
JOURNAL OF FINANCIAL AND QUANTITATIVE ANALYSIS Vol. 60, No. 2, Mar. 2025, pp. 1042–1073
© The Author(s), 2024. Published by Cambridge University Press on behalf of the Michael G. Foster
School of Business, University of Washington. This is an Open Access article, distributed under the terms
of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0), which permits
unrestricted re-use, distribution and reproduction, provided the original article is properly cited.
doi:10.1017/S0022109024000024

Construction, Real Uncertainty, and
Stock-Level Investment Anomalies

Kevin Aretz
Alliance Manchester Business School, University of Manchester
kevin.aretz@manchester.ac.uk (corresponding author)

Anastasios Kagkadis
University of Liverpool Management School, University of Liverpool
Lancaster University Management School, Lancaster University
a.kagkadis@liverpool.ac.uk

Abstract

We show that the negative relation between real investments and future stock returns is
primarily driven by the subsample of firms building additional capacity. We develop a real
options model to rationalize that evidence based on the premise that firms need to learn how
to best operate modern capacity vintages, inducing idiosyncratic uncertainty in that capa-
city’s production costs over the learning period. Conversely, the uncertainty lowers the
expected return of firms with newly built capacity until it is resolved. Further evidence
based on profit sensitivities to aggregate conditions; analyst forecast-error volatilities; and
high- versus low-tech industry subsamples supports our uncertainty explanation.

I. Introduction

Many empirical studies find that high real-investment stocks tend to yield
lower future returns than low investment stocks, with the difference, however,
disappearing some years after the investments (“investment anomaly”; see Titman,
Wei, andXie (2004), Anderson andGarcia-Feijóo (2006), Fama and French (2006),
(2008), Cooper, Gulen, and Schill (2008), Xing (2008), and Cooper and Priestley
(2011), among others). Spurred by this evidence, several recent linear factor models
include an investment factor long low and short high-investment stocks to success-
fully explain stock returns (see, e.g., Fama and French (2015), (2016), Hou, Xue,
and Zhang (2015), and Hou, Mo, Xue, and Zhang (2021)).
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We offer evidence that the investment anomaly is almost entirely driven by
the subsample of firms physically building additional production capacity
(“constructing firms”). Consistent with the vintage capital literature (see Arrow
(1962), Thompson (2010), among others),we develop a real optionsmodel to explain
that finding based on the idea that constructing firms have to experimentwithmodern
capacity to determine how to optimally operate it (“learning-by-doing”). Yet, since
the experimenting generates idiosyncratic variations in the capacity’s production
costs (see, e.g., Foster and Rosenzweig (1995)), modern capacity is characterized
by a high uncertainty over some initial period, dragging down the expected returns of
constructing firms until that uncertainty is resolved. We finally present evidence
supporting our uncertainty explanation, showing that the profits of firms with newly
built capacity are less sensitive to their industries’ aggregate conditions; that analysts
have a harder time forecasting the earnings of those firms; and that the conditional
effect of construction on the investment anomaly is more pronounced in industries
exposed to greater technological acceleration.

Our main empirical tests condition the investment anomaly on construction
work, separately considering investing firms building some fraction of their addi-
tional production capacity and those not doing so. Consistent with our focus on
physical capacity, we measure investments as the (scaled) change in gross property,
plant, and equipment (PPE) over the fiscal year ending in calendar year t�1.
Conversely, we use property, plant, and equipment construction-in-progress (PPE-
CIP) at the end of that fiscal year to identify those investing firms which build at least
some fraction of their additional capacity. Using the sample period over which PPE-
CIP data are available (1986–2016), we first show that, in line with the literature, our
investment proxy is significantly negatively related to future stock returns in the
pooled sample.More crucially, we next offer evidence that the investment premium is
only significant in the constructingbut not the non-constructing stock subsample.Our
value-weighted portfolio sorts, for example, suggest that the top-minus-bottom
investment decile yields an annualized mean return of �13.09% (t-stat: �3.39) in
the positive PPE-CIP subsample but of only�4.12% (t-stat:�1.37) in the 0 PPE-CIP
subsample. In the same vein, our Fama–MacBeth (FM) (1973) regressions demon-
strate that a 25-percentile rise in PPE-CIP scaled by assets makes the monthly
investment premium more negative by about 0.61% (t-stat: �3.19).1

In our theoretical work, we study a real options model of a firm facing a
stochastic price for its output and owning one option to produce output (“asset-in-
place”) and another one to buy or build onemore option to produce output (“growth
option”), where, for simplicity, we interpret the options to produce as factories.
Consistent with the vintage capital literature, the crux of our model is that since
building will ultimately yield a not-yet-existing factory plausibly embedding the
latest technological advances, the firm has to experiment with that factory to learn
how to operate it at its lowest achievable cost. Yet, since the recent microeconomic
learning literature suggests that learning is an inherently stochastic process

1As we discuss in detail later, our Supplementary Material shows that our main empirical results are
robust with respect to reasonable variations in our methodology and also emerge using other popular
investment proxies. It further suggests that our main empirical results have implications for the invest-
ment factor used in recent linear factor models, such as the Fama and French (2015) 5-factor model.
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(see, e.g., Herriott, Levinthal, andMarch (1985)), the experimenting likely induces
idiosyncratic uncertainty in the production costs of the factory over some initial
period, as in, for example, the target-input models of Wilson (1975), Foster and
Rosenzweig (1995), and Conley and Udry (2010). In contrast, the production costs
of bought (mature) capacity are not uncertain since that same literature also estab-
lishes that learning effects quickly evaporate with accumulated experience.

We next calculate the model-implied effect of buying versus building one
more factory on the firm’s expected return. In line with our empirical evidence, we
find that building has a far stronger negative effect than buying, with the effect,
however, reversing over a few years. As the only difference between buying and
building in ourmain calculations is that building (but not buying) ultimately yields a
factory with initially uncertain costs, our theoretical evidence must come from the
effects of uncertainty on the value and systematic risk of the firms’ asset-in-place
and growth option. As we reveal, greater uncertainty raises the values of both assets
but lowers (does not affect) the systematic risk of the asset-in-place (growth option).
The higher value arises because a greater option payoff uncertainty boosts the
options’ upside more than its downside potential. The lower systematic risk of
the asset-in-place arises because the greater uncertainty also lowers the option’s
dollar sensitivity to the underlying asset (“delta”), and the systematic risk of an
option is the (scaled) product of delta and the output price-to-option value ratio.2 In
total, a firm converting its growth option into an asset-in-place with greater payoff
uncertainty (i.e., a firm building capacity) thus essentially replaces a constant-risk
for a lower-risk option, depressing its expected return until the uncertainty resolves.

In our final empirical tests, we look into several new testable implications of
our uncertainty explanation to offer evidence supporting it. To achieve that, we
notice that the high uncertainty characterizing newly built capacity according to our
explanation is real (in contrast to financial) uncertainty. As a result, we ought to be
able to detect it in accounting and analyst data. In agreement, the profits of firms
with newly built capacity are less sensitive to their industry conditions than those of
their peers over a few years after the capacity’s installation but not before or after. In
the same vein, analysts find it harder to predict the earnings of firmswith newly built
capacity than those of their peers over those years but again not before or after. We
finally realize that the uncertainty characterizing newly built capacity ought to be
higher in industries exposed to greater technological acceleration since newly built
capacity plausibly differs more from existing (mature) capacity in such industries.
In agreement, the conditioning effect of construction on the investment anomaly is
stronger in industries producing more patent citations, exposed to more exogenous
R&D, or defined as high-tech by the literature.

We add to a large empirical literature studying stock-level investment anom-
alies, including the studies cited at the start of the introduction. Neoclassical studies
in that literature often claim that the anomalies arise either i) because firms invest

2While the positive effect of uncertainty on the options’ values aligns with the standard textbook
argument that (plain-vanilla) options benefit from idiosyncratic underlying-asset volatility (see, e.g.,
Hull (2022)), its negative effect on the systematic risk of the asset-in-place conforms with the theoretical
and empirical evidence of Galai and Masulis (1976), Johnson (2004), Hu and Jacobs (2020), and Aretz,
Lin, and Poon (2023) that a greater idiosyncratic call-payoff volatility lowers the call’s systematic risk
and thus expected excess return.
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more when their costs of capital are lower (“q-theory explanation”; see Zhang
(2005), Li and Zhang (2010), and Hou et al. (2015)) or ii) because investing firms
convert high-risk growth options into low-risk assets-in-place (“real options
explanation”; see Carlson, Fisher, and Giammarino (2006), (2010)). Conversely,
behavioral studies typically claim that the anomalies arise because managers often
invest into value-destroying projects to build empires and investors only slowly see
through these actions (see Jensen (1986), Titman, Wei, and Xie (2004), (2009),
(2013)). Alternatively, these studies sometimes claim that managers tend to issue
shares when their stock is overvalued and use the proceeds to invest (see Baker,
Stein, and Wurgler (2003), Polk and Sapienza (2009)). While the empirical evi-
dence on those explanations is mixed (see, e.g., Lam and Wei (2011), Lam, Li,
Prombutr, and Wei (2020)), the behavioral has an edge because it can explain why
investing stocks tend to yield only temporarily lower returns. We add to those
studies by offering a new real-options-based explanation of investment anomalies
not only consistent with our new stylized facts but also those in the literature.

We also relate to a literature studying the links between uncertainty and
expected stock returns. Using a partial equilibrium model in which investors
observe the true asset value of a levered firm only with an additive noise term,
Johnson (2004) shows that greater uncertainty about true value leads to a lower
expected stock return. While we rely on a similar mechanism, our model features
real (and not financial) uncertainty. Using a general equilibriummodel in which the
true profitability of innovative capacity is exogenous but unobservable, Pastor and
Veronesi (2009) reveal that optimal experimenting with the capacity to learn about
its true profitability can lead to its wide-spread adoption, raising its systematic risk.
Using a general equilibrium model in which young firms learn only slowly about
their true exposures to common shocks, Ai, Croce, Diercks, and Li (2018) docu-
ment that the uncertainty about exposures makes those firms less able to optimally
react to shocks, lowering their systematic risk. While these studies assume that
uncertainty arises from imprecise knowledge about parameter values, we assume
that it arises from the firm experimenting with modern capacity to find out how to
best operate that capacity, more directly linking uncertainty and real outcomes.

