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Abstract. Let 3>: H2X X H2X-* C be a bilinear form on vector Hardy space.
Introduce the symbol <p of 3> by (<p(zx, z2), a ® b) = 3>(fcZ]®a,&Z2<8>6), where &„ is the
reproducing kernel for w B D. We show that $ extends to a bounded bilinear form on
HxXxH*X provided that the gradient \\d^ d2<p\\B\<.x.xA(dzi)A(dz2) defines a Carleson
measure in the bidisc D2. We obtain a sufficient condition for $ to extend to a Hilbert
space. For vectorial bilinear Hankel forms we obtain an analogue of Nehari's Theorem.

§1. Introduction. For any complex Banach spaces X and Y we denote by Bi(A", Y)
the space of bounded bilinear forms <&:X xY-*C with the norm ||<i>||Bi(;r.n =

sup{9t<]?(x,y): \\x\\x = ||y||y = l}. Here we consider bilinear forms on the Hardy spaces
HPX. These are spaces of analytic functions f:D-*X, with values in the compact
operators X on separable Hilbert space H, for which ||/|| »!»«• =
supo<r<) ||/(re'*)|| î .(do;3ŝ  < °°. The matrix disc algebra AX is the closure in //°°5if of the
analytic trigonometric polynomials with coefficients from X. The closure of AX in H2X
will be denoted H2X, and Lp{d8;X) is the Bochner-Lebesgue space.

We are concerned with a particular question [9, Conjecture 8.3].
Given a bounded bilinear form <&:AXY.AX-+C, when can one find a Hilbert space

G and a bounded linear map V :AX—> G such that for all f,g e AX we have

The results of [2] for the disc algebra A suggest that this may always be possible. An
application of such a factorization property for bilinear forms is suggested by [7, IV(a)].
In this paper I continue the approach to factorization initiated in [1], emphasizing the role
of measures on the disc. The classical Nehari theorem [10], [6, p. 322] suggests which
conditions to impose upon bilinear Hankel forms.

A positive Radon measure /A on the unit disc D is said to be a Carleson measure if
there is a constant C+ such that / A ( 5 ( / ) ) ^ C # |/| for each subinterval I of [0,2/r], where
5(7) is the sector S(I) = {re'e e D :r > 1 - |/|, 0 E /} based upon I. See [6, p. 258].

THEOREM 1.1. (Nehari, C. Fefferman-Stein). Let $:H2xH2-*C be the bilinear
Hankel form with analytic symbol <p that satisfies

f i 9 ) r (g,heH2). (1.1)
j IK

Then $ is bounded if and only if Qv defines a Carleson measure on D, where

Q^drdB) = (1 - r) \<p'{reie)\2rdrdd. (1.2)
In Section 4 we obtain an analogous sufficient condition for bilinear Hankel forms on

H2X X H2X to be bounded and extend to bounded bilinear forms on $ x CS, where S is
some Hilbert space.

For general bilinear forms it is useful to introduce another scale of Banach spaces.
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For any Banach space X we let GP(X) be the Banach space of analytic functions

g: D -> X for which the norm

(Jo(l-r)\\g'(reie)\\2
xrdrj - J (1.3)

is finite. When X = H is a Hilbert space, G2(H) has a norm equivalent to that of H2(H),
by (3.17) below. However, when Z = 3if, the space G\JC) does not contain AX See [1,
6.5(i)]. Nevertheless, the Poisson semigroup Prg(z) = g{rz) satisfies ||Prg — gWcHxy—>0 a s

r - > l - . Hence the algebraic tensor product j4®3if is a dense subspace of G20C). The
spaces of functions with /(0) = 0 are denoted by G{J, //g and so forth.

