concentrates 1,000 ISK 1,208.5 692.9 41.5 5,795.9
Capital 1,000 ISK 2,757.6 1,879.1 292.6 17,182.3
Veterinary services 1,000 ISK 218.4 151.1 2.8 998.7
Land Hectares 46.9 18.1 13.0 138.0
Number of cows Cow-years 31.8 12.6 4.9 115.7
Labor Months/year 24.4 8.4 10.0 74.0
Trend 1998 = 1 5.1 2.7 1.0 9.0
Milk quota Liters 141,836.4 66,456.5 30,657.0 562,263.0
Overproduction % of quota 3.8 16.3 −72.4 216.4

Note: 1 USD = ISK 111.2 on November 3, 2016 (http://www.sedlabanki.is).

Of the total sample, there are 63.1% instances of overproduction. However,
surplus production by the average Icelandic farm is small, and it amounts to 3.8%
of the average quota size. To get an idea of how systematic surplus production is,
as opposed to optimization error, one can use the Norwegian case. Until 1997,
Norway used a two-tier price system and subsequently replaced it with a levy
system. Under the levy system, farmers pay penalties for surplus production.
However, to allow for optimization errors, a farm can deliver milk up to 102%
of its allocated quota before penalties apply. If the same allowance is used for
Icelandic dairy farms, one can easily see that surplus production by choice may
not be significantly high for the average Icelandic dairy farm.However, as shown
in Table 1, there is significant variation across farms and over time. For the
83.4% of farms that exceeded their quota in some year, the average surplus
production was 11.4% of the corresponding quota size during 1998–2006.

The translog production function for milk was specified with six inputs and
a trend variable. The inputs are concentrates, capital, veterinary services, land,
number of cows, and labor. Concentrates, capital, and veterinary services are
measured in monetary units that are deflated to 1998 prices using the consumer
price index for agricultural products. Land is measured in hectares, and the
number of cows is measured in cow-years, which is a weighted aggregate of the
number of cows on a farm. The number of days in a year a cow has been active
in milk production, or days in milk, is used for weighting. Labor use is measured
as labor months per year. The descriptive statistics of these inputs are provided
in Table 1.

The use of all inputs except for labor has increased over time. The largest
increase is in capital and concentrates, which have increased by 15.6% and 6.5%
per year, respectively. The number of cows increased by 1.7%, and quota size
increased by 5.6% per year. These changes in input use are indicative of the
significant structural adjustment that has occurred in the Icelandic dairy sector
since 1992.
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5. Results

All the variables were normalized through a division by their respective geometric
means before estimation. The normalization allows the interpretation of first-
order parameters as output elasticities at the geometric mean. The model is
initially estimated by assuming an inefficiency term that is distributed as a
truncated normal variable. However, the estimated value of the truncation point
(i.e., μ) was not significantly different from zero at any conventional level of
significance. Therefore, the model is reestimated under the assumption of a
half-normally distributed technical inefficiency term. The resulting parameter
estimates are provided in Table 2. All output elasticities are positive and
significantly different from zero at the 5% level of significance. This result implies
that the estimated production frontier is monotonic with respect to inputs at
the geometric mean. However, monotonicity at the geometric mean does not
guarantee that the output elasticities are positive at every data point. As shown
by Berndt and Christensen (1973), the translog functional form does not satisfy
monotonicity and curvature properties globally, nor can it be constrained to do
so without losing its second-order flexibility (Sauer, Frohberg, and Hockman,
2006). Accordingly, for all data points where monotonicity is violated, the output
elasticities are replaced with zeros prior to the construction of the aggregation
weights.6

The parameter of the trend variable is positive and significantly different from
zero at the 1% level. This result implies that there has been technical progress
on Icelandic dairy farms. This outcome is expected because milk yield per cow
increased by 32% between 1990 and 2007 (The Farmers Association of Iceland,
2009). Several changes in the Icelandic dairy sector can explain this increase (see
Atsbeha, Kristofersson, and Rickertsen, 2012).

The average technical efficiency score for Icelandic dairy farms is 85.3%.
This score suggests that the average farm can reduce its inputs by 14.7% to
produce its output.7 Furthermore, the decay parameter for technical inefficiency
is negative, which suggests that technical efficiency declined during the study
period. Atsbeha, Kristofersson, and Rickertsen (2012) also found the same result
for Icelandic dairy farms, and they provided some explanations for the decline
relating to the managerial challenges of transition to large-scale production
and the learning curve that is associated with the optimal employment of new

6 For the estimation sample, the percentage of the negative output elasticities range between 0.4% for
concentrates and 27.3% for veterinary services.