We finally also add to the real options asset pricing literature. In particular, our
real options model is similar to those of Carlson, Fisher, and Giammarino (2004),
Zhang (2005), and Cooper (2006) insofar as it also features operating leverage
arising from production costs and limits to growth.3 Adding disinvestment options,
it would also be similar to the models of Hackbarth and Johnson (2015) and Aretz
and Pope (2018). We abstract from disinvestment options since they have virtually
no effect on the expected returns of firms close to exercising their growth options,
which are our exclusive focus. Conversely, our model differs from those of Ai
and Kiku (2013) and Kogan and Papanikolaou (2013), (2014) insofar as we
assume constant investment costs, rather than investment costs exogenously or

3While Berk, Green, and Naik (1999) and Gomes, Kogan, and Zhang (2003) are the genesis of the
real options asset pricing literature, their models are so-called discount-rate-shock models. In compar-
ison, our model is a cash-flow-shock model, consistent with the models developed in the studies cited in
this sentence and the next.
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endogenously related to the economic state.4 Innovating upon all those models, we
allow for temporarily uncertain production costs of newly built capacity in our
model, using the vintage capital as well as microeconomic learning literatures as
foundations for that choice.We then establish that it is that feature of ourmodel (and
not those it shares with other models) enabling it to reproduce the investment
anomaly.

We proceed as follows: In Section II, we offer our main empirical evidence. In
Section III, we develop a real options model of the firm rationalizing that evidence.
In Section IV, we empirically assess the model’s new implications. Section V
concludes. We relay theoretical proofs plus supplementary theoretical and empir-
ical evidence to the Supplementary Material.

II. The Pricing of Investment and Construction

In this section, we offer our main empirical evidence. To do so, we first
introduce our main analysis variables. We next study the investment anomaly both
in the full sample and the subsamples of firms physically building or not building
additional capacity. We finally qualitatively discuss the results from robustness and
supplementary tests, offering the details in our SupplementaryMaterial. We review
our control variables, data sources, and sample construction and winsorization
techniques, concisely summarize our analysis variable definitions (see Table A1),
and give descriptive statistics (see Table A2) in Appendix A.

The key takeaways from our main empirical tests are that while the investment
anomaly still exists in our full sample, it is almost exclusively driven by the
subsample of firms physically building additional capacity. Notwithstanding, the
anomaly also dissipates in that subsample about 4–5 years after the firms’ invest-
ments into additional capacity.

A. Main Analysis Variables

In line with our focus on investments into physical production capacity, we
measure a firm’s investment activity as the change in its gross PPE over the fiscal
year ending in calendar year t�1 scaled by its assets at the start of that fiscal year
(INVESTMENT). We then use the calculated value from June of calendar year t
to May of calendar year tþ1. Different from CAPEX-based proxies, such as
Titman et al.’s (2004) abnormal CAPEX or Xing’s (2008) CAPEX-to-PPE,
INVESTMENTalso captures physical capacity expansions originating from acqui-
sitions. Different from broader proxies, such as Cooper et al.’s (2008) asset growth,
it, however, excludes investments into non-productive (physical or intangible)
assets, such as cash, cash equivalents, and account receivables (see Peters and
Taylor (2017)).

4The upshot is that growth options are riskier than assets-in-place in our model. Thus, if growth firms
simply held more growth options than value firms, our model would not explain the value premium. Yet,
if they also held more newly built assets-in-place (i.e., not-long-ago-exercised options), it could explain
the value premium. Despite that, given the temporary nature of the uncertainty in production costs, our
model would only ever produce a temporary but not a persistent value premium.
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We rely on a firm’s PPE-CIP account balance (Compustat item: fatc) at the end
of the fiscal year in calendar year t�1 to find out whether some of the firm’s
investments resulted in it physically building additional capacity. As mandated by
U.S. accounting rules, firms have to collect expenses incurred in the construction of
an asset (as, e.g., material costs, vendor invoices, and transportation expenses) in
the PPE-CIP account over the construction period. When construction finishes,
they have to transfer the account balance into the appropriate fixed-PPE account,
often “buildings” or “machinery and equipment.” Since firms with a positive PPE-
CIP balance must necessarily have outstanding construction work, we often choose
them as our “constructing firms,” identifying those firms using a dummy variable
equal to 1 for them and else 0 (DUMMY_CONSTRUCTION). To be more gran-
ular, we however also look into a firm’s construction intensity, defined as the PPE-
CIP balance at the end of the fiscal year in calendar year t�1 scaled by assets at the
start of that fiscal year (CONSTRUCTION).

We acknowledge that our strategy to identify constructing firms based on PPE-
CIP data is imperfect. While a greater amount of capacity-under-construction raises
both gross PPE (and thus INVESTMENT) and PPE-CIP, we only observe the PPE-
CIP balance at the end of a fiscal year. The upshot is that we do not capture
construction expenses arising from projects started either before or within the fiscal
year ending in calendar year t�1 and finished within that year.5 An additional
upshot is that the PPE-CIP balance at the end of that same fiscal year may include
construction expenses not incurred over that year (and thus the period over which
we compute INVESTMENT) but over earlier years. Notwithstanding, the PPE-CIP
data still allow us to capture most larger-scale construction projects since, for
example, the construction of a production factory takes, on average, about 2 years
(see, e.g., Koeva (2000)).

B. The Pricing of INVESTMENT

We next rely on portfolio sorts to study whether, in accordance with the
literature, INVESTMENT is significantly negatively related to future stock returns
over our sample period. At the end of each June in calendar year t, we thus sort our
sample firms into portfolios according to the 10th, 50th, and 90th percentiles of the
INVESTMENT distribution on that date, focusing on these percentiles to contrast
firms making substantial investments into their PPE with those making close-to-no
such investments. We also create a spread portfolio long the top and short the
bottom INVESTMENT portfolio (“LS90–10”). We value or equally weight the
portfolios and hold them from start of July of calendar year t to end of June of
calendar year tþ1. We risk-adjust portfolio returns by regressing them on either
Fama and French’s (2015) 5-factor-model or Hou et al.’s (2015) q-theory factors
and reporting the regression intercept (“alpha”). In either case, we however omit the
investment factor (labeled CMA or IA) from the other factors since its inclusion
would explain the spread portfolio return almost by construction.

5To partially address this issue, we later also choose as constructing firms those with a positive PPE-
CIP balance at the start or end of the fiscal year ending in calendar year t�1.
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Table 1 presents the portfolio sort results, showing the annualizedmean excess
returns and alphas of the value (Panel A) and equal (Panel B) weighted portfolios
(in%) plus several portfolio characteristics. The portfolio characteristics include the
average number of stocks and the average cross-sectional means of INVESTMENT
and CONSTRUCTION over our sample period. The table further reports Newey
and West (1987) t-statistics calculated with a 6-month lag length for the spread
portfolio returns and alphas (in square brackets). In line with the literature, the table
shows that INVESTMENT commands a significant negative premium. Consider-
ing the value-weighted portfolios, column 4 suggests that the mean excess return
drops from 9.57% per annum for the bottom INVESTMENT decile to 3.50% for
the top (see Panel A). The spread is a significant�6.07% (t-stat:�2.27). Turning to
the equal-weighted portfolios, we find an even stronger negative relation, with the
spread over them being a significant �7.59% (t-stat: �3.04; Panel B). Unsurpris-
ingly, columns 5 and 6 reveal that correcting for either set of benchmark factors
hardly affects the mean spread portfolio returns in Panels A and B.

In line with our expectations, column 2 of Table 1 confirms that while the
bottom decile firms hardly raise their PPE in the average year, the top decile firms
raise it by a substantial value-weighted 44% and equal-weighted 47% of their
assets. Consistent with the positive correlation between INVESTMENT and
CONSTRUCTION shown in Table A2 in Appendix A, column 3 demonstrates
that while the bottom decile firms have less than 1% of their assets under construc-
tion, the corresponding number for the top decile firms is a value-weighted 3% and

TABLE 1

Univariate Investment Portfolios

Table 1 presents the results of portfolios univariately sorted on INVESTMENT. At the end of June of each calendar year t , we
sort stocks into portfolios according to the 10th, 50th, and 90th percentiles of the INVESTMENT distribution at the end of that
month. We value (Panel A) or equally (Panel B) weight the portfolios and hold them from start-July of year t to end-June of year
t þ1. We also form a spread portfolio long the top and short the bottom portfolio (“LS90–10”). Columns 1–3 report the mean
number of stocks and the time-series means of the value (Panel A) or equal (Panel B) weighted cross-sectional means of
INVESTMENTandCONSTRUCTIONper portfolio, respectively. Theplain numbers in columns 4–6 are, respectively, themean
excess returns and alphas of the q-theory and 5-factor (FF5) model (excluding their investment factors), annualized and in
percentage. The numbers in square brackets in those same columns are Newey and West (1987) t-statistics with a 6-month
lag length. See Table A1 in Appendix A for more details about variable definitions.

Mean #
Stocks

Mean
INVESTMENT

Mean
CONSTRUCTION

Mean Excess
Return

q-Theory Model
Alpha

FF5 Model
Alpha

1 2 3 4 5 6

Panel A. Value-Weighted Portfolios

00–10 162 0.55 0.72 9.57 1.47 0.06
10–50 649 2.95 1.22 8.33 0.59 0.42
50–90 649 9.36 2.01 8.01 0.94 1.30
90–100 162 44.41 2.80 3.50 �3.91 �5.51
LS90–10 �6.07 �5.38 �5.57
t-stat [�2.27] [�2.26] [�2.22]

Panel B. Equal-Weighted Portfolios

00–10 162 0.55 0.46 11.19 4.35 1.18
10–50 649 2.88 0.84 10.86 3.67 1.15
50–90 649 9.81 2.08 9.74 2.36 �0.04
90–100 162 47.08 5.47 3.60 �3.41 �7.20
LS90–10 �7.59 �7.76 �8.38
t-stat [�3.04] [�3.45] [�3.64]
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an equal-weighted 5%. Finally, column 1 reassures us that all portfolios univariately
sorted on INVESTMENT contain enough stocks to be well-diversified.