In Section 2 we introduce the notion of the symbol of a bounded bilinear form <I> on
//23if and obtain a sufficient condition for $ to extend to a Hilbert space containing
G2(J£). In the next section we achieve a Carleson measure condition involving the symbol
for such a $ to be bounded on Hl%xHl%

NOTATION. For d e l w e write \a\s = (2~1(a*a + aa*))m for the symmetric modulus
of a. The dual space of 5if is the space c1 of trace class operators under the pairing
(a, b) = trace(aft). We shall use the same notation for the pairing of a bilinear form <p with
an elementary tensor a<8> b, so that (<p,a<8ib) = <p(a,b). The space of Hilbert-Schmidt
operators will be denoted by c2.

By a dyadic sector of the disc we mean a set such as

Rjk = {re'e e D : l - 2 - ' < r < l - 2~'-\ kl'1 ^ 0/(2;:) < (Jfc + 1)2^}, (1.4)

where k = 0,1,2,... ,2-1 and / ^ 0. We write A(dz) = rdr dd for area measure on the

disc. For partial derivatives on the bidisc D2 we write d, = — and 3, = —. By C we mean

a constant, not necessarily the same at each occurrence. Also 1R is the indicator function

§2. The symbol of a bilinear form. Let $ be a bounded bilinear form on
ftz%xH23{. Let kw(z) = (1 - zw)'1 be the reproducing kernel function for w e D that
satisfies

/(w) = ( / - , U ^ ( / e / / 2 ) . (2.1)

By the Riesz-Fr6chet Theorem, kw is uniquely determined as the vector in H2 satisfying

(2.1). Note that w*+kw is anti-analytic, so that — kw{z) = 0.

There is for each (z,, z2) e D2 a bounded bilinear form <p(zi, z2) on 5if X % satisfying

fl,&e3O. (2.2)

By Morera's Theorem d ^ = d2P = 0 and so we call <p the anti-analytic symbol o /$ .

THEOREM 2.1. Let <J> be a bilinear form on Hffl X fllJC whose symbol <p satisfies

sup I W^^vizuZzlUwx^og—Aidzi) (2.3)
J |Zi| i i

sup I ||d, d2 <p(zu Z2)\\B«X,X) log — A(dz2) < ». (2.4)
*i J D IZ2I
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Then there is a Hilbert space GM containing Gl(3£) such that <I> extends to a bounded
bilinear form on G^XG^.

Proof. Let / , g E H\3C. Then, in the sense of Abel summation,

*(/.*) = 4 ff (did2^ZuZ2),d1f(z,)®d2g(z2))log-^-\og^-A(dzl)A(dz2). (2.5)
« •> JDY.D Kll |Z2|

This identity may readily be established for monomials f = z"®a and g = z?®b by
comparing coefficients in the power series development of <p(z\,z2). One then uses
linearity and density to obtain the general case. Compare [6, p. 304].

Now d, B2<p(zi, Z2) is a bounded bilinear form on the C*-algebra 3if, and by the
Grothendieck-Pisier Theorem [8, Theorem 9.1] there is a universal constant K with the
following property. For each (z\,z2) e D2, there is a positive v(z\,Zi) e c1 with

| | c .s K ||d, ^<p(z,,z2)llBi(xjr) (2-6)
that satisfies

2 I (zu Z2))(\b\l v(z,, z2)> (a, 6 E 3iT). (2.7)

The norm of our Hilbert space is obtained from v(z\,z2) as follows. We apply the
Cauchy-Schwarz inequality to (2.5) and use (2.7) and Fubini's Theorem to obtain

(2.8)

where we have introduced the positive c1-valued functions

M.fo) = f v(zltz2) log±-A(dz2) (zi e D), (2.9)

M2(z2) = f v(zlf z2) log p-i4(dz0 (z2 e D). (2.10)
JD kil

The required Hilbert space GM is the completion of A0®jlCiox the norm given by

11/110,. = " f <|3/(z)|L/!(«)> logpM(<k). (Z11)
7T J D \Z\

where /x(z) = /t,(z) + fi2(z).
Using (2.6) we see that under the hypothesis of the Theorem ||/i(z)||ciSC, for

z e D, and consequently the formal inclusion map Gl(3{)-*Gli is bounded.

