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Abstract. Let 7 be a bounded operator on a complex Banach space X. Let V" be
an open subset of the complex plane. We give a condition sufficient for the mapping
f(z2) = (T — 2)f(z) to have closed range in the Fréchet space H(V, X) of analytic X-
valued functions on V. Moreover, we show that there is a largest open set U for which
the map f(z) — (T — z)f(z) has closed range in H(V, X) for all VV C U. Finally, we
establish analogous results in the setting of the weak—* topology on H(V, X*).
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Introduction. Let X be a complex Banach space and denote by B(X) the algebra
of bounded linear operators on X. For T € B(X), let o(T) denote the spectrum of
T, and denote by Lat(7) the collection of closed T-invariant subspaces of X. If
M e Lat(T), we write the restriction of 7' to M as T'|y,.

A basic notion in local spectral theory is that of decomposability. Given an open
subset U of the complex plane C, T' € B(X) is said to be decomposable on U provided
that for any open cover {V1, ..., V,} of CwithC\ U C V7, there exists { X}, ..., X} C
Lat(7T) such that X = X, +--- 4+ X,, and o(T|x,) C Vj for each k, 1 <k <n; see [2],
[5], [8], [11], and [12]. That for each T" € B(X) there exists a largest open set U on which
T is decomposable was first shown by Nagy, [11].

An alternative characterization of decomposability may be given in terms of a
property introduced by E. Bishop, [3]. For an open subset V" of C, let H(V, X) denote
the space of all analytic X-valued functions on V. Then H(V, X) is a Fréchet space
with generating semi-norms given by pg(f) := sup{|[f(1)| : » € K}, where K runs
through the compact subsets of V. Every operator 7' € B(X) induces a continuous
linear mapping 7y on H(V, X), defined by Ty f (1) :== (T — A)f (1) forallf € H(V, X)
and A € V. An operator T is said to possess Bishop’s property (8) on an open set
U c C if for each open subset V' of U, the operator T is injective with range ran 7
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closed in H(V, X); see [6, Prop. 1.2.6]. Clearly there exists a largest open set pg(7) on
which T has property (8).

Fundamental work by Albrecht and Eschmeier established that an operator 7 €
B(X) has property (8) on U precisely when there exists an operator S € B(Y) such
that S is decomposable on U, X € Lat(S) and T = S|y, [2, Theorem 10]. Moreover,
[2, Theorems 8 and 21], T is decomposable on U if and only if 7" and its adjoint 7*
share property (8) on U. Thus Nagy’s largest open set on which 7" is decomposable is
the set pg(T)) N pp(T™).

An operator T' € B(X) is said to have the single-valued extension property (SVEP)
at a point A € C provided that, for every open disc V' centered at A, the mapping Ty
is injective on H(V, X). If U c C is open, then T is said to have SVEP on U if T
has SVEP at every A € U, equivalently, if T is injective for each open set V' C U. Let
psvep(T') denote the largest open set on which 7 has SVEP.

Recently, M. Neumann, V. Miller and the first author of the current paper showed,
[9, Theorem 2.5], that T has closed range in H(V, X) for every open subset V" of the
“Kato-type” resolvent set of 7', an open set that contains the semi-Fredholm region
of T, thus extending a result of Eschmeier, [5]. Following Neumann, we say that an
operator has the closed range property (CR) on an open set U C C provided ran (7))
is closed in H(V, X) for every open subset V' of U. Thus T has property (8) on U if
and only if T has both SVEP and (CR) on U.

In this note, we give a more general condition that suffices for 7" € B(X) to have
(CR) on an open set U and prove that there is in fact a largest open set pcr(7") on
which T has the closed range property. Thus pg(T) = psver(T’) N pcr(T). In the last
section we establish corresponding results in the setting of the weak— topology on
H(V, X*).

