BILINEAR FORMS ON VECTOR HARDY SPACES
by GORDON BLOWER

(Received 27 May, 1996)

Abstract. Let ®: A’ X H*¥—C be a bilinear form on vector Hardy space.
Introduce the symbol ¢ of ® by (¢(z,2,),a ®b)=®(k,®a,k,®b), where k,, is the
reproducing kernel for w € D. We show that ® extends to a bounded bilinear form on
H'% x H'¥ provided that the gradient |8, 3,9 sicr.mA(dz1)A(dz,) defines a Carleson
measure in the bidisc D% We obtain a sufficient condition for @ to extend to a Hilbert
space. For vectorial bilinear Hankel forms we obtain an analogue of Nehari’s Theorem.

§1. Introduction. For any complex Banach spaces X and Y we denote by Bi(X, Y)
the space of bounded bilinear forms ®:X XY —C with the norm | ®|gix.y)=
sup{R®P(x,y):|lxllx = | ¥lly = 1}. Here we consider bilinear forms on the Hardy spaces
HP¥. These are spaces of analytic functions f:D — ¥, with values in the compact
operators X on separable Hilbert space H, for which |f|lgrx=
SUPg<r<i || f(re"")|lu(,,9;,o<°°. The matrix disc algebra AX is the closure in H™J of the
analytic trigonometric polynomials with coefficients from %. The closure of A% in H>X
will be denoted A%, and L”(d6;%) is the Bochner-Lebesgue space.

We are concerned with a particular question [9, Conjecture 8.3].

Given a bounded bilinear form ®:AH X AKX — C, when can one find a Hilbert space
G and a bounded linear map V :AX — G such that for all f,g € AX we have

Ro(f,8)=IVflc IVella?

The results of [2] for the disc algebra A suggest that this may always be possible. An
application of such a factorization property for bilinear forms is suggested by {7, IV(a)].
In this paper I continue the approach to factorization initiated in [1], emphasizing the role

of measures on the disc. The classical Nehari theorem [10], [6, p. 322] suggests which
conditions to impose upon bilinear Hankel forms.

A positive Radon measure p on the unit disc D is said to be a Carleson measure if
there is a constant C, such that u(S(/)) = C, |I| for each subinterval I of [0,2x], where
S(I) is the sector S(I)={re®®e D:r=1-|I|, 8 € I} based upon I. See {6, p. 258].

THeorem 1.1. (Nehari, C. Fefferman-Stein). Let ®:H>X H?*— C be the bilinear
Hankel form with analytic symbol ¢ that satisfies

06 1) = [ ol e (b 1Y) a

Then ® is bounded if and only if Q, defines a Carleson measure on D, where
Q.(drd@) = (1-r)|¢'(re’®)Pr dr de. (1.2)

In Section 4 we obtain an analogous sufficient condition for bilinear Hankel forms on
A%% x H*X to be bounded and extend to bounded bilinear forms on ¢ X ¥, where ¥ is
some Hilbert space.

For general bilinear forms it is useful to introduce another scale of Banach spaces.
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For any Banach space X we let G?(X) be the Banach space of analytic functions
g:D — X for which the norm

pr2 1/p
de} (13)

lglorun =180 +{[ ([ A=n g Cenirar) oo

is finite. When X = H is a Hilbert space, GX(H) has a norm equivalent to that of H*(H),
by (3.17) below. However, when X = ¥, the space G*(%) does not contain AX. See [1,
6.5(i)]. Nevertheless, the Poisson semigroup P,g(z) = g(rz) satisfies |P,g — gllgyay— 0 as
r—1—. Hence the algebraic tensor product A® ¥ is a dense subspace of G*(¥). The
spaces of functions with f(0) = 0 are denoted by G§, Hf and so forth.

In Section 2 we introduce the notion of the symbol of a bounded bilinear form @ on
H?¥ and obtain a sufficient condition for ® to extend to a Hilbert space containing
G*(¥). In the next section we achieve a Carleson measure condition involving the symbol
for such a @ to be bounded on H'¥ X H'X.