C. The Conditional Effect of CONSTRUCTION

We now present our main empirical result, showing that the negative premium
of INVESTMENT is almost exclusively attributable to firms physically building
some fraction of their additional capacity. At the end of each June in calendar year t,
we thus again sort our sample firms into portfolios according to the 10th, 50th, and
90th percentiles of the INVESTMENT distribution on that date. We next, however,
also sort them into portfolios based on whether DUMMY_CONSTRUCTION
takes on a value of 0 or 1. We finally create double-sorted portfolios from the
intersection of the two univariate sorts. Within each DUMMY_CONSTRUCTION
portfolio, we also form a spread portfolio long the top and short the bottom
INVESTMENT portfolio (“LS90–10”). We finally create double-spread portfolios
long the univariate spread portfolio formed from positive PPE-CIP stocks
(DUMMY_CONSTRUCTION = 1) and short that formed from 0 PPE-CIP stocks
(DUMMY_CONSTRUCTION = 0). We again value or equally weight the portfo-
lios, hold them from July of calendar year t to June of calendar year tþ1, and risk-
adjust their mean returns using the same factors as before.

Using the same columns as Table 1, Table 2 offers the value (Panel A) and
equal (Panel B) weighted double portfolio sort results. While the first (second)
subpanel in each main panel focuses on the positive (0) PPE-CIP stock portfolios,
the final subpanel concentrates on the double-spread portfolios. The table reports
that the investment anomaly is almost entirely driven by firms with positive PPE-
CIP values (i.e., constructing firms). The value-weighted portfolios in Panel A, for
example, establish that while the INVESTMENT spread portfolio formed from
constructing firms yields a significant mean excess return of �13.09% per annum
(t-stat:�3.39), the corresponding number for the spread portfolio formed from non-
constructing firms is an only insignificant �4.12% (t-stat: �1.37; see column 4).
The spread in those numbers is a significant �8.97% (t-stat: �2.09). The equal-
weighted portfolios in Panel B yield similar conclusions. As before, columns 5 and
6 demonstrate that adjusting for either set of benchmark factors again only mar-
ginally affects our main conclusions. Interestingly, columns 2 and 3 finally reveal
that PPE-CIP accounts for an economically meaningful 25% of the PPE changes of
top-decile firms with positive PPE-CIP values in both panels.6

Figure 1 analyzes the economic significance of our double portfolio sort
results, plotting the cumulative returns of value (Graph A) and equal (Graph B)
weighted spread portfolios long the bottom INVESTMENT decile and short the
top formed from either all stocks, constructing stocks, or non-constructing stocks
over our sample period. The figure reveals that the spread portfolio formed from

6Surprisingly, the bottom INVESTMENT decile firms in Panels A and B yield higher mean
CONSTRUCTION than INVESTMENT values. Since new construction (i.e., PPE-CIP) expenses raise
gross PPE and, in turn, INVESTMENT, the inference is that those firms must still be engaged in
construction projects started before the fiscal year ending in calendar year t�1, in line with some
construction projects taking a long time to complete.
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constructing stocks is markedly more profitable than that formed from non-
constructing stocks (e.g., value-weighted excess payoff: about $4 vs. about $1).

In Table 3, we switch to FM regressions to verify that our evidence is robust
to variations in methodology and to more granularly conditioning on construction.

TABLE 2

Portfolios Double-Sorted on Investment and Construction

Table 2 presents the results from portfolios double-sorted on INVESTMENT and DUMMY_CONSTRUCTION. At the end of
June of each calendar year t , we sort stocks into portfolios according to the 10th, 50th, and 90th percentiles of the
INVESTMENT distribution at the end of that month. We independently sort them into portfolios according to whether
DUMMY_CONSTRUCTION is 0 or 1 at the same time. The intersection of the two sets gives us the double-sorted
portfolios. We value (Panel A) or equally (Panel B) weight the portfolios and hold them from start-July of year t to end-June
of year tþ1. We report the DUMMY_CONSTRUCTION = 1 (0) portfolio results in the first (second) subpanel of each panel.
Within each DUMMY_CONSTRUCTION portfolio, we further form a spread portfolio long the top and short the bottom
investment portfolio (“LS90–10”). We finally form a spread portfolio long the investment spread portfolio formed from
DUMMY_CONSTRUCTION = 1 and short that formed from DUMMY_CONSTRUCTION = 0 stocks (see third subpanels).
Columns 1–3 report the mean number of stocks and the time-series means of the value (Panel A) or equal (Panel B) weighted
cross-sectional means of INVESTMENT and CONSTRUCTION per portfolio. The plain numbers in columns 4–6 are,
respectively, the mean excess returns and alphas of the q-theory and 5-factor (FF5) model (excluding their investment
factors), annualized and in percentage. The numbers in square brackets in those columns are Newey and West (1987) t-
statistics with a 6-month lag length. See Table A1 in Appendix A for more details about variable definitions.

Mean #
Stocks

Mean
INVESTMENT

Mean
CONSTRUCTION

Mean Excess
Return

q-Theory Model
Alpha

FF5 Model
Alpha

1 2 3 4 5 6

Panel A. Value-Weighted Portfolios

Panel A.1: Constructing Stocks

00–10 41 0.54 2.04 11.99 3.49 2.05
10–50 229 3.05 2.82 8.05 �0.05 �0.45
50–90 272 9.33 4.75 9.03 1.69 2.28
90–100 58 37.95 9.23 �1.10 �7.51 �6.75
LS90–10 (1) �13.09 �11.01 �8.80
t-stat [�3.39] [�3.13] [�2.75]

Panel A.2: Non-Constructing Stocks

00–10 121 0.55 0.00 9.49 1.50 0.04
10–50 420 2.87 0.00 8.84 1.21 1.11
50–90 377 9.40 0.00 7.27 0.33 0.50
90–100 105 45.87 0.00 5.37 �1.84 �4.68
LS90–10 (2) �4.12 �3.34 �4.72
t-stat [�1.37] [�1.19] [�1.57]

Panel A.3: Difference

Diff. (1)–(2) �8.97 �7.66 �4.08
t-stat [�2.09] [�1.79] [�0.98]

Panel B. Equal-Weighted Portfolios

Panel B.1: Constructing Stocks

00–10 41 0.56 1.34 14.17 6.85 3.42
10–50 229 3.00 1.95 11.22 3.87 1.10
50–90 272 9.92 3.98 10.29 2.90 0.05
90–100 58 39.29 9.40 1.37 �5.84 �8.66
LS90–10 (1) �12.80 �12.69 �12.08
t-stat [�5.75] [�5.86] [�6.39]

Panel B.2: Non-Constructing Stocks

00–10 121 0.55 0.00 10.29 3.63 0.55
10–50 420 2.83 0.00 10.50 3.38 0.93
50–90 377 9.76 0.00 9.41 2.08 �0.02
90–100 105 51.10 0.00 5.01 �1.77 �6.16
LS90–10 (2) �5.28 �5.40 �6.71
t-stat [�1.65] [�1.81] [�2.19]

Panel B.3: Difference

Diff. (1)–(2) �7.52 �7.29 �5.37
t-stat [�2.53] [�2.30] [�1.77]
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In column 1, we regress single-stock returns over month t on INVESTMENT and
our controls measured until the start of that month to confirm that we also find an
investment anomaly in our regressions. More importantly, columns 2 and 3
add interactions between INVESTMENT and either CONSTRUCTION or a
CONSTRUCTION rank variable and the CONSTRUCTION variable itself. While
the interactionwithCONSTRUCTIONdirectly conditions the INVESTMENTanom-
aly on a firm’s construction intensity, its effect may be unduly distorted by outliers. To
guard against outliers, we also use the alternative interaction. In columns 4 and
5, we finally separately run the regression in column 1 on positive (DUMMY_
CONSTRUCTION = 1) or 0 (DUMMY_CONSTRUCTION = 0) PPE-CIP stocks,
reporting the differences in estimates in column 6. While the plain numbers are
monthly premium estimates (in %), those in square brackets are Newey and West
(1987) t-statistics with a 6-month lag length.

The FM regressions yield results in accordance with the portfolio sorts. To
be specific, column 1 of Table 3 shows that the INVESTMENT premium remains
significantly negative (estimate: �1.19% per month; t-stat: �3.23) even after
accounting for MARKET_BETA, MARKET_SIZE, BOOK_TO_MARKET,
MOMENTUM, and PROFITABILITYeffects in stock returns. More noteworthily,
columns 2 and 3 demonstrate that the premium crucially depends on the extent to
which firms build additional capacity. Column 3, e.g., reveals that a 25-percentile
rise in CONSTRUCTION makes the premium more negative by about 0.61% per
month (t-stat: �3.19). In complete agreement, the subsample regressions in col-
umns 4 and 5 establish that the INVESTMENT premium is a highly significant
�2.51% per month (t-stat: �6.94) in the positive PPE-CIP subsample but an only
insignificant �0.61% (t-stat: �1.56) in the 0 PPE-CIP subsample, with the differ-
ence equal to a highly significant �1.90% (t-stat: �4.20; see column 4�5).

Given the well-known evidence that the negative full-sample investment
premium emerges only over a short period after the investments (see Titman
et al. (2004)), a final question is whether the corresponding premium in constructing

FIGURE 1

The Cumulative Returns of Investment Spread Portfolios Formed from All,
Constructing, and Non-Constructing Stocks

In Figure 1, we plot the cumulative returns of value (Graph A) and equal (Graph B) weighted spread portfolios long the bottom
INVESTMENT decile and short the top decile over our sample period. The spread portfolios are formed from either all firms
(solid blue line), only constructing firms (dashed red line), or only non-constructing firms (dotted yellow line).
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stocks is similarly temporary. To find out, we reestimate the subsample FM regres-
sions in columns 4 and 5 of Table 3, leading, however, the stock return used as
regressant by 0–60 months. Plotting the thus calculated INVESTMENT premiums
obtained from the constructing and non-constructing firm subsamples in Graphs A
and B of Figure 2, the figure vividly suggests that the investment premium also
disappears in the subsample of constructing firms after about 4–5 years.7

D. Robustness Tests and Further Implications

Our Supplementary Material shows that our main evidence is robust with
respect to reasonable methodological changes concerning, e.g., the treatment of
missing PPE-CIP observations, the definition of constructing firms, and our sales,
stock price, and market size filters (see the appendix and the Supplementary
Material for more details). In the same Supplementary Material, we further dem-
onstrate that our main evidence is also robust with respect to running weighted least
squares (WLS) regressions based on 1-month-lagged market-size or gross-return
rather than the ordinary least squares (OLS) regressions in Table 3.