7 If there is information about farm and farmer characteristics, as well as other efficiency-determining
factors such as access to infrastructure, credit, extension services, and so forth, it is possible to generate
useful recommendations on the actual mechanisms required to reduce input use. In particular, a second
equation can be estimated simultaneously with the production function regressing technical efficiency
scores on efficiency-determining factors. More details about this approach can be seen in Wang and
Schmidt (2002).
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Table 2. Parameters of the Milk Production Function in Iceland, 1998–2006a

First Veterinary Number
Variables Order Concentrates Capital Services Land of Cows Labor Trend

Constant 0.164∗∗∗

(0.000)
Concentrates 0.234∗∗∗ 0.087∗∗∗

(0.000) (0.000)
Capital 0.074∗∗∗ − 0.069∗∗∗ 0.097

(0.000) (0.001) (0.208)
Veterinary services 0.023∗∗∗ 0.027∗ 0.004∗∗ 0.003

(0.000) (0.012) (0.019) (0.204)
Land 0.075∗∗ − 0.087 0.022 −0.079 −0.006

(0.044) (0.170) (0.851) (0.820) (0.140)
Number of cows 0.558∗∗∗ − 0.135∗∗ − 0.049 0.022∗∗∗ 0.069 0.333

(0.000) (0.026) (0.591) (0.005) (0.941) (0.758)
Labor 0.103∗∗∗ 0.005∗∗∗ − 0.041 0.026 0.032 −0.133∗∗∗ 0.109∗

(0.000) (0.002) (0.354) (0.525) (0.328) (0.000) (0.064)
Trend 0.025∗∗∗ 0.007 −0.010 −0.006 −0.003 0.021∗ 0.008 −0.009

(0.000) (0.887) (0.356) (0.353) (0.549) (0.085) (0.175) (0.426)

σ 2
ε 0.067 Average technical efficiency score 85.4%

ψb 0.791 η = –0.038 (0.013)

aNotes: Asterisks (∗∗∗, ∗∗, and ∗) indicate significance at the 1%, 5%, and 10% levels, respectively. P values in parentheses.
bψ = σ2

u
σ2
v +σ2

u
.
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Table 3.Overproduction Probabilities and Relative Marginal Importance of Price Changes in
the Quota Milk Market of Iceland, 1998–2006

Aggregate Input Approach
Single Input

Overproduction By Approach

Year � 1%–3% 3%–7% >7% �q � �q

1998 0.650 0.084 0.174 0.338 0.259 0.803 0.167
1999 0.686 0.123 0.171 0.366 0.240 0.822 0.149
2000 0.654 0.146 0.205 0.224 0.265 0.787 0.182
2001 0.649 0.123 0.202 0.271 0.279 0.790 0.181
2002 0.691 0.105 0.234 0.368 0.248 0.830 0.144
2003 0.671 0.113 0.251 0.270 0.271 0.826 0.149
2004 0.645 0.102 0.200 0.349 0.247 0.861 0.118
2005 0.613 0.064 0.137 0.174 0.276 0.772 0.201
2006 0.616 0.085 0.138 0.247 0.275 0.792 0.181

Mean 0.650 0.104 0.187 0.287 0.262 0.809 0.164

technologies. Also see Alvarez and Arias (2003) for a similar finding about the
link between managerial ability and size efficiency.

Next, an aggregate input is constructed based on farm- and time-specific
weights, as in equation (4). The average aggregate input level is 481 units with a
standard deviation of 222.4. The average yield per unit of the aggregate input is
386.3 liters with a standard deviation of 151.5. The average yield requirement
per unit of aggregate input is 321.1 liters with a standard deviation of 130.1
liters. Concerning the yield per cow data, the average number of cows is 31.8
with a standard deviation of 12.6. The average yield per cow is 5,328 liters
with a standard deviation of 1,073.2 liters. The average yield requirement per
cow is 4,455.6 liters with a standard deviation of 1,162.1 liters. These figures
imply a coefficient of variation of 39.2% and 20.1% for the yield data that are
computed per aggregate input and per cow, respectively. The moderate variation
in yield per cow is as expected, given that Icelandic dairy production is largely
based on the Icelandic dairy cattle, a breed with relatively smaller population
and hence limited genetic diversity with respect to milk yield. In contrast, a larger
variation is observed in the yield per aggregate input, which implies that most
of the variation in milk production arises from differences in the application of
other inputs than cows and management practices.