NortarTion. For a € % we write |als = (27 '(a*a + aa*))'? for the symmetric modulus
of a. The dual space of X is the space c¢' of trace class operators under the pairing

(a, b) = trace(ab). We shall use the same notation for the pairing of a bilinear form ¢ with
an elementary tensor a®b, so that (¢,a®b)= ¢(a,b). The space of Hilbert-Schmidt
operators will be denoted by ¢

By a dyadic sector of the disc we mean a set such as

Ry={re®eD:1-27=<r<1-27"" k277 < 6/Q27) < (k +1)27%}, (1.4)

where k =0,1,2,...,2 -1 and j = 0. We write A(dz) =rdrd#@ for area measure on the
. . . - . d - 4

disc. For partial derivatives on the bidisc D? we write 9; = P and 9; = PR By C we mean
; .

a constant, not necessarily the same at each occurrence. Also 1 is the indicator function
of R.

__ §2. The symbol of a bilinear form. Let ® be a bounded bilinear form on
A*% < H*X. Let k,(z) =(1—zw)™* be the reproducing kernel function for w e D that
satisfies

fw)={f. k) (f € H?). 21)
By the Riesz-Fréchet Theorem, k,, is uniquely determined as the vector in H? satisfying
(2.1). Note that w — k,, is anti-analytic, so that % k.(z)=0.
There is for each (z;, z;) € D? a bounded bilinear form ¢(z,, z,) on ¥ X ¥ satisfying
(¢(21,22),a®b) =Dk, ®a,k,®b) (a,b e X). (2.2)
By Morera’s Theorem ¢,¢ = d,¢ =0 and so we call ¢ the anti-analytic symbol of ®.

THEOREM 2.1. Let ® be a bilinear form on H}X X HiX whose symbol ¢ satisfies

- - 1
SUPI 101 32¢(21, 22) || Bi(,9r) log — A(dz;) (2.3)
zz Jp |121|
+ Slzlp J i 51 52 @(21, 22)\I Bi(or, ) 108 EA(de) < oo, 2.4)
1 YD 2
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Then there is a Hilbert space G, containing G}() such that ® extends to a bounded
bilinear form on G, X G,,.

Proof. Let f, g € H3X. Then, in the sense of Abel summation,

of.0)= [ 6 dp(en2).0./(2) ® (e og - log — Adz)Az). @5)

This identity may readily be established for monomials f = z{®a and g =z5'®b by
comparing coefficients in the power series development of ¢(z;,2;). One then uses
linearity and density to obtain the general case. Compare [6, p. 304].

Now 9, 8,¢(2,,2,) is a bounded bilinear form on the C*-algebra ¥, and by the
Grothendieck-Pisier Theorem [8, Theorem 9.1] there is a universal constant K with the
following property. For each (z,, z,) € D?, there is a positive v(z,, z,) € ¢! with

Iv(zi, 2)la =K ||51 524’(31, 22) | sicae. ) (2.6)
that satisfies

|(51 524’(21, 2;),a® b)? = (|a|§, v(zy, Zz)><|b|§, v(z1,22)) (a,b e ¥). 27

The norm of our Hilbert space is obtained from v(z;, z,) as follows. We apply the
Cauchy-Schwarz inequality to (2.5) and use (2.7) and Fubini’s Theorem to obtain

2 1 2 1
ID(f,g)fF = 7_t L (8. f (213 () log |_2—1-| A(dz) 7—r L (1028 (22)%, pa(z2)) log |'z:| A(dzy),

(2.8)
where we have introduced the positive ¢'-valued functions
1
(e = [ e z)logr-Aldz) (e D), @9)
1
paz) = | vz z)log = Az) (e D) 210)
1

The required Hilbert space G, is the completion of A,® ¥ for the norm given by
2 2 2 1
Il =2 A (lof (2)ls, m(z)) lOgmA(dZ), (211)

where p(z) = pi(z) + palz).
Using (2.6) we see that under the hypothesis of the Theorem [lu(z)|»=C, for
z € D, and consequently the formal inclusion map G§(%)— G, is bounded.