Main results. We denote the kernel of 7' € B(X) by ker(7T') and define N*°(T) :=
U= ker(77) and R®(T) := J,~o ran (7). If T € B(X) is such that ran (T’) is closed
and N>°(T) € R®(T), then T is said to be a Kato operator. A systematic exposition of
this class, also referred to as semi-regular operators, may be found in [10, Section I1.12];
also see [1, Section 1.2] and [6, Section 3.1]. In particular, an equivalent condition may
be given in terms of the reduced minimum modulus function: for S € B(X), define
y(S) := inf{]|Sx|| : dist (x, ker(S)) = 1}. Then an operator T is Kato if and only if
y(T) > 0 and the mapping z — y(T — z) is continuous at 0, [10, I1.12 Theorem 2].
Denote by og(T) the set of all A € C such that 7" — A is not Kato. Then ox(7T) is a
nonempty compact set, z — R*°(T — z) is constant on each component of pg(7T) :=
C\ ok(T), R®(T — 1) is closed and (T — A)R®(T — 1) = R>®(T — i) for each X €
ox(T), [10, I1.12, Theorem 15 and Cor. 19]. Moreover, if G is a component of pg(T)
and S C G has an accumulation point in G, then (), g¢ran (7T — z) = R*(T — 1) for
each A € G, [6, 3.1.11].

For each closed subset F of C, define the “glocal” analytic spectral subspace
Xr(F):={x e X :x eranTc\r}. These spaces are T-invariant, but generally not
closed. If M € Lat(T) and V' C C is such that (T —z)M = M for all z € V, then
M C X7(C\ V) by a theorem of Leiterer, [6, Theorem 3.2.1]. It follows from above
that if G is a component of px(7') and V' C G is open, then X7(C\ V) = R®(T — i)
for all & € G;in particular, X7(C \ V)is closed. Also, it is easily seen that if 7 has (CR)
on an open set U, then X7(C \ V) is closed for every open V' C U.

A consequence of Theorem 5 below is that the converse holds under the additional
assumption thatran (7' — z)is closed for all but countably many z € V. Some additional
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assumption beyond closeness of the glocal spectral subspaces is seen to be necessary
for (CR) by the facts that, on one hand, T has property (8) on all of C precisely when 7"
has (CR) on C, [6, Prop. 3.3.5], while on the other hand, there is an operator 7" € B(X)
without property (8) but for which X7(F) is closed for all closed F C C, [7].

If (X, d) is a metric space, let B(x, r) denote the open ball in X with radius r > 0
and center x € X.

LEMMA 1. Let T € B(X) and let V be an open subset of C. Let (D;)ic4 be a cover
of 'V consisting of simply connected open sets D; such that X1(C \ D;) is closed for each

Let M = (;c; X7(C\ D;). Then M is closed, TM C M and
(i) if x € M and g; € H(D;, X) are such that Tp,g; = x, then g;{(D;) C M,

(ii) ker Tp, C H(D;, M);

(1)) (T —2)M = M forallze V;

(v) if T : X)M — X/M is the quotient map induced by T then TD,, is injective on

H(D;, X/ M).

Proof. Clearly M is a closed subspace of X and TM C M.

(i) Let x € M and g; € H(Dj, X) be such that Tp,g; = x.
We show first that g;(D;) C Xr(C\ D;). Letz € D and define h; : D; — X by hj(w) =
(gi(w) — gi(2))/(w — z) if w € D; \ {z} and h;(z) = gj(z) Then h; € H(D,, X) and if @ #*
z, then

(T — w)hj(w) =

1
— (= (T =) + (2 — w)gj(2) = &(2)-

By continuity, (T — z)h;(z) = g;j(z) as well. Hence gj(z) € X7(C\ D;) and so g;(D;) C
X7r(C\ D).

If i € 4 is such that X7(C\ D;) # X7(C\ D)), let g; € H(D;, X) be such that
Tp,gi = x, let ze D;\ D; and define 4; : D; — X by hi(w) = (gi(w) — gi(2))/(w — 2).
Then h; € H(D;, X) and again

1
(T — whi(w) = —— (T — w)gi(®) = (T'— 2) + (z — »))g;(2))

1
— (r—x+ (0 - 2gi2) = ().