TABLE 3

Regressions of Stock Returns on Investment Interacted with Construction

Table 3 presents the results from Fama andMacBeth (1973) regressions of single-stock returns over month t on combinations
of investment, construction, and controls measured until the end of month t�1. In columns 1–3, we report the results from full-
sample regressions on, respectively, INVESTMENT and the controls; INVESTMENT, an interaction between INVESTMENT
and CONSTRUCTION, CONSTRUCTION, and the controls; and INVESTMENT, an interaction between INVESTMENT and a
CONSTRUCTION rank variable, the rank variable, and the controls. In columns 4 and 5, we report the results from subsample
regressions run separately on firms with a positive and 0 CONSTRUCTION value, respectively. Column 4–5 finally reports the
difference in estimates across the subsample regressions. The plain numbers aremonthly premiumestimates, in percentage.
The numbers in square brackets are Newey andWest (1987) t-statistics calculated with a 6-month lag length. See Table A1 in
Appendix A for more details about variable definitions.

All
Stocks

All
Stocks

All
Stocks

Cons.
Stocks

Non-Cons.
Stocks Spread

1 2 3 4 5 4 – 5

INVESTMENT �1.19 �0.85 �0.80 �2.51 �0.61 �1.90
[�3.23] [�2.06] [�1.82] [�6.94] [�1.56] [�4.20]

INVESTMENT × CONSTRUCTION �20.97
[�2.50]

CONSTRUCTION 0.47
[0.33]

INVESTMENT × RANK_CONSTRUCTION �2.43
[�3.19]

RANK_CONSTRUCTION 0.19
[2.00]

MARKET_BETA �0.00 0.00 0.00 0.02 0.01 0.01
[�0.01] [0.00] [0.01] [0.08] [0.04] [0.09]

MARKET_SIZE �0.03 �0.03 �0.04 �0.07 �0.02 �0.05
[�0.70] [�0.75] [�0.82] [�1.56] [�0.50] [�1.90]

BOOK_TO_MARKET 0.23 0.22 0.22 0.11 0.27 �0.16
[2.65] [2.57] [2.58] [0.96] [3.24] [�1.79]

MOMENTUM 0.91 0.91 0.91 0.81 0.98 �0.17
[4.18] [4.16] [4.19] [3.29] [4.60] [�1.23]

PROFITABILITY 0.67 0.66 0.67 0.58 0.69 �0.11
[2.89] [2.88] [2.90] [2.00] [2.97] [�0.47]

Constant 0.90 0.90 0.90 1.15 0.82 0.33
[2.03] [2.05] [2.04] [2.70] [1.82] [1.79]

7Notice that, even when x = 0, the investments occurred already about a year in the past.
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Turning to broader implications, our Supplementary Material establishes that
our main evidence also emerges using alternative popular investment proxies, such
as i) CAPEX-to-PPE (Xing (2008)); ii) abnormal CAPEX-to-sales (Titman et al.
(2004)); iii) capital growth (Peters and Taylor (2017)); and iv) asset growth (Cooper
et al. (2008)). In line with expectations, our evidence however becomes weaker the
less a proxy reflects investments into physical productive capacity. The same
material finally documents that Fama and French’s (2015) CMA benchmark factor
formed from constructing firms significantly outperforms the original factor and the
factor formed from non-constructing firms, and that only the constructing-firm
factor (but not its counterpart) prices the original factor in spanning tests.

Taken together, this section suggests that the investment anomaly is almost
entirely driven by firms physically building additional capacity. Notwithstanding,
the anomaly also disappears in that subsample of firms about 4–5 years after the
investments.

III. A Real Options Model with Newly Built Capacity

In this section, we develop a real options model of the firm to rationalize our
empirical evidence in Section II.We first discuss themicroeconomic foundations of
our model. We next outline its assumptions and solution.We finally study the value
and systematic risk implications of buying versus building capacity and then
directly compute the model-implied effect of an output-price-induced real invest-
ment on the firm’s expected excess return.

A. The Microeconomic Foundations of Our Model

We start from the insight that firms physically building additional production
capacity will ultimately obtain not-yet-existing capacity plausibly embedding the

FIGURE 2

The INVESTMENT Premium over the Post-Investment Period

In Figure 2, we plot the INVESTMENT premium from FM regressions of single-stock returns over month t þx on INVESTMENT
andcontrolsmeasureduntil the start ofmonth t , separately estimated on firmswithpositive (GraphA) and 0 (GraphB) PPE-CIP
values (see columns 4 and 5 in Table 3). We let x vary from 0 to 60 months in increments of 1. Solid lines are monthly
INVESTMENT premium estimates (in %), while dotted lines are 95% confidence bands calculated from Newey and West
(1987) standard errors with a 6-month lag length.
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most recent technological advances. In line with the vintage capital literature (see,
e.g., Arrow (1962), Solow (1997), and Thompson (2010)), we reason that firms
have to experiment with (i.e., operate) that capacity to determine how to minimize
its production costs and to realize its full potential (“learning-by-doing”). Borrow-
ing from the recent microeconomic learning literature, we conjecture that learning-
by-doing is an inherently stochastic process (Herriott et al. (1985)). In particular, the
so-called target-input models in that literature conjecture that while firms know the
minimum feasible cost at which modern capacity can be operated, they have to rely
on trial-and-error methods to find the optimal combination of inputs necessary to
achieve that cost (see Wilson (1975), Foster and Rosenzweig (1995), and Conley
andUdry (2010)).8 At the start of each period, firms thus use their current best-guess
of that combination to produce output, observe the resulting costs over the period,
and update their current best-guess at the end of the period. We highlight four
important implications of target-input models for our modeling choices:

1. While firms learn about modern capacity, the production costs of that capacity
are not only higher but also more uncertain than those of equivalent mature
capacity.

2. Since learning is unlikely to be related to the economic state, the uncertainty in
the initial production costs of modern capacity is plausibly idiosyncratic.

3. The effects of learning quickly evaporate with accumulated experience, so that
only the initial (but not later) production costs of newly built capacity are
uncertain.

4. For the same reason, learning matters only for modern but not mature capacity.

In the following subsections, we work these implications into a standard real
options model of the firm, to find out whether stochastic learning about how to best
operate modern capacity helps us to shed more light on our empirical evidence in
Section II.9

B. Modeling Assumptions

We consider an all-equity-financed firm operating in continuous time
t∈ 0,þ∞½ � and owning one option to produce a unique output good (“asset-in-
place”) and one option to buy or build another option to produce the same output
good (“growth option”).10 For simplicity, we interpret the options to produce as
factories, index them by k ∈ 1,2f g, where k = 1 (2) denotes the installed (not-yet-
installed) factory, and assume that the installed factory is “mature” (to be clarified
later). Further assuming that the firm can costlessly and instantaneously switch on

8Jovanovic and Nyarko (1995), (1996) and Karp and Lee (2001) rely on similar stochastic learning
models.

9We are not the first to study how learning affects asset prices. To wit, Ai, Croce, and Li (2013) and
Ai, Croce, Diercks, and Li (2018) also assume that firms only slowly learn about the functionality of
modern capacity, inducing them to initially make suboptimal real decisions lowering their systematic
risk (see also Li, Tsou, and Xu (2023)).

10In a prior version of our article, we awarded the firm a finite number of assets-in-place and an
infinite number of growth options, eliminating the “limits to growth” implicit in the current version.
Doing so, our model produced insights in broad agreement with those obtained from the model in the
current version.
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and off the installed factory, the switched-on factory produces one output good unit
per time unit at the constant variable cost C1. Conversely, the firm instantaneously
sells all produced output at the stochastic price θ obeying the geometric Brownian
motion (GBM):

dθ = αθdtþσθdW ,(1)

where α and σ are, respectively, the constant output-price drift rate and volatility,
andW is a Brownian motion. Assuming that the firm switches on (off) the installed
factory in some instant, its total profits per time unit are:Π = θ�C1 (Π = 0), so that
the firm maximizes its value by switching on the installed factory in that instant if
and only if θ≥C1.

In each instant, the firm can spend the constant I to exercise the growth option
and to buy or build the underlying factory. We abstract from choice, so that the firm
either always buys or always builds. If the firm buys the factory, it obtains a mature
factory able to produce one more output good unit per time unit at a constant cost
of C2, where C2 >C1. Conversely, if the firm builds the factory, it initially has
to experiment with the factory to learn how to best operate it. To be specific, we
assume that the firm uses trial-and-error methods to find the combination of inputs
necessary to achieve the lowest feasible cost, inducing the cost of the factory to not
only be higher than that of the mature factory but also uncertain (see Section III.A).
In line with evidence that mature and newly built factories tend to be similarly
productive (see, e.g., Jensen,McGuckin, and Stiroh (2001)), we next, however, also
posit that newly built factories save on “repair, maintenance, and upgrading costs”
incurred by mature factories to be able to compete.

More rigorously, let us denote the initial cost of the newly built factory by Ct
2

and relate its log value, ct2 � ln Ct
2

� �
, to the log cost of mature capacity, c2 � ln C2ð Þ,

by

ct2 = c2�mþ lþ ε,(2)

where m> 0 are the constant repair, maintenance, and upgrading costs incurred by
the mature factory to stay competitive (the advantage of building) and lþ ε the
excess costs incurred by the newly built factory due to the firm still learning how to
best operate that factory, with l > 0 a constant and ε a mean-zero normal error with
variance σ2ct2

(the disadvantage).11 We then ensure that the mature and newly built
factory tend to be similarly productive by setting m = l. We finally assume that the
newly built factory matures (i.e., that its log production cost becomes equal to c2)
according to a Poisson process with a constant intensity parameter λ.