To estimate the yield density functions, the SuppDists package (Wheeler, 2009)
written for R is used. For both yield data sets, the Johnson SU is selected as the
best-fit functional form. The parameters of the empirical yield density functions
are γ = –0.88, δ = 1.47, ξ = 212.64, and λ = 137.9 for the yield per aggregate
input data and γ = –0.04, δ = 1.27, ξ = 4619.12, and λ = 735.57 for the yield
per cow data. Computed from these empirical yield density functions, Table 3
shows the probabilities that planned production each year may exceed the quota
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and the relative marginal importance of a price change in the quota milk market
each year. As computed from the yield per aggregate input density function, the
probability that the average Icelandic dairy farm will overproduce its quota is
0.65. This figure has shown a downward trend especially in the second half of
the study period, with a peak at 0.69 in 2002 and its lowest point of 0.61 in
2005. Furthermore, the likelihood that overproduction is a mere consequence
of an optimization error is low. This can be seen from the probabilities of
overproducing the quota by different percentages. As shown in Table 3, the
likelihood of overproducing the quota by 1% to 3% is consistently lower in
all years than overproducing the quota by 3% or more.

Next, the relative marginal importance of price changes in the quota milk
market is computed as shown in equation (2a). The results that are reported in
Table 3 show that the relative marginal importance of a price change in the quota
milk market to milk supply response is 0.26 on average. This result implies that
the supply response to a price change in the quota milk market is on average less
than one-third of the response to an equivalent and simultaneous price change
in both markets. Alternatively, a price change in the surplus milk market is
approximately three times more effective in motivating milk supply response by
Icelandic dairy farms than an equivalent price change in the quota milk market.
As noted by a referee, the expected nature of yield shocks (i.e., whether shocks
are presumed systemic or idiosyncratic) may be important for the strength of
supply responses in the surplus milk market. For example, when yield shocks
are presumed to be idiosyncratic, the expected consequent effect on total supply
could be small. This effect, in turn, lowers expectations concerning prices in the
surplus milk market and dampens the supply response to price changes in the
surplus milk market. The reverse is true when yield shocks are expected to be
systemic because of the significant negative effects of systemic yield shocks on
total milk supply.

Finally, the previous computations were made based on the empirical yield
density function that is estimated from the yield per cow data. As shown in
Table 3, the average probability that an Icelandic dairy farm will exceed its quota
is 0.81. As a result, the computed relative marginal importance of price changes
in the quota milk market is lower by approximately 10 percentage points than
the comparable estimate reported previously. The difference in these estimates
is also tested for statistical significance using Wilcoxon’s signed-rank test for
paired data. The null hypothesis for the test is that the median of the difference
between the estimates from the two approaches is zero. For the overproduction
probabilities (�), the test statistic is z = –14.97 (p > | z | = 0.0001), and for the
relative marginal supply response measures (�q), the test statistic is z = 10.72
(p > | z | = 0.0001). In both cases, the difference in results between the two
approaches is statistically significant at the 1% level.

As expected, these results show that the use of a single input to obtain yield
data in a multiple input setting risks the possibility of inflated overproduction
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probabilities and therefore downplays the relative marginal importance of price
changes in the quota output market. This result is likely the consequence of a
yield density function estimated from yield data that portray a single input as
more productive than farmers believe. In this case, the observed input choices
by farmers will suggest the overapplication of the input and, therefore, lead to
higher likelihoods of excess production.

6. Conclusions

Under marketing quota programs, dairy farms may plan to overproduce their
quota if yield is uncertain. Such tendencies of excess production in quota-
regulated systems because of yield uncertainty are usually explored for crop
production. However, marketing quotas are also pervasive in the dairy sectors
of the developed world. Furthermore, although to a lesser extent, livestock
production is also subjected to yield uncertainty that arises from weather-
related risks in feed production, diseases, death of animals, and reproductive
performance. In addition, when quota programs are enforced through two-tier
price systems, the relative importance of prices in the quota and surplus output
markets as supply management tools is not obvious beforehand.