§3. Carleson measures on the bidisc. Let EcTXT be an open subset of the
bi-torus. We define

S(E)=U{SU) xS}, (1)
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where the union of products of sectors is taken over all possible products of open
intervals I X J contained in E. Then a positive Radon measure u on the bidisc D? is said
to be a Carleson measure if there is C, < o satisfying u(S(E)) = C, |E|, for all connected
open sets E, where |E| is the area of E. See [4,5]. (It is not enough for u to satisfy the
inequality merely for open rectangles E.)

TueoREM 3.1. Let ®:H}H X H3% — C be a bounded bilinear form whose symbol ¢
has the property that

w(dzy dzz) = || 51 52‘P(Zx, Zz)||Bi(5(.5{) A(dz))A(dz,) (3.2)

defines a Carleson measure on D Then ® extends to define a bounded bilinear form on
A X AL

Proof. We have, by the Littlewood-Paley identity (2.5), for f,g € H3X
NO(f,8)

=7 [ 16 o 2l 190 £ 01 g @o)llog - log - Aldz)Az). (33)

DXD

Let R be a typical dyadic sector in D, as in (1.4), and let R be its dilate about the
centre of mass with scale factor 3/2. Then, by the Cauchy Integral Formula,

log 15/ @)= | 1f Dl A@D) Gz €R) (34)

log - 198@)lx < [ 1@ A@D) <R 65)

Hence we can estimate (3.3) by an integral involving u

Ro(r,5)=C [ FOGmmasdn), (36)

DxD

where we have introduced

FQ =310 o [ 17@IxAG) @ <), @7

G(n) =3 1u(n) g [ 18@lxA@) (1€ D) 69

IR|
These resemble the conditional expectations of ||f(z)|lx and ||g(z)||s with respect to the

o-algebra generated by the dyadic sectors. By R. Fefferman’s Theorem [5, p. 403] on
Carleson measures

Ro(7.5)=CCuw) | sup FOTIX [ sup Gm)3E (9)
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where C,(u) is the Carleson constant of x4 and the maximal functions are taken over the
nontangential approach regions I'(6) based at e’®. Enlarging the region I'(9) to ['(8), we
see that

sup F({)=C sup [[f({)llx, (3.10)
) Lel(6)

¢el(8

since only boundedly many R can overlap at any point in the disc. Hence we can
conclude, by applying Bourgain’s maximal inequality [3, p. 13] to (3.9), that

RO/, 8) = CCuw) [ 17 5% [ lglx 32 G.11)

For bilinear forms on H'c! we can use a factorization technique to obtain a statement
involving a quadratic expression in the symbol. Let us recall that, since ¢’ is a separable
dual space, H'c' = H'c.

THEOREM 3.2. Let ®:Hjc' X Hic'— C be a bilinear form whose symbol ¢ has the
property that

Qtp(dzl dz) =1 - |zDA —lz) | 51 52‘P(Zl, ZZ)llz’Bi(c‘.c‘)A(dZI)A(dZZ) (3.12)

defines a Carleson measure on D> Then ® extends to a bounded bilinear form
Hyc' X Hye' - C.

Proof. Let f(z) e H'c' for j=1,2. Then we can use the Sarason Factorization
Theorem [9, p. 62] to write f(z;) = g;(z;)h;(z;) for z; € D, where g; € H*c?, h; e H*c* with

IgilI3ee: = Njli2ee = I fll e (j=1,2). (3.13)
Let us note that by Leibniz’s formula the integrand of (2.5) may be bounded using
N3, 320(21, 22), 01 £1(21) ® 32 £a(22))

= B3, 8,0(21, 22), 3181(21)h1(21) ® 3282(22)h2(22)) + similar terms (3.14)
= ||51 52‘P(Zh 22) “Bi(c‘.c‘) 18181(zi)llc2 lA1(z1) I c2 | 9282(22) [l 2 ha(z2)ll 2
+ similar terms. (3.15)