We conjecture that, before the installation of the newly built factory, the firm
and stock investors know the variance but not the realization of the uncertain
component of the cost due to the firm still learning about the factory, ε. To keep
themathematics tractable, we, however, assume that, immediately after installation,

11While target-input models imply that the costs of a newly built factory take on multiple uncertain
values above the lowest feasible cost during the period over which the firm experiments with the factory,
we rely on just one single value to be able to solve our model in quasi-closed-form.
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the firm learns about the realization. In contrast, investors never learn about it as
they do not observe the firm’s operating decisions and the firm cannot communicate
its knowledge to them. Notwithstanding, the firm is able to signal to investors
(through, e.g., its financial reports) once it has finished learning about the newly
built factory and can operate that factory at the no-longer-uncertain log costs of c2.12

Assuming a complete market without arbitrage chances, the first two funda-
mental theorems of asset pricing imply the existence of a unique stochastic discount
factor, Λ, which prices all assets by construction. We posit that the differential of
that factor obeys the GBM:

dΛ= � rΛdtþσΛΛdW
Λð Þ,(3)

where r is the constant risk-free rate of return, σΛ is the constant volatility of the
stochastic discount factor, and W Λð Þ is a Brownian motion. We further conjecture
that dWdW Λð Þ = ρdt, where ρ is the constant instantaneous correlation between the
output price θ and the stochastic discount factorΛ and determines the risk premiumof
a mimicking portfolio perfectly positively correlated with θ. To be more specific, the
expected excess return of that portfolio is μ� r = � cov dθ=θ,dΛ=Λð Þ=dt = �ρσσΛ.
In line with Section III.A, we finally assume that the excess cost of newly built
capacity due to learning-by-doing effects, ε, is independent of the stochastic discount
factor since learning is unlikely to be related to the economic state.13

C. Model Solution

In our model, the firm is a portfolio of options to produce or to buy or build
more options to produce. The upshot is that the firm’s value is the sum taken over
the option values and that its expected excess return is, consistent with portfolio
theory, a value-weighted average of the expected excess option returns. In the
Supplementary Material, we show that the expected (instantaneous) excess return
of each option, E RO½ �� r, is

E RO½ �� r =V θ θ=Vð Þ μ� rð Þ,(4)

where V is the option value and V θ the first partial derivative of option value with
respect to the output price θ. Viewing V θ θ=Vð Þ as the option’s “elasticity,” we
notice that, since μ� r is constant, it is variations in that elasticity which drive
variations in E RO½ �� r.

Following standard techniques (see Dixit and Pindyck (1994)), our Supple-
mentary Material shows that the value of the mature factory indexed by k, Vm

k , is

12We stress that the difference in the firm’s and investors’ information sets is important since it is
investors who value the firm. The upshot is that investors still consider uncertainty in the initial costs of a
newly built factory even after the firm owns the factory and can observe those costs.

13While it may be surprising that we abstract from the time necessary to build factories, we do so
since prior studies often find that time-to-build has only marginal asset pricing implications (see, e.g.,
Carlson et al. (2010)). In agreement with that conclusion, our Supplementary Material confirms that an
extended version of our model with time-to-build yields results identical to those extracted from our
main model.
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Vm
k =

A1θ
β2 þθ

δ
�Ck

r
, if θ≥Ck ,

A2θ
β1 , if θ <Ck ,

8<
:(5)

where β1, β2, A1, and A2 are parameters defined in that material, and δ� μ�α.
While A2θ

β1 and A1θ
β2 are the values of the real options to switch on and off the

factory, respectively, θ=δ�Ck=r is the value obtained from perpetually using the
factory.

We offer the value of a newly built factory in the following proposition:

Proposition 1. The value of a newly built factory able to produce one output
good unit per time unit at an uncertain log variable cost of ct2 = c2þμct2 þ ε, where

ε�N 0,σ2ct2

h i
, over a length of time obeying a Poisson process with constant

intensity parameter λ and a constant log variable cost of c2 after that period, Vnb
2 , is

Vnb
2 =

P Ct
2 ≥ θf g E1 B2½ �θβ01 þB3θ

β02 � θ

δþ λ

� �
þP θ >Ct

2 ≥C2f g E2 B1½ �θβ02 �E2 Ct
2

� �
rþ λ

� �

þP Ct
2 <C2f g E3 D1½ �θβ02 �E3 Ct

2

� �
rþ λ

� �
þA1θ

β2 þθ
δ
�C2

r
þ C2

rþ λ
, if θ≥C2,

P Ct
2 ≥C2f gE4 B4½ �θβ01 þP C2 >C

t
2 ≥ θf gE5 D4½ �θβ01

þP Ct
2 < θf g D2θ

β01 þE6 D3½ �θβ02 þ θ

δþ λ
�E6 Ct

2

� �
rþ λ

� �
þA2θ

β1 , if θ <C2,

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

(6)

where A1, A2, B1 to B4, D1 to D4, β1, β2, β
0
1, and β02 are parameters, P Ct

2 ≥ θf g,
P θ >Ct

2 ≥C2f g, P Ct
2 <C2f g, P Ct

2 ≥C2f g, P C2 >C
t
2 ≥ θf g, and P Ct

2 < θf g are probabilities,

and E1 :½ � to E6 :½ � are conditional expectations. We state the definitions of the
parameters and give the closed-form solutions for both the probabilities and the
conditional expectations in the Supplementary Material.

Proof. See the Supplementary Material.14

We can derive equation (6) by recognizing that, conditional on the uncertain
initial variable costCt

2, the newly built factory is equivalent to a no-cost-uncertainty
factory able to produce one output unit per time unit at a constant cost ofCt

2 over an
initial period with a random length and at a constant cost of C2 afterward. After
valuing the no-cost-uncertainty factory, we can then simply integrate its closed-
form solution over the distribution of Ct

2 to obtain the closed-form solution for the
value of the newly built factory with uncertainty.

Using more standard techniques again, our Supplementary Material finally
reveals that the value of the growth option on the second factory, G2, is

14We note that the μct2 ��mþ l parameter in the proposition allows us to explore the case in which
newly built capacity tends to be more or less productive than mature capacity (see our Supplementary
Material).
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G2 =
Vnb

2 � I , if θ≥ θ∗2,

Eθβ1 , if θ < θ∗2,

(
(7)

where E and θ∗2, the investment-triggering output-price threshold, are parameters
defined in that material. While we can interpret Vnb

2 � I as the growth option’s
payoff upon an exercise, Eθβ1 is the value of the real option to exercise the growth
option in the future. As well-known, equation (7) suggests that the firm optimally
exercises the growth option when the state variable crosses some fixed threshold
from below. Importantly, the equation also implies that the growth option’s elas-
ticity is a constant G2ð Þθ θ=G2ð Þ= β1Eθβ1�1 θ= Eθβ1

� �� �
= β1.

We can finally calculate the firm’s optimal capacity, K∗, as

K∗ =
X2
k = 1

I θ≥ θ∗kf g,(8)

where I θ≥ θ∗kf g is an indicator function equal to 1 if θ≥ θ∗k and else 0.

D. Real Investments and the Expected Firm Return

We next study the model-implied effects of building versus buying the factory
underlying the growth option on the firm’s expected return. Since the only differ-
ence between buying and building is the initial uncertainty in the production costs
of a newly built factory, we start off with looking into the effects of that uncertainty
on the values and systematic risk of the firm’s assets. Using a set of basecase
parameter values, we next compute the model-implied response of the expected
firm return to the firm buying or building the additional factory.

As basecase parameters, we set the annual expected return of the output-price
mimicking portfolio, μ, the output-price drift rate, α, its volatility, σ, and the risk-
free rate, r, to 0.08, 0.04, 0.10, and 0.01, respectively. We choose an investment
cost, I , of 1.00. We set the long-run variable costs, C1 and C2, to 1.50 and 2.00,
respectively. To isolate the effect of uncertainty, we choosem= l, so that the average
initial log production costs of newly built capacity equal the log production costs of
mature capacity.15 We finally set the Poisson parameter, λ, to 0.20, so that, in line
with Figure 2, potential reversals occur after about 5 years.16

1. The Effects of Learning-Induced Production Cost Uncertainty

We first examine the effects of the initial production-cost uncertainty of a
newly built factory on its own value and systematic risk and those of the growth
option written on it. As we said before, a newly built factory is, just like a mature
factory, a call option to produce output, with the production cost the strike price. As
a result, a greater (idiosyncratic) uncertainty in production costs raises the call’s
payoff volatility, amplifying the chance that the call ends up deeper in or out of the
money. Since the call, however, benefits more from the greater upside potential than

15Our Supplementary Material shows that setting m ≠ l does not materially affect our conclusions.
16We offer comparative statics in our SupplementaryMaterial, showing that reasonable variations in

ourmodel input parameters yield conclusions in broad agreement with those reported in our main article.
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it is hurt by the greater downside potential, its value rises, in agreement with the
textbook argument that “options benefit from volatility.” In turn, the value of the
growth option also rises because it is a call option written on a call option to
produce, and its value rises with uncertainty-induced increases in the value of the
underlying asset.

To understand how the initial production-cost uncertainty affects the system-
atic risk of a newly built factory, it is easiest to i) recognize that such a factorywill be
deep in themoney upon an investment into it, and ii) to recall that the systematic risk
of an option is simply its scaled elasticity V θ θ=Vð Þ (see again equation (4)). While
we argue above that a greater uncertainty in production costs raises V , it also lowers
V θ, the “call delta.” The reason is that the negative effect on the call’s dollar
sensitivity toward the underlying asset θ (which is what delta measures) induced
through the greater chance that the call ends up deeper out of the money dominates
the corresponding positive effect induced through the greater chance that it ends up
deeper in the money. Yet, as V rises and V θ drops, the call elasticity V θ θ=Vð Þ (and
thus its systematic risk) must also drop. Conversely, as shown in the penultimate
paragraph of Section III.C, the systematic risk of the growth option is a constant β1.
The upshot is that the initial production-cost uncertainty does not affect the sys-
tematic risk of that option.

Figure 3 corroborates the intuition built up in this subsection. To that end, it
plots the value (V ; Graph A) and elasticity (V θ θ=Vð Þ; Graph B) of a newly built
factory against the initial production-cost uncertainty, σct2 , for an output price, θ, of
1.75, 2.00, or 2.25 and a long-run production cost, C2, of 2.00. While Graph A
shows that a higher uncertainty raises the factory’s value, Graph B reveals that it
also lowers that same factory’s elasticity.