Thus gi(z) € X7(C\ D;) and gi(D; \ D;) C X7(C\ D).
Since the sets D; and D; are open, simply connected and D; \ D; # #, it is easy
to see that D; \ D; contains an accumulation point. Indeed, let zg € D; \ D;. If zg ¢ D;
then there is an open neighborhood of zy contained in D; \ D;. If zy € 3D;, then there
is a sequence (z,) C D; \ D; such that z, — zo.
Since X7(C \ D;) is closed and gi(D; \ D;) C X7(C\ D), it follows that g; : D; —
Xr(C\ D).
This proves (i).
(i) is an immediate consequence of (i).
(iii) Letz € Djand x € M C X7(C\ D;). There is a function g; : D; — X such that
Tp,gj = x. By (), g](z) € Mandsox = (T —z)gi(z) e (T — z)M
(iv) If 7 : X — X/M is the canonical projection, then Gleason’s theorem implies
that the sequence 0 — H(Q2, M) - H(Q, X) > H(2, X/M) — 0 is exact, [6,
Prop. 2.1.5]. Thus, if TD,h =0 for some h € H(D;, X/M), then there exists
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f € H(Dj, X) such that / = f, where f = 7 o f. Clearly Tp,f € H(Dj, M) and
(iii) together with Leiterer’s theorem implies that there exists g € H(D;, M)
such that T f = Tp,g. Thus f — g € ker Tp, C H(D;, M) by (ii). Consequently,
J € H(D;, M) and therefore, & =f= 0. Il

LEMMA 2. Let Vi, V> be open subsets of C and suppose that 2 is an open subset of
V1 U Va. Then there exist open sets 1, Q0 so that Q; C V;, Q = Q1 U Q0 and an open
cover U of Q such that
(1) each D € U is a simply connected subset of either V7 or V3,
(i1) if G is a component of Q21 N Q, then thereis a D € U such that D C G,
(iii) D\ D' # @ whenever D, D' € U are distinct.

Proof. Let U; = V; N Qforj = 1, 2and define 2, to be the union of all components
G of Uj such that G\ U, # @, and Q, the union of components H of U, such that
H\ Qi # . Then, each €; is open, and every component of €; is a component of
U;. We may assume that each ©; is nonempty. Clearly, 2 = ;U U,, and if H is a
component of U,, then either H C Q) or H C 5. Thus Q@ = Q| U Q,.

Let Gy, G, ... be the components of ©; N Q,. We note 3G, N Q; # ¥ for each
n e Nandj =1, 2. Indeed, suppose to the contrary that 3G, N 2| = . Let M; be the
component of ; containing G,,. Then M, = G, U (M, \ G,), where G, # ¥ and where
M \G, =M \G,> M \ M, +@, contradicting the fact that M) is connected. That
3G, N Q, # ¢ follows similarly.

Choose A, € 0G, N Q2 and wu, € 3G, N 2,. Then A, € Q, and u, € ;. Select
Ay, o, € Gy so that [A, — A | <277 and |u, — u,| < 27" If we construct a piecewise
linear path in G, connecting A, and u,, then, taking such a path with minimal number
of segments, we obtain a path y, between A, and u, that does not intersect itself.
Clearly it is possible to find a simply connected open set D,, so that y, C D, C G,.

Let D =, D, and suppose that z € ; \ D. We claim that there is a §(z) >
0 such that B(z, 8(z)) C ©; and B(z, 8(z)) N {u}, 15, ...} =9¥. To this end, choose
e(z) > 0 so that B(z, e(z)) C 1, and let ny be such that 27 < g(z)/2. Now, let
8(z) = min{e(2)/2, |z — pil, ..., |z — py |} Then w;, & B(z,8(2)) if n <ng, and if
n > no, then u, ¢ Qpimplies that |z — u, | > |z — wnl — |pn — | = €(2) = 27" > 8(2),
as required. Similarly, if z € Q, \ €, then there is a §(z) > 0 such that B(z, §(z)) C 2»
and B(z, 8(2)) N {1}, AS, ...} = 0.