In this article, the likelihoods of excess production and the relative importance
of price changes in a two-market setup were investigated for Icelandic dairy
farms. Because of the country’s geographic location, agriculture in Iceland
takes place under difficult agroecological conditions that complicate husbandry
practices and tend to exacerbate yield uncertainty. The effects of yield uncertainty
and the relative importance of prices in a two-market setup were studied using a
method proposed by Borges and Thurman (1994). This method selects a single
input and assumes the yield density is unaffected by the application of other
inputs. Given the multiple input nature of agriculture and the implications of
the simplifying assumption on the likelihoods of overproduction, the method
was modified to consider multiple inputs. The modification was implemented by
aggregating the inputs based on weights obtained from a parametric production
frontier.

The results showed that the average probability of planned production
exceeding quota was 0.65, which indicates that the average Icelandic dairy
farm is likely to choose input levels planning to overproduce its quota. The
likelihood of optimization error as the reason for overproduction was also low.
An implication of these observations was that farmers attach more importance
to the risk of quota shortfalls than to the risk of potentially low prices in the
surplus milk market. This behavior was as expected given that surplus milk
prices are increasingly becoming closely comparable with prices in the quota
milk market. From a policy point of view, it is useful to note that the relative
marginal importance of a price change in the surplus milk market was nearly
three times as high as an equivalent price change in the quota milk market.
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The likelihood of overproduction was also computed with an approach that
considers a single input only (i.e., cows) under the assumption that the yield per
cow density function is unaffected by the application of other inputs. The results
showed that the probability of exceeding the quota increases by approximately
16 percentage points, and the relative marginal importance of price changes in
the quota milk market decreases by approximately 10 percentage points. These
differences were also statistically significant at the 1% level of significance. A
plausible explanation for the difference was that the yield data per single input
portray the specific input as more productive than it is perceived to be by farmers.
The observed levels of the input will then appear as an overapplication, which in
turn leads to an exaggeration of overproduction probabilities.
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Appendix A

This appendix shows the implication of using a single input to compute yield in a
multiple input setting on the estimation of overproduction probabilities. Assume a
multiple input production and let ybbe the yield of an input x1 computed without
taking the contribution of all other inputs to total output into account, and let ya

be the yield of x1 computed after taking the contribution of all other inputs to total
output into account. Then, to the extent the marginal product of all other inputs is

https://doi.org/10.1017/aae.2016.40 Published online by Cambridge University Press

http://www.lbhi.is/sites/default/files/gogn/vidhengi/thjonusta/utgefid_efni/RitLbhi/Rit_31_ICELANDIC_AGRICULTURE.pdf
http://CRAN.R-project.org/package=SuppDists
https://doi.org/10.1017/aae.2016.40


82 DANIEL MULUWORK ATSBEHA

Figure A1. Probabilities of Excess Production under Two Ways of Computing
Yield

positive, yb > ya; that is, any single input used to compute yield is going to appear
more productive than it actually is whenmultiple inputs are involved to generate total
output. Note, however, that farmers are likely to acknowledge the contribution of all
inputs as they make their input choices, and the observed quantities of input x1 are
more likely to be made expecting ya per unit of x1 rather than yb. Therefore, at any
planned level of output and keeping all other input choices constant, x1|yb < x1|ya.
If this is the case, then the yield requirement to meet the quota exactly is bigger when
farmers expectyb than ya or q

x1|yb >
q

x1|ya . Then, for any given yield distribution,�a =∫ ∞
q/x|ya f (y)dy > �b = ∫ ∞

q/x|yb f (y)dy; that is, the overproduction probability is larger
when the yield density is evaluated under input choice made by farmers expecting
ya (as in Borges and Thurman [1994] because they used observed acreage data to
evaluate the empirical yield density) than farmers expecting yb. An implication is that
the relative importance of price changes in the quota market for supply response will
decline because lim q/x→0 �q = 0. This effect is shown graphically in Figure A1.

https://doi.org/10.1017/aae.2016.40 Published online by Cambridge University Press

https://doi.org/10.1017/aae.2016.40

	1. Introduction
	2. Model
	2.1. Probability of Surplus Production and Relative Marginal Importance of Price Changes
	2.2. Construction of Aggregate Input

	3. Empirical Strategy
	4. Data
	5. Results
	6. Conclusions
	References
	Appendix A