§3. Carleson measures on the bidisc. Let £ g T x T be an open subset of the
bi-torus. We define

(3.1)
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where the union of products of sectors is taken over all possible products of open
intervals Ixj contained in E. Then a positive Radon measure /x on the bidisc D2 is said
to be a Carleson measure if there is C+ < °° satisfying fi(S(E)) ^ Ct \E\, for all connected
open sets E, where \E\ is the area of E. See [4,5]. (It is not enough for /x to satisfy the
inequality merely for open rectangles E.)

THEOREM 3.1. Let <t>: fl\3C x filSfC-* C be a bounded bilinear form whose symbol (p
has the property that

dz2) = II 3i B2(p(zuZi)\\m(x.x)A(dz\)A{dz2) (3.2)

defines a Carleson measure on D2. Then $ extends to define a bounded bilinear form on
X

Proof. We have, by the Littlewood-Paley identity (2.5), for f,g e R&

^ 4 ff \\dldMzuZ2)\\BKX,X)\\dJ(z0\\x\\d2g(z2)\\x\og^log^-A(dzi)A(dz2). (3.3)
nil \Zi\ \Z2\

DxD

Let 7? be a typical dyadic sector in D, as in (1.4), and let R be its dilate about the
centre of mass with scale factor 3/2. Then, by the Cauchy Integral Formula,

u e R\ (3.4)

(zeR). (3.5)

Hence we can estimate (3.3) by an integral involving fi

(3.6)
DxD

where we have introduced

2W0^\ \\f(z)\\XA(dz) UeD), (3.7)

G(v) = I !*(»?) 7̂ 7 f \\g(z)\\xA(dz) (ij E D). (3.8)
R \K\ JR

These resemble the conditional expectations of ||/(z)Har and ||g(z)||# with respect to the
tr-algebra generated by the dyadic sectors. By R. Fefferman's Theorem [5, p. 403] on
Carleson measures

( sup F ( O ^ x f sup G(i , )^ , (3.9)
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where C^fi) is the Carleson constant of fi and the maximal functions are taken over the
nontangential approach regions T(6) based at e'e. Enlarging the region T(0) to f (8), we
see that

sup F(O^C sup \\fU)\\x, (3.10)
f r ( S ) f

p F(O^C s
(S) Ce

since only boundedly many R can overlap at any point in the disc. Hence we can
conclude, by applying Bourgain's maximal inequality [3, p. 13] to (3.9), that

J ^ ^ ^ g ( e ' * ) | | 3 r ^ . (3.11)

For bilinear forms on / / 'c 1 we can use a factorization technique to obtain a statement
involving a quadratic expression in the symbol. Let us recall that, since c1 is a separable
dual space, Hlcl = ftlc\

THEOREM 3.2. Let $>:Hlcl X Hlcl—*C be a bilinear form whose symbol <p has the
property that

Qr(dZl dz2) = (1 - |zi|)(l - \z2\) ||d, d29(zu Z2)\\lKc'M(dz1)A(dz2) (3.12)

defines a Carleson measure on D2. Then O extends to a bounded bilinear form

Proof. Let ffa) e / / 'c 1 for ; = 1,2. Then we can use the Sarason Factorization
Theorem [9, p. 62] to write fj(zj) = gj(Zj)hj(zj) for ZjeD, where gj e H2c2, hj e. H2c2 with

\\gi\\2HV=\\hj\\2HV=U\\HV (7 = 1,2). (3.13)

Let us note that by Leibniz's formula the integrand of (2.5) may be bounded using

a2<p(Zi,Z2),aigi(zi)/Ji(zi)®a2g2(z2)/i2(z2)) +similar terms (3.14)

+ similar terms. (3.15)

Hence by (2.5) and the Cauchy-Schwarz inequality

f f l ~\m\ ( \
, / 2 )sC log— ||3i^i(«i)||M(rfzi) f log—l|a2g2(

I-'D |Zj| i UD |Z2|

x [jj Wi(zi)fc> \\h2(z2)\\hQv(dzi dz2)] + similar terms. (3.16)