We define a sequence of (possibly empty) collections of open balls recursively: for
each k > 1, let Uy := {B(z,27) : 8(z) = 27¥ and B(z, 27%) ¢ Vi_}, where V; = ¥ and
Vi i=U<jUpey, Blorallj > 1.1fz € 2\ D, then there is a least m so that 8(z) > 27,
and so either B(z, 27") C V,,_1 or B(z, 27™) € U,,. Thus z € V,, in either case. It follows
that @\ D = U2, Vi = U2 Upey, B. and consequently U := {D,}, U ;2 U is an
open cover of € satisfying the desired conditions. O

LEMMA 3. Let Vi, V5 be open subsets of C. If T € B(X) has (CR) oneach V; (j =
1,2), then T has (CR) on V1 U V5.

Proof. Let 2 C V; UV, be an open set. To show that T has closed range, let 24,
2, and U be as in the previous lemma, and let /* € ran 7. Since 7 has (CR) on each
Qj, X7(C\ D) is closed for each D € U and there are g; € H(;, X) such that f|g, =
Togjforj=1,2. Define M := (), Xr(C\ D). We have Tq,nq,(g1 — g2) = 0, and so
(g1 — £2)(21 N Q) C M by Lemma 1 (ii). Thus gi|o,ne, = £2la,ne, and we can define
he H(Q, X/M) by h(z) = gj(z) for z € ;. We havef: Toh and, again by Gleason’s
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theorem, there exists g € H(2, X) such that 7 = g. Then f — Tqg € H(2, M) and so
Lemma 1 (iii) and Leiterer’s theorem together imply that f — Tqog = Tok for some
ke H(Q, M). Hence f = Tq(g + k) € ran Tq. ]

THEOREM 4. Let T € B(X). Then there is a largest open set pcr(T) on which T has
(CR).

Proof. Let W be the family of all open subsets V' C C such that 7" has (CR) on
V. We show that T has (CR) on the union W = [ J W, which is obviously the largest
open set on which T has (CR).

Let @ C W be a nonempty open subset. We show that T has closed range. For
each z € Q choose 0 < §(z) < dist(z, 92) so that T has (CR) on B(z, §(z)). As in the
proof of Lemma 2, define U := {B(z,27) : 8(z) > 27¥ and B(z, 27%) ¢ Vj_1}, where
V= Uﬂsi UBEL{{ B and Vj = . Then, again as in Lemma 2, Q = J,,-; Vi, and so
U = U,,_, Uy is a collection of open balls covering €2 such that 7" has (CR) on each
ball D € U’ and also such that D # D’ in " implies D \ D’ # @. Let U = (Dy), N be a
countable subcover of ¢/’ and define 2, = | ., Dx. By Lemma 3, T"has (CR) on each
Q.

Let M =), %7(C\ D,). By Lemma 1, M is a closed subspace of X, TM C M
and (T —z2)M = M forall z € Q. Denote by T : X/M — X /M the operator induced
by T and by 7 : X — X /M the canonical projection.

Letf € ran Tg. Then for each n there exists g, € H(S2,, X)such thatf|q, = Tq,gx-
If n>2, then Tq, (gule, , —&gn—1) =0 and so, by Lemma 1 (ii), gule, , — &n—1 :
Q1 — M,ie, glo, , = &1 in H(Qu-1, X/M).

Define /1 : Q@ — X/M by h|g, =&,. Then & is well-defined and analytic on .
Also, f: Toh in H(Q, X/M). By Gleason’s theorem, there exists g € H(2, X) such
that’g = /1 and therefore, 7 (f — Tqg) = 0. Exactness implies that f — Tqg € H(Q2, M),
and so it again follows from Lemma 1 (iii) and Leiterer’s theorem that there is a
ke H(Q, M)such that f — Tqog = Tk, 1.e.,f = To(g + k) € ran T,. ]

THEOREM 5. Let T € B(X) and let V C C be an open set. Suppose that the set
{z € V :ran(T — z) is not closed} is countable and that, for all z € V, there is an ry > 0
for which X7(C\ B(z, r)) is closed for all r € (0, ry). Then T has (CR) on V.