2. The Response of the Expected Firm Return to Real Investments

Armedwith the insights derived in Section III.D.1, we now contrast themodel-
implied effects of the firm buying a mature factory without initial production-cost
uncertainty and building a brandnew factory with such uncertainty on its expected

FIGURE 3

Value and Elasticity of a Newly Built Factory

In Figure 3, we plot the value (Vnb
2 ; Graph A) and elasticity (V nb

2;θθ=V
nb
2 ; Graph B) of a newly built factory against the initial log

production cost uncertainty, σct
2
, for an output price θ of 1.75 (broken yellow line), 2.00 (dotted red line), or 2.25 (solid blue line)

and a long-run production cost, C2, of 2.00. We state the other parameter values in Section III.D.
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return. To do so, Table 4 reports the expected excess firm return, E R½ �� r, under an
initial uncertainty, σct2 , of 0 (Panel A; buying without uncertainty), 0.50 (Panel B;
building with moderate uncertainty), and 1.00 (Panel C; building with high uncer-
tainty) before the investment, directly after, and once the newly built factory has
matured (if applicable). To prompt the firm to invest into the second factory without
meaningfully altering the moneyness of its assets (and thus keeping other mecha-
nisms, as, e.g., operating leverage, constant), we simply raise the output price θ
from slightly (i.e., 0.01) below the investment-triggering threshold θ∗2 to slightly
(i.e., 0.01) above that threshold. In addition to E R½ �� r, the table further reports the
number of mature and newly built assets-in-place, the optimal number of those
assets, the shares of firm value attributable tomature and newly built assets-in-place
and growth options, as well as the elasticities of those assets.

Panel A of Table 4 shows that the firm’s expected excess return changes only
marginally in response to the firm buying a mature factory without initial produc-
tion cost uncertainty, from about 30% before the acquisition to about 28% after. The
only marginal change occurs since i) the investment alters the firm’s asset mix from
one asset-in-place plus one growth option to two assets-in-place; ii) the new asset-
in-place’s value exceeds the growth option’s value by I at the investment threshold
θ∗2 (see equation (7)); and iii) the systematic risk of assets-in-place is bounded from
above by that of growth options in the standardmodelwithout the above uncertainty
(see Aretz and Pope (2018) for the formal proof). The upshot is that the investment

TABLE 4

The Real-Options-Model Implied Relation Between Real Investments
and Expected Firm Return

Table 4 presents the real-options-model implied effect of real investments on the firm’s expected excess return when the firm
buys a second factory with 0 (Panel A) or when it builds that same factory with a moderate (Panel B) or high (Panel C) initial
production cost uncertainty. Columns 1–3 report, respectively, the firm’s number of mature factories, its number of newly
installed factories, and its optimal number of factories. Conversely, columns 4, 6, and 8 offer the shares of firm value
attributable to the first and second installed factory and the growth option, whereas columns 5, 7, and 9 report the
systematic risk of those assets, all respectively. In column 10, we state the firm’s expected excess return. In each panel,
we raise the output price from 0.01 below (“before investing”) the second factory’s optimal investment-triggering output-price
threshold, θ∗2, to 0.01 above (“directly after investing” and “long after investing”) it. Also, we either assume that the newly built
factory operates at its initial (“directly after investing”) or its long-run (“long after investing”) production costs. We describe the
basecase parameter values in Section III.D. In Panels A–C, we set the initial production cost uncertainty parameter, σct

2
, to 0,

0.50, and 1.00, respectively.

# Factories First Factory Second Factory Growth Option

Mature
Newly
Built Opt. Weight

Sys.
Risk Weight

Sys.
Risk Weight

Sys.
Risk

Exp.
Return

1 2 3 4 5 6 7 8 9 10

Panel A. Buying with No Cost Uncertainty (σct
2
=0:00)

Before investing 1 0 1 0.78 3.39 0.22 7.27 0.30
Directly after investing 2 0 2 0.72 3.35 0.28 5.34 0.28

Panel B. Building with Moderate Cost Uncertainty (σct
2
=0:50)

Before investing 1 0 1 0.79 4.03 0.21 7.27 0.33
Directly after investing 1 1 2 0.70 3.97 0.30 4.56 0.29
Long after investing 2 0 2 0.77 3.97 0.23 6.73 0.32

Panel C. Building with Moderate Cost Uncertainty (σct
2
= 1:00)

Before investing 1 0 1 0.77 5.62 0.23 7.27 0.42
Directly after investing 1 1 2 0.60 5.50 0.40 3.27 0.32
Long after investing 2 0 2 0.84 5.50 0.16 7.28 0.40
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replaces a higher-risk (elasticity: 7.27) with a lower-risk (5.34) option, reducing the
expected excess return (see columns 7 and 9). Yet, in addition, it also skews firm
value toward the higher-risk second asset (initial vs. later weight: 22% vs. 28%),
raising that same return (see columns 6 and 8). Given those opposing forces, the
overall response of the firm’s expected excess return is only mildly negative. Even
more problematically, the negative response does not revert over time, deviating
from our empirical evidence.

In Panels B and C of Table 4, we next investigate how the firm’s expected
excess return responds to it building a modern factory with initial production-cost
uncertainty. The panels suggest that the expected excess return drops more signif-
icantly due to the firm building (rather than buying) a modern factory with
σct2 = 0:50 or 1:00, with the drop, however, almost completely reversing after the

newly built factory has matured. Looking, e.g., into the high-uncertainty case with
σct2 = 1:00, Panel C reports that the expected excess return initially drops from about

42% to about 32% but later reverses to about 40%. To better grasp these results, we
notice that, in the high-uncertainty building case, the investment replaces a growth
option with the same risk as in the buying case (elasticity: 7.27) with a much-lower-
risk asset-in-place (3.27), amplifying the corresponding drop in the expected excess
return (see columns 7 and 9). In addition, the uncertainty, however, also lowers the
risk of the second asset-in-place (3.27) relative to the first (5.50), dampening (or in
the high uncertainty case even reversing) the increase in that same return due to the
firm’s value being skewed toward the second asset (see columns 6 and 8). The
overall response of the firm’s expected excess return is thus far more negative in the
building relative to the buying case, with the negative response however almost
fully reversing as the initial cost uncertainty resolves.

Overall, this section suggests that a real options model in which the initial
production costs of newly built capacity are uncertain due to firms learning how to
optimally operate that capacity can reproduce our empirical evidence that the
subsample of firms physically building additional productive capacity drives the
investment anomaly.

IV. Empirical Tests of Our Uncertainty Explanation

In this section, we empirically assess the new testable implications of our
uncertainty explanation for why constructing firms drive the investment anomaly.
We start off with the implication that the profits of firms with newly built capacity
should be less sensitive to aggregate conditions than those of other firms. We
subsequently turn to the implication that the higher uncertainty characterizing firms
with newly built capacity should be detectable in analyst earnings forecast data.We
finally test the implication that the uncertainty characterizing newly built capacity
should be higher in industries exposed to more technological innovation.

A. The Profit Sensitivity of Firms with Newly Built Capacity

In contrast to theoretical studies analyzing the effects of financial uncertainty
(as, e.g., Johnson (2004)), we conjecture that firms with newly built capacity are
exposed to high real uncertainty stemming from idiosyncratic shocks to their
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profits. In turn, these shocks lower the sensitivity of firms with newly built capacity
to aggregate conditions, as captured by the output price θ in our model. In the spirit
of Fama and French (1995), we should thus be able to detect the lower sensitives in
firms’ financial data. To test that conjecture, we rely on a panel regression of a firm’s
profit growth on the change in its industry’s mean-output-price interacted with a
dummy variable indicatingwhether the firmwill soon obtain, has recently obtained,
or has some time ago obtained newly built capacity, the main effects, control
variables, and fixed effects. To be more specific, we estimate the following panel
regression model:

ΔPROFITi,k,t = β ΔOUTPUT_PRICEk,t ×NEWLY_BUILTi,k,tð Þ
þγΔOUTPUT_PRICEk,tþδNEWLY_BUILTi,k,t

þη0CONTROLSi,k,tþαiþαtþ εi,k,t,

(9)

where ΔPROFIT is the change in firm i’s quarterly operating profits (Compustat items:
saleq-cogsq) over calendar quarter t scaled by assets (atq) at the quarter’s start,
ΔOUTPUT_PRICE is the change in industry k’s mean output price over that quarter,
NEWLY_BUILT∈ PRE_CONSTRUCTION,f POST_CONSTRUCTION,
LONG_POST_CONSTRUCTIONg, and CONTROLS is a vector of control vari-
ables. In turn, PRE_CONSTRUCTION (POST_CONSTRUCTION) [LONG_
POST_CONSTRUCTION] is a dummy variable equal to 1 if firm i reports positive
PPE-CIP expenses over the next 3 years (the past 3 years) [the 3 years before the
prior three] and else 0.17 Finally, αi is a firm and αt a time fixed effect, β, γ, and δ are
scalar parameters, and η is a parameter vector.

We calculate ΔOUTPUT_PRICE by first aggregating firm sales (saleq) at
the Chang and Hwang (2015) industry level and then computing industry sales
growth over quarter t.18 Using quarterly total output growth for each industry from
the Federal Reserve’s industrial production database, we next back out
ΔOUTPUT_PRICE from the accounting identity that industry sales growth is
industry mean output price growth times industry quantity growth.19 Our controls
are lagged PROFIT_GROWTH, QUARTERLY_RETURN, MOMENTUM,

17In the Supplementary Material, we confirm that our main conclusions in Section IV are robust
to the choice of windows used to define the pre-construction, post-construction, and long-post-
construction periods.

18See Table A3 in Appendix A in this article for industry definitions. Notice that we only use
industries with consistently more than ten firms and that, to avoid spurious results, we compute industry
sales growth separately by firm, with the growth value for firm i excluding the sales of that firm.

19The sales of firm i over quarter t, SALES, are its output quantity, QUANTITY, multiplied by its
(average) output price, PRICE, over that quarter. Summing that identity over allN firms in industry k, we
obtain

PN
i = 1SALESi,k,t =

PN
i = 1 QUANTITYi,k,t ×PRICEi,k,t

� �
. Multiplying and dividing the right-hand

side by the total output of the N firms in industry k in that quarter, we obtain the accounting identity:

XN
i = 1

SALESi,k,t =
XN
i = 1

QUANTITYi,k,t ×
XN
i = 1

QUANTITYi,k,tPN
i = 1

QUANTITYi,k,t

×PRICEi,k,t

0
BBB@

1
CCCA:(10)

Dividing the identity for quarter t by the identity for quarter t�1, we derive the desired result.
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MARKET_SIZE, and BOOK_TO_MARKET. See Table A1 in Appendix A in this
article for more details about the controls.Wewinsorize each continuous variable at
the first and last percentile per quarter. For the sake of comparability, we only use
a firm-quarter observation in the panel regressions if the corresponding firm is
included in our asset pricing tests conducted in Section II over the prior three
calendar years.