By the Littlewood-Paley identity for c2-valued functions [6, p. 304], we have
"2 dQ^

(e/e)ll?^j (7 = 1,2) (3.17)
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and hence we can bound the first two factors in (3.16) by Hardy norms. Using the
hypothesis on Qv and Theorem 1 of [4] we can bound the third factor in (3.16) by

sup i i M f O i t e - SUP IIM«'")l&;r • <3-18)
oi 2TTJ Uiro<r<i 27t)

p iiM
Jjo<r<i

By the Hardy Littlewood Maximal Theorem [6, p. 237] this is bounded by
C C ^ Q ^ I I M H V I I M ^ (3.19)

Combining the estimates (3.19) and (3.17) arising from each summand in (3.16) we
have the required estimate

i,/2) =£ CC^QJ* \\gx\\HV \\g2\\HV | | M « v ll*2||/#v (3.20)

GV)1/2 ||/, | |HV || f21|„,,.. (3.21)

§4. Hankel forms. A bilinear form $ is said to be a Hankel form if

&) (g,heH2X), (4.1)

for all / E A For each such bilinear form we can introduce a symbol <p(z) which is a
function of a single variable. There is a unique analytic power series <p(z) with coefficients
in Bi(3f, 3if) that satisfies the identity

e))Yn, (4-2)

where g,h are analytic trigonometric polynomials with coefficients in 3iT. When $ is
bounded on some Hardy space we obtain an analytic function y>: D - • Bi(3iT, 5if).

THEOREM 4.1. Let <t> be a bilinear Hankel form on HlXxHffl with symbol <p.
Suppose that a(dz) = ||^>'(z)||Bi(x*y^(^) defines a Carleson measure on D. Then there is
a Hilbert space Wfor which

(i) the inclusion map H\JI{—* *& is bounded,
(ii) O extends to define a bounded bilinear form on ^X^.

Proof, (ii) By the Littlewood-Paley identity [6, p. 304] we have that

+ ~ \ \ (<P'(z)'S(z)®h'(z))log—A(dz) (g,heHl%). (4.3)
nii \z\

D

Now for each z e D, the map a®bi-*{<p'(z),a®b) defines a bounded bilinear form
on 3ifx3if. Hence, by the Grothendieck-Pisier Theorem [8, Theorem 9.1], there is an
absolute constant K and a positive v(z) e c1 with

\\y(z)y*K\\9'(z)\\mxx> (zsD) (4.4)
for which

(a,beX,zsD). (4.5)
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By the Cauchy-Schwarz inequality applied to (4.3) we have

gp-) A(dz) X ft (\h(z)\l v(z))A(dz)/ /
D

+ similar term. (4.6)

Hence 3> defines a bounded bilinear form on the Hilbert space $ formed by
completing A0®3Cfor the norm

i v(f))(log f-)2A(dz) + II (\f(z)\l v(z))A(dz). (4.7)
D ' ' D

(i) To verify that the inclusion Plffl-* 'S is bounded, we consider the first summand
in (4.7); our proof also deals with the second summand. We note that, by the Cauchy
integral formula, we have

(4.8)
J

(as positive operators on Hilbert space), where ft is the dilatation of the dyadic sector R
about its centre of mass by scale factor 3/2. See (1.4). Hence, by (4.4), we have the
inequality

CIIF(z) ||?'(z-)||Bi(*.*y4(dz), (4-9)
D

where we have introduced

sCC

(zeD). (4.10)
V

By Carleson's Theorem [6, p. 258] we can estimate (4.9) by

F(z)tr{dz)£CC0(v) I sup F(z)^ (4.11)

» f sup ||/(z)|&!p (4.12)

(4.13)

where the last step follows from the Hardy-Littlewood maximal theorem [6, p. 237].
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