Proof. Since the conditions of the theorem are inherited by every open subset U
of V, it suffices to show that 7T has closed range in H(V, X). Moreover, because
the set {z € C : ran (T — z) is closed and T — z is not Kato} is countable by [10, I1.12
Theorem 13], it follows that E := V Nog(T) is countable; let E= {1, :n=1,2,...}
be an enumeration of E (possibly finite). Note that, while £ need not be discrete, the
set V'\ E =V N pg(T) is open.

We construct a sequence (B;) of mutually disjoint open discs such that £ C Uj B,
Fj C Vand X7(C\ By)is closed for each j. Indeed, choose ri > 0 such that B(A1, r1) C
V,Xr(C\ B(xi, r1))isclosed, and [A; — | # 11 (j = 2). Set By = B(A{, r1). Let k be
the smallest index such that A, ¢ B; and find r, > 0 such that B, := B(Ag, r;) satisfies
B, C V' \ By, thespace X7(C \ By)isclosed and |A; — Ak| # 12 (j > k). If we continue
in this way, we obtain the required sequence of open discs Ur = (B;); covering E.

For each zp € VV'\ E we next find a simply connected open set W, such that
z0€ W, C V\E and W, \ B, # 0 for each B, € Ug. If zy ¢ | J, By, choose r > 0
such that B(zo, ) C V' \ E and set W, = B(zo, r). Suppose then that zo € | J, B, \ E.
Since the sets B, are mutually disjoint, there is only one j with zy € B;, and since the set
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E is countable, thereisa 8, 0 <6 < 2z such that {zg + te?” : t > 0} N E = @. Let t; =
min{z > 0: zg + te” ¢ B;}. Since theset S := {zg + t€” : 0 < 1 < 19} is compact and the
set E'U 9V isclosed, thereisan e > Osuch that theset W_, := {z € C : dist {z, S} < ¢} is
disjoint with £ U 3 V. Clearly W, is an open simply connected set such thatzg € W, C
V\ E C pg(T). If G is the component of pg(T) containing W-,, then Xp(C\ W) =
R>®(T — 1) for every A € G. In particular, X7(C\ W) isclosed and W, N W, =@ if
20, z1 € V'\ E are such that X7(C\ W) # Xr(C\ W.,). By construction, W- \ By #
¢ and By \ W, # @ whenever z € V' \ E and By € Ug. Thus, if Uy = {W. :z € V' \ E}
and U = Ug UUE, then U is an open cover of V satisfying the hypotheses of Lemma 1.

As in Lemma 1, let M = (), X7(C\ D) and let T:X/M— X/M be the
operator induced by 7. By Lemma 1 (iii), we have (T — z)M = M for all z € V. We
show that 7' — z is bounded below for each z € V' \ E, i.e.,ifz € V' \ E and (x,), C X
is such that (7 — z)X, — 01in X/M, then X, — 01in X/ M.

Fix ze V'\ E and let x € ker(T — z). Then ker(T — z) C R®(T — z) = X7(C\
W), and so there exists g € H(W., X) so that (T — w)g(w) = x for all w € W,. If
h = (T — z)g, then h € ker Ty, and, since W, € U, it follows from Lemma 1 (ii) that
h: W, — M. In particular, x = h(z) € M. Thus ker(T — z) C M.

A sequence (x,,), C X satisfies (T’ — z)X, — 0 only if there exists (Pn)n C M so that
(T — 2)x, — y» — 0in X. Since (T — z)M = M, there exists (w,), C M so that (T —
z)w, = y, and therefore, (T — z)(x, — w,) — 0. Since ran (T — z) is closed, it follows
that dist (x,, — w,, ker(T — z)) — 0. Butker(7T — z) C M, and so dist (x,,, M) — 0, 1i.e.,
%, — 0 in X/M as required. Hence 7 — z is bounded below for each z € V' \ E. In
particular, V' \ E C px(T).