Hence by (2.5) and the Cauchy-Schwarz inequality

12

12
R0( )= C{ | log Iowgi(eiAGz)] ([ log- lassa(zlb Az
12
X {J f (2 )% Hha(22) 120 .(dz; dzz)} + similar terms. (3.16)
D2

By the Littlewood-Paley identity for ¢*>-valued functions [6, p. 304], we have

2 12 de 12
(2] e tas@izaan) <{[ ey} o=19 6w
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and hence we can bound the first two factors in (3.16) by Hardy norms. Using the
hypothesis on Q, and Theorem 1 of [4] we can bound the third factor in (3.16) by

. de)'” de)\”?
ccu@{[ sup InGez T} {[ sup imezE ) a9
By the Hardy Littlewood Maximal Theorem [6, p. 237] this is bounded by
CC(Qe)'"” il ez 1hall e (3.19)

Combining the estimates (3.19) and (3.17) arising from each summand in (3.16) we
have the required estimate

RO(f,, £,) < CC ()" 1811l 122 182l 22 I1Brl ac2 Wzl 12 (3:20)
= CC(Q0)"? I filltner | foll e (3.21)

§4. Hankel forms. A bilinear form ® is said to be a Hankel form if
O(fg,h)=D(g.fh) (g, h € H*H), (4.1)

for all f € A. For each such bilinear form we can introduce a symbol ¢(z) which is a
function of a single variable. There is a unique analytic power series ¢(z) with coefficients
in Bi(J%, )') that satisfies the identity

- o, 40
06.h) = [ (0™, @OMENT, @2)
where g,h are analytic trigonometric polynomials with coefficients in %. When @ is

bounded on some Hardy space we obtain an analytic function ¢:D — Bi(¥, ¥ ).

Tueorem 4.1. Let ® be a bilinear Hankel form on H3X X H}X with symbol ¢.
Suppose that o(dz) = ||¢'(2) | sir.:A(dz) defines a Carleson measure on D. Then there is
a Hilbert space % for which

(i) the inclusion map H3X — % is bounded,
(ii) @ extends to define a bounded bilinear form on X %

Proof. (ii) By the Littlewood-Paley identity [6, p. 304] we have that

2 1
o(g.h) == L [w@.e@ene log - Adz)

+%£f (¢'(2),8(2)®h'(2)) loglzllA(dz) (g,h € ). (4.3)

Now for each z € D, the map a ® b+ {¢'(z),a ® b) defines a bounded bilinear form
on X X X. Hence, by the Grothendieck-Pisier Theorem (8, Theorem 9.1], there is an
absolute constant K and a positive v(z) € ¢! with

V() =K ' (@)sixsm (z € D) 4.4)
for which

Ke'(2),a ®b) = (als, v(z2)XIbl5, v(z)) (a,b € X,z € D). (4.5)
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By the Cauchy-Schwarz inequality applied to (4.3) we have

' = 1 2 =
19/, 8)F = L [ de' @t vien(ios.7.) acan) L [ @B viepaz)
+ similar term. (4.6)

Hence @ defines a bounded bilinear form on the Hilbert space % formed by
completing A,® ¥ for the norm

ivi- | [0 @, vien(ios:) Ao + f [ veaw. @

(i) To verify that the mclusmn H}% — 4 is bounded, we consider the first summand
in (4.7); our proof also deals with the second summand. We note that, by the Cauchy
integral formula, we have

a1 7 @ =g [ [ 108G (@< R “8)

(as positive operators on Hilbert space), where R is the dilatation of the dyadic sector R
about its centre of mass by scale factor 3/2. See (1.4). Hence, by (4.4), we have the

inequality

1715=€ [ F@) 1o @llmonntdz), “9)

where we have introduced °
F@&) =5 1) o j 17134 (e D) «10)

By Carleson’s Theorem [6, p. 258) we can estimate (4.9) by

ffF(Z)U(dz)<CC*(0)f R B)F(z);—z (4.11)
=cC) | swp 1@ @)
=cC) [ IfEINg,, @)

where the last step follows from the Hardy-Littlewood maximal theorem [6, p. 237].
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