Table 5 reports the panel regression results obtained from the full sample
(columns 1 and 2) and from subsamples with an average past 3 years
ΔOUTPUT_PRICE above (columns 3 and 5) and below (columns 4 and 6) the
median. While plain numbers are parameter estimates, the numbers in square
brackets are White (1980) t-statistics. The table vividly supports our first new
testable implication, showing that firms with newly built capacity have a tempo-
rarily lower profit sensitivity than others. Specifically, column 1 reveals that firms
with newly built capacity have a similar sensitivity (of around 0.40) as others over
the 3 years before the capacity is constructed. Strikingly, however, column 2 dem-
onstrates that their sensitivity becomes 0.23 (t-stat: �3.62) lower relative to the
others over the 3 years after the capacity has been constructed. Separately contrast-
ing that difference across good (mean ΔOUTPUT_PRICE ≥ median) and bad
(< median) industry states, columns 3 and 4 indicate that the difference is much
starker in bad states, in line with Figure 3 showing that the effect of uncertainty is
stronger when the firm is less profitable. Finally, columns 5 and 6 suggest that the
sensitivity of firms with newly built capacity eventually becomes similar to that of
the others again.

B. The Analyst Forecasts of Firms with Newly Built Capacity

We next test the implication that the higher uncertainty characterizing firms
with newly built capacity should also be detectable in non-stock-and-accounting
data. To do so, we look into analyst earnings forecast data, arguing that analysts
should be less able to accurately predict the earnings of firms with newly built
capacity due to their more uncertain profits.20 To assess that conjecture, we estimate
the following panel regression model:

ABS_FORECAST_ERRORi,t =
βNEWLY_BUILTi,t

þ γ0CONTROLSi,tþαiþαtþ εi,t,
(11)

where ABS_FORECAST_ERROR is the absolute value of the actual earnings-per-
share (EPS) minus their consensus (median) forecast scaled by the actual EPS (see,
e.g., Loh and Mian (2006) and Bebchuk, Cohen, and Charles (2013)), NEWLY_
BUILT∈ PRE_CONSTRUCTION, POST_CONSTRUCTION, LONG_POST_f
CONSTRUCTIONg, and CONTROLS is a vector of control variables. We define
the variables included in NEWLY_BUILT as in Section IV.A. In line with the
literature, the control variables are MARKET_SIZE, BOOK_TO_MARKET,
MOMENTUM, VOLATILITY, TURNOVER, FORECAST_AGE, and ANA-
LYST_COVERAGE. Again, see Table A1 in Appendix A in this article for more

20We acknowledge that, in practice, a greater profit uncertainty may not necessarily come from a
greater cost uncertainty but could equally well come from a greater output price uncertainty.
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details about the controls. While αi is a firm and αt a time fixed effect, β is a scalar
parameter and γ a parameter vector. Finally, we use the samewinsorization rules and
include the same observations as in Section IV.A.

Using the same conventions as Table 5, Table 6 presents the panel regression
results. The table validates our second new testable implication, showing that
analysts find it temporarily more difficult to accurately predict the earnings of firms
with newly built capacity. To be more specific, column 1 demonstrates that analysts
predict the earnings of firms with newly built capacity with a similar accuracy as
those of others over the 3 years before the capacity is constructed. Importantly,
however, column 2 suggests that they make about 4-percent-point larger forecast
errors (t-stat: 4.07) in case of firms with newly built capacity relative to others over
the 3 years after the capacity has been constructed. Finally, column 3 reveals that the

TABLE 5

Profit Regressions on Industry Conditions Interacted with Construction

Table 5 presents the results from panel regressions of a firm’s profit growth over calendar quarter t on its industry’s
contemporaneous output price growth, output price growth interacted with a dummy variable equal to 1 if the firm engages
in construction work over the following 3 years (PRE_CONSTRUCTION), the prior three (POST_CONSTRUCTION), or the
3-year period before the prior 3 years (LONG_POST_CONSTRUCTION) and else 0, controls, and firm and time fixed effects.
While columns1and2show the results from full-sample regressions, columns3–6 show those fromsubsample regressions on
observations with a past 3-year industry output price growth above (columns 3 and 5) and below (columns 4 and 6) the
median. Plain numbers are estimates, while the numbers in square brackets are White (1980) t-statistics. See Tables A1 and
A3 in Appendix A for variable as well as industry definitions, respectively.

Subsamples

Price Growth Price Growth

Full Sample Full Sample High Low High Low

1 2 3 4 5 6

ΔOUTPUT_PRICE ΔOPð Þ 0.39 0.40 0.38 0.46 0.31 0.18
[7.47] [8.33] [4.91] [6.80] [3.80] [2.37]

ΔOP × PRE_CONSTRUCTION 0.02
[0.09]

ΔOP × POST__CONSTRUCTION �0.23 �0.15 �0.34
[�3.62] [�1.48] [�3.76]

ΔOP × LONG_POST_CONSTRUCTION �0.09 �0.25
[�0.83] [�1.96]

LAG_PROFIT_GROWTH �20.06 �19.58 �19.41 �21.19 �17.83 �20.50
[�23.39] [�32.14] [�21.62] [�23.72] [�17.59] [�19.85]

QUARTERLY_RETURN 1.10 0.95 1.05 0.84 0.89 0.82
[15.67] [20.66] [15.83] [12.35] [12.39] [10.85]

MOMENTUM 0.25 0.21 0.20 0.23 0.20 0.22
[8.27] [9.60] [6.24] [6.99] [5.76] [5.95]

MARKET_SIZE �0.22 �0.17 �0.22 �0.16 �0.20 �0.11
[�7.30] [�9.10] [�7.34] [�5.63] [�6.49] [�3.47]

BOOK_TO_MARKET �0.39 �0.32 �0.36 �0.29 �0.31 �0.24
[�10.05] [�13.54] [�9.32] [�8.75] [�7.93] [�6.52]

PRE_CONSTRUCTION 0.03
[0.37]

POST_CONSTRUCTION �0.01 �0.02 �0.02
[�0.24] [�0.27] [�0.34]

LONG_POST_CONSTRUCTION �0.01 0.03
[�0.23] [0.37]

Firm/time FEs Yes Yes Yes Yes Yes Yes
Adj. R2 0.06 0.05 0.05 0.06 0.04 0.05
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difference in analysts’ predictive ability across firms with newly built capacity and
others shrinks again as we move away from the capacity installation date.

C. The Effect of Construction in High- Versus Low-Tech Industries

We finally study the implication that the conditional effect of construction on
the investment anomaly is stronger in industries more exposed to technological
progress. The reason is that, in such industries, newly built capacity plausibly
differs more significantly from existing capacity, forcing the firm to engage in more
trial-and-error to find the optimal input combination and, in turn, boosting the
uncertainty characterizing newly built capacity. To test that conjecture, we simply
repeat the FM regression of stock returns on INVESTMENT, an interaction
between INVESTMENT and CONSTRUCTION, CONSTRUCTION, and con-
trols in column 2 of Table 3 separately on subsamples formed according to industry-
specific measures of technological progress.

We rely on three well-established approaches to measure the amount of
innovation within an industry. First, in line with Kogan, Papanikolaou, Seru, and
Stoffman (2017), we compute the total number of citations of all patents held by
firms in a 2-digit SIC industry over the past 3 years at the end of June of each year t,
classifying industries with a value above the median as high-tech and others as

TABLE 6

Absolute Forecast Error Regressions on Construction

Table 6 presents the results from panel regressions of a firm’s absolute analyst earnings-forecast error scaled by realized
earnings on a dummy variable equal to 1 if the firm engages in construction work over the following 3 years
(PRE_CONSTRUCTION), the prior three (POST_CONSTRUCTION), or the 3-year period before the prior 3 years
(LONG_POST_CONSTRUCTION) and else 0, controls, and firm and time fixed effects. Plain numbers are coefficient
estimates, while the numbers in square brackets are White (1980) t-statistics. See Table A1 in Appendix A for the variable
definitions.

1 2 3

PRE_CONSTRUCTION 0.02
[1.42]

POST_CONSTRUCTION 0.04
[4.07]

LONG_POST_CONSTRUCTION 0.03
[3.18]

MARKET_SIZE �0.12 �0.12 �0.11
[�17.81] [�25.18] [�22.36]

BOOK_TO_MARKET 0.04 0.04 0.04
[4.49] [6.69] [7.37]

MOMENTUM �0.05 �0.04 �0.03
[�8.06] [�9.85] [�6.96]

VOLATILITY 0.21 0.18 0.21
[7.09] [8.78] [8.88]

TURNOVER �0.03 �0.02 �0.06
[�0.82] [�1.03] [�2.51]

FORECAST_AGE 0.08 0.07 0.07
[5.62] [6.49] [6.23]

ANALYST_COVERAGE �0.38 �0.35 �0.35
[�4.35] [�5.97] [�5.75]

Firm/time FEs Yes Yes Yes
Adj. R2 0.18 0.16 0.17
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low-tech. Consistent with Bloom, Schankerman, and Van Reenen (2013), we also
compute the average amount of exogenous R&D in a firm’s technology space over
all firms in a 2-digit SIC industry over the last 3 years at the end of June of each year
t, again classifying industries with a value above the median as high-tech and the
others as low-tech. In each case, we use the thus derived classification from July of
year t to June of year tþ1. We finally follow Grullon, Lyandres, and Zhdanov
(2012) and classify the medical equipment (12); pharmaceutical products (13);
electrical equipment (22); communications (32); computers (35); electronic equip-
ment (37); and measuring and control equipment (38) Fama–French 49 industries
as high-tech and others as low-tech.21

Using conventions identical to Table 3, Table 7 reports the results from the FM
regressions run on the high- versus low-tech industry subsamples. While column
1 repeats the full-sample regression results for convenience, columns 2, 4, and
6 (columns 3, 5, and 7) present those obtained from the high (low) tech subsamples

TABLE 7

Regressions of Stock Returns on Investment Interacted with Construction
Separately Run on High- Versus Low-Tech Industry Subsamples

Table 7 presents the results from Fama and MacBeth (1973) regressions of stock returns over month t on combinations of
investment, construction, and control variablesmeasured until the end ofmonth t�1. In column 1, we report the results from a
full-sample regression on INVESTMENT, an interaction between INVESTMENT andCONSTRUCTION, CONSTRUCTION, and
the controls. In the remaining columns, we repeat that regression on industry subsamples formed according to whether the
citation count of all patents issued to firms in a 2-digit SIC industry over the last 3 years is above (column 2) or below (column 3)
themedian; the average exogenous R&D towhich the firms in a 2-digit SIC industry are exposed over the last 3 years is above
(column 4) or below (column 5) themedian; or the existing literature classifies the industry as a high (column 6) or low (column
7) tech industry. The plain numbers are monthly premium estimates, in percentage. The numbers in square brackets are
Newey and West (1987) t-statistics with a 6-month lag length. See Table A1 in Appendix A for more details about variable
definitions.