We wish to show that T is injective with closed range. Suppose then that (f,),
is a sequence in H(V, X/M) such that Tyf, — 0. In order to show that f, — 0
in H(V, X/M), it suffices to show that pr(f,) = sup.cr |fa(2)|l = 0 for every closed
rectangle F C V. Suppose that a, b, ¢, d are real numbers such that the rectangle
F=a bl x[c,d] CV.Choose§ > 0sothat[a—8,b+ 8] x[c—8,d+ 8] C V. Since
E is countable, the projections Py ={ReA: A € E} and P, ={ImA : X € E} are
countable and we may choose @', ¥ e R\ P; and ¢/, d € R\ P, so that a —§ <
d<a<b<b <b+éand c—8< <c<d<d <d+3$. Define T to be the
positively oriented boundary of the rectangle [¢/, 0] x [¢/,d']C V. Then " C V' \ E
surrounds F in the sense of Cauchy’s theorem. By continuity of the minimum modulus
function z + y(T — z) on V' \ E, there is a constant ¢ > 0 so that sup.r /=@ <
CSUp.cp (T — z)f,,(z)| for all n. Thus for each A € F the maximum principle implies
that

W)l < sup 1) = Cpr(Tufo)

where C = ¢|T'|/(2x dist (T, F)). Thus pr(f,) — 0 as n — oo as required. Since (T —
)M = M for all z € V by part (iii) of Lemma 1, Leiterer’s theorem implies that
TyH(V,M)= H(V, M), and Ty therefore has closed range in H(V, X) by [9, Prop.
2.1]; the theorem is established. O

For T € B(X) denote by K(T) the analytic core of T, i.e., the set of all xy € X such
that there exists a sequence (x,), C X suchthat Tx, = x,_; (n > 1)andsup ||x,|'/" <
oo. Clearly K(T') = |J,, ¥7(C \ D(0, 1/n)). This set has been shown to play a significant
role in the Fredholm theory of Banach space operators; see, for example [1].
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COROLLARY 6. Let T € B(X) and let V' C C be an open set. Suppose that K(T — z)
is closed for each z € V and that the set {z € V : ran (T — z) is not closed} is countable.
Then T has (CR) on V.

Proof. Let z € V and K(T — z) be closed. Clearly (T — z)K(T — z) = K(T — z)
and, by the Banach open mapping theorem, there is an ¢ > 0 such that K(7 — z) =
X7(C\ B(z, ¢)). In fact, & = y((T — 2)|k(r—»)"". Clearly X7(C \ W) = K(T — z) for
each open set W with z € W C B(z, €). By Theorem 5, T has (CR) on V. ]

A generalized Kato decomposition for 7' € B(X) is a pair of subspaces X1, X> €
Lat(7T') such that X = X} & X», Ty, is Kato and T'|y, is quasinilpotent. The operator
T is said to be of Kato-type if 7|y, is nilpotent. It is well known that semi-Fredholm
operators are of Kato-type, see e.g. [1], [10].

If po(T) denotes the set of A € C such that 7— A has a generalized Kato
decomposition, then pgr(7T') is open and pq(7") N ok (T) accumulates only on dpg (7).
Indeed, suppose that 0 € pu(T) and that X, X» € Lat(T) such that X = X; ® X5,
T|x, is Kato and Ty, is quasinilpotent. If ¢ > 0 is such that B(0, &) C px(Tx,),
then for 0 < |z| <&, (T —2)X2 = X5. Thus ran (7 — z) = (T — 2)X; @ X5 is closed
and N®(T — z) = N®(T|x, — z) C R(T|y, — 2).

Moreover, if T has generalized Kato decomposition (X7, X3) as above, then by the
remarks preceding Lemma 1, R®(T|x,) € K(T). On the other hand, if x € K(T'), write
X = uy + vo with uy € X7 and vy € X>. We show that vy = 0.

Suppose to the contrary that vy # 0. Then, by definition, there are sequences
(u,) C X; and (v,) C X, such that Tu, = u,_; and Tv, = v,_; for all n and C :=
sup ||lu, + v,||'/" < 0. Let P € B(X)be the projection withker P = X andran P = X,.
We have [[v,[|'/" = || P(u, 4+ v)[|"/" < | P||"/" - C. Thus

1/n 1
lim || 7"y, ||"" > lim sup <M> >1/C >0,
n—0o0

n—00 [lvnll lim inf, o Joa|IY/7 =

a contradiction to the assumption that Ty, is quasinilpotent. Hence vy =0 and
K(T) C X,. Therefore

K(T) = K(T|x,)) = R*(T|x);

in particular, K(7) is closed.
Thus we have established the following special case of Corollary 6, generalizing [9,
Theorem 2.5].

COROLLARY 7. T € B(X) has (CR) on pg(T).

Duality and weak—= closed ranges. Let C,, = CU {oo} be the Riemann sphere
and for U an open neighborhood of oo, let P(U, X) denote the Fréchet space of
analytic functionsf : U — X withf(co) = 0.If 7' € B(X), then T induces a continuous
mapping 7Y on P(U, X) defined by TYf(z) = (T — 2)f(2) + lim|,| 00 @ f(®). For F
closed in C,, with co € F, let P(F, X) denote the inductive limit of the spaces P(U, X),
U D F open; i.e., P(F, X) is the (LF)-space consisting of germs of analytic X—valued
functions defined in a neighborhood of F and vanishing at infinity. If co € F is closed
and U is open with F C U, letiy : P(U, X) — P(F, X) be defined by iyyf = [f]. Then
a mapping S from P(F, X) to an arbitrary topological vector space E is continuous if
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and only if S o iy is continuous for every open neighborhood U of F. In particular,
the mappings 7Y induce a continuous mapping T¥ on P(F, X). Recall further the
Grothendieck-Kothe duality principle: given V' C C open, the Fréchet space H(V, X*)
may be canonically identified with the strong dual of P(Cy, \ V, X) via

fg) = f (2. 3()) d=
Y

where f € H(V, X*), g € P(U, X) is a representative of g € P(Coo \ V, X) and y is a
contour surrounding C \ U in V. In this sense, we have that T}, = (T\")*, [6, Theorem
2.5.12 and Lemma 2.5.13]. Moreover, by the duality results of Albrecht and Eschmesier,
specifically, Theorem 21 and the proof of Theorem 5 of [2], T* has property (8) on U
if and only if TF P(F, X) = P(F, X) for every closed set F € Co, with Coo \ U C F. In
this case, for every open V' C U, T7, is injective with weak— closed range in H(V, X*)
by a theorem of Kothe, [6, Theorem 2.5.9].

Let us say that 7* has the property (CR)**** on U provided that ran T7 is
weak—x closed in H(V, X*) for every open V' C U.

PROPOSITION 8. Let T € B(X) and U C C open and suppose that F is closed in C
withC\ U C F.
() If T has (CR) on U, then X7(F) = +X%.(C\ F), the preannihilator of %%.(C\
F) = |J{X%.(K) : K compact, K C C\ F}.
(i) If T* has (CR)"**~* on U, then X%.(F) = X1(C \ F)*, the annihilator of %X7(C \
F) = U{Xr(K) : K compact, K C C\ F}. In particular, %5.(C\ V) is weak—x
closed whenever V' C U is open.

Proof. If Fisclosedand C\ U C F,then V' := C\ F is an open subset of U. Thus
ran Ty is closed in case (i), and ran T}, is weak—* closed in case (ii). The result now
follows from parts (¢) and (d) of [4, Lemma 1.2.5]; alternatively, one could argue as in
the proof of [6, Prop 2.5.14]. Il

As a consequence of the Proposition 8, we obtain weak—* analogs of Theorems 4
and 5.

THEOREM 9. There is a largest open set V on which T* € B(X*) has (CR)"*k—*,

Proof. First we establish an analog of Lemma 3. Suppose that 7* € B(X*) has
(CR)™™* on open sets ¥, and V> and that © is an open subset of V3 U V5. Let
Q) C V1N, Q C V>N Qbeopen sets and I an open cover of Q as in Lemma 2. Let
M = (\pey X7-(C\ D). By Proposition 8, for each D € U, X%.(C \ D) is weak—x closed
and therefore M is also weak—* closed. Evidently, the restriction mapping f — fg,
from H(2, X*)to H(Q], X*) 1s weak-x continuous and mtertwmes Tg and T;; =1, 2
Therefore, if f € ran 7% P *, then flg, € ran ran T Q *, and so, by assumption, there
are g; € H(R;, X*) such that flg = Tgg; for each] As in the proof of Lemma 3,
it follows from Lemma 2 that 7§ o (g1 g)=0,and so (g —2)(Q N)C M
by Lemma 1 (ii). Thus g}|g,ne, = g2|91m92 in H(2) N Q,, X*/M), and we can define
he H(Q, X*/M) by h(z) =3Z(z) for z € Q;. We have f = (T*)oh and, by Gleason’s
theorem, there exists g € H(€2, X*) such that & =g. Moreover, f — T4g € H(Q2, M),
and so again Lemma 1 (iii) and Leiterer’s theorem imply that /' — T5g = Tk for some
k € H(, M). Hence f = T(g + k) € ran T%. Thus T* € B(X*) has (CR)"** on
Viu ;.
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To complete the argument, we adapt the proof of Theorem 4 similarly. The routine
details are left to the reader. ]

Recall that ran T* is weak—x closed in X™* if and only if ran 7 is closed in X, [6,
A.1.10]. Also, og(T*) = og(T), [10, I1.12 Theorem 11].

THEOREM 10. Let T € B(X) and let V C C be an open set. Suppose that the set
{z € V :ran(T — z) is not closed} is countable and that, for all z € V, there isary > 0
for which X7(C \ B(z, r)) is weak—x closed for all r € (0, ro). Then T* has (CR)"e¥k—*
onV.

Proof. Since the conditions of the theorem are inherited by every open subset U
of V, it suffices to show that T has weak—x closed range. Let £ := V Nog(T) and
construct a covering U = Ug U Ug exactly as in the proof of Theorem 5, noting that if
zo € V'\ E and if X is in the component of px(7T) containing zy, then X%.(C\ W) =
R®(T* — 1) is weak—x closed. Let M = ()., X7-(C\ D) and denote by (7*) the
operator on X*/M induced by T*. Then Lemma 1 (iii) implies that (T* —2)M = M
for all z € V, and, as in the proof of Theorem 5, (T*)— z is bounded below for each
z € V'\ E. The conclusion now follows from [9, Prop. 3.1], noting that, as indicated in
the proof of Theorem 3, it suffices in [9, Prop. 3.1] that the exceptional set £ be merely
countable rather than discrete. O

COROLLARY 11. Let T € B(X) and let V C C be an open set. Suppose that the
analytic core K(T* — z) is weak—x closed for each z € V' and that the set {ze€ V :
ran (T — z) is not closed) is countable. Then T* has (CR)Y*~* on V. In particular,
T* has (CR)"¥—* on Pk (T).

Proof. The first statement follows from Theorem 10 just as Corollary 6 follows
from Theorem 5. If T € B(X) has generalized Kato decomposition (X, X>), then
(X3, Xib) is a generalized Kato decomposition for T* consisting of weak— closed
subspaces of X*. Thus pg(T) € par(T*). If z € pei(T), and (X1, X2) is a generalized
Kato decomposition for 7', then K(T* — z) = K(T* — z)|X2¢) = R>®(T* — z)|X2¢); in
particular, K(T* — z) is weak—« closed in X*. Since pg(T) N ox(T), is discrete, the last
result now follows. U

We are indebted to the referee and editor for their careful reading that substantially
contributed to this paper.
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