High- Versus Low-Tech Subsamples

# Industry Patents R&D Exposure High-Tech Industry

Full Sample High Low High Low Yes No

1 2 3 4 5 6 7

INVESTMENT �0.85 �0.94 �0.75 �1.32 �0.08 0.06 �0.61
[�2.06] [�1.89] [�1.78] [�2.62] [�0.19] [0.08] [�1.53]

INVESTMENT × CONSTRUCTION �20.97 �32.46 �0.49 �24.95 �17.51 �48.35 �4.14
[�2.50] [�2.71] [�0.04] [�2.43] [�1.03] [�2.56] [�0.42]

CONSTRUCTION 0.47 2.14 �2.28 1.05 �0.46 4.79 �1.15
[0.33] [1.40] [�1.15] [0.69] [�0.20] [2.02] [�0.69]

MARKET_BETA 0.00 �0.03 0.04 �0.02 �0.05 �0.20 0.02
[0.00] [�0.12] [0.22] [�0.11] [�0.23] [�0.91] [0.08]

MARKET_SIZE �0.03 �0.05 �0.01 �0.05 �0.00 �0.05 �0.00
[�0.75] [�0.96] [�0.16] [�1.01] [�0.04] [�0.86] [�0.11]

BOOK_TO_MARKET 0.22 0.22 0.36 0.23 0.32 0.26 0.33
[2.57] [2.41] [3.79] [2.62] [2.80] [2.66] [3.84]

MOMENTUM 0.91 0.61 1.20 0.77 0.87 0.52 1.09
[4.16] [2.91] [4.92] [3.62] [3.41] [2.53] [4.59]

PROFITABILITY 0.66 0.51 1.21 0.58 0.86 0.66 0.90
[2.88] [1.97] [6.08] [2.24] [3.14] [2.08] [5.16]

Constant 0.90 1.21 0.43 1.23 0.59 1.49 0.52
[2.05] [2.48] [1.02] [2.58] [1.31] [2.73] [1.26]

21See Ken French’s website (https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/), for more
details about the definition and construction of the Fama–French 49 industry classification.
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defined according to patent citations, exogenous R&D exposure, and industry
definitions, respectively. The table corroborates our final new testable implication,
showing that the effect of CONSTRUCTION on the pricing of INVESTMENT is
far more pronounced in high-tech industries. Using patent citations to measure the
technological progress in an industry, columns 2 and 3, e.g., demonstrate that while
the slope coefficient of the INVESTMENT–CONSTRUCTION interaction term is
highly significantly negative in industries with many citations (t-stat: �2.71), that
same slope coefficient does not attract significance at conventional levels in indus-
tries with few citations (t-stat: �0.04).

D. Alternative Explanations

While the prior subsections give evidence corroborating our uncertainty
explanation for why constructing firms drive the investment anomaly, our Sup-
plementary Material offers further evidence refuting several plausible alternative
explanations. To be more specific, that material shows that our main empirical
evidence is unlikely to be caused by i) variations in investment intensity, market
size, and growth option availability across constructing and non-constructing
firms; ii) the financing of construction projects through overvalued equity; and
iii) anecdotal evidence that construction projects often go significantly over-
budget.

V. Concluding Remarks

We offer evidence that the subsample of firms physically building additional
production capacity almost entirely drives the negative but non-persistent relation
between real investments and future stock returns. We develop a real options model
to rationalize that evidence based on the idea that firms have to experiment with
newly built capacity to learn how to operate it at its lowest feasible cost, inducing
idiosyncratic uncertainty in that capacity’s production cost over some initial period.
In turn, this uncertainty drags down the firm’s expected return until it eventually
disappears. We finally conduct additional tests supporting the new testable impli-
cations of our uncertainty explanation for our main evidence.

Appendix A. Definitions and Data Sources

In this appendix, we offer variable and industry definitions, outline our data
sources, and present descriptive statistics. We first introduce our control variables as
well as concisely summarize how we calculate the analysis variables used in all our
empirical tests (see Table A1). We next outline our data sources. We then discuss the
descriptive statistics for the main analysis and control variables used in our asset
pricing tests, reporting those statistics in Table A2. Finally, Table A3 offers more
details about the definitions of the industries used in our profit growth panel
regressions.

A.1 Control Variables

We use a standard set of controls in our asset pricing tests. Our portfolio sorts
control for the Fama and French (2015) 5-factor-model or Hou et al. (2015) q-theory
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benchmark factors excluding their investment factors.22 Our FM regressions control
for MARKET_BETA, MARKET_SIZE, BOOK_TO_MARKET, MOMENTUM, and
PROFITABILITY.We calculate MARKET_BETA as the slope coefficient from a time-

TABLE A1

Variable Definitions

Table A1 gives the definitions of the variables used in our asset pricing and supplementary panel regression tests. The
mnemonics of the data providers are in parentheses. We notice that, in contrast to the asset pricing controls, the analyst
forecast error controls are measured at the end (or closest to the end) of the fiscal quarter during which an analyst made the
corresponding earnings forecast.

Variable Name Variable Definition

Panel A. Investment and Construction Proxies

INVESTMENT The change in gross property, plant, and equipment (ppegt) over the fiscal year ending in
calendar year t�1 scaled by total assets (at) at the start of that fiscal year.

CONSTRUCTION The ratio of gross property, plant, and equipment under construction (fatc) from the fiscal year
ending in calendar year t�1 to total assets (at) at the start of that fiscal year.

DUMMY_CONSTRUCTION A binary variable equal to 1 if CONSTRUCTION is positive and else 0.
RANK_CONSTRUCTION A variable taking the value of 0 if CONSTRUCTION is 0 and else the rank of the remaining

CONSTRUCTION values.

Panel B. Control Variables

MARKET_BETA The slope coefficient from a stock-level regression of excess return (ret) on excess market
return, where the regression is run using daily data over the prior 12 months. We require a
sample size of at least 200 non-missing observations for us to run the regression.

MARKET_SIZE Log of the product of the stock price (abs(prc)) times common shares outstanding divided by
1,000 (shrout).

BOOK_TO_MARKET Log of the ratio of book value-to-market value of equity (abs(prc) × shrout), where the book
value of equity is equal to total assets (at) minus total liabilities (lt) plus deferred taxes (txditc, 0
if missing) minus preferred stock (pstkrv, pstkl, pstk, or 0, in that order of availability). While the
market value of equity is from the end of December of calendar year t �1, the variables
underlying the book value of equity are from the fiscal year end in calendar year t �1.

MOMENTUM Log of the compounded stock return (ret) over the period frommonth t �12 to month t�2.We
require the stock return to be non-missing for at least 9 months over that period.

PROFITABILITY Ratio of sales (sale) net of costs of goods sold (cogs), selling, general, and administrative
expenses (xsga), and interest expenses (xint) to the book value of equity, where the book
value of equity is total assets (at) minus total liabilities (lt) plus deferred taxes (txditc, 0 if
missing) minus preferred stock (pstkrv, pstkl, pstk, or 0, in that order of availability). All
variables are from the fiscal year end in calendar year t �1.

Panel C. Additional Variables

ΔPROFIT The change in gross profits (saleqminus cogsq) over calendar quarter t scaled by total assets
(atq) at the start of that quarter.

ΔOUTPUT_PRICE The ratio of the gross-sales growth of an industry over calendar quarter t to the gross
production growth of that industry over the samequarter minus one. In case of firm i belonging
to industry k, we estimate industry k‘s total sales by aggregating the sales (saleq) of all firms
belonging to that industry except for firm i . We estimate an industry’s production growth using
its industrial production index obtained from the Federal Reserve’s G.17 database.

CONSTRUCTION Abinary variable equal to 1 if a firmhas apositiveCONSTRUCTIONvalue in at least 1 year over
the 3-year period after (PRE_CONSTRUCTION), before (POST_CONSTRUCTION), or 3-years
before (LONG_POST_CONSTRUCTION) the current year and else 0.

LAG_PROFIT_GROWTH The one-quarter lagged value of ΔPROFIT.
QUARTERLY_RETURN The compounded stock return (ret) over calendar quarter t .
VOLATILITY The standard deviation of daily stock returns estimated over the prior 12 months times the

square root of 252. We require stock returns to be non-missing for at least 9 months over that
period.

TURNOVER The average ratio of monthly trading volume to shares outstanding estimated over the prior
3 months.

FORECAST_AGE The gap between earnings announcement date and earnings forecast date averaged over all
outstanding forecasts.

ANALYST_COVERAGE The number of analysts issuing an earnings forecast.

22The 5-factor-model factors consist of MKT, SMB, HML, CMA, and RMW, while the q-theory
factors consist of MKT, ME, IA, and ROE. See Ken French’s website (https://mba.tuck.dartmouth.edu/
pages/faculty/ken.french/), for more details about the 5-factor-model factors. Conversely, see Lu
Zhang’s website (https://global-q.org/factors.html/), for more details about the q-theory factors.
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series regression of a stock’s daily return on the daily market return over the prior
12months, imposing aminimum sample size of 200 observations.23MARKET_SIZE is
the log of the product of common shares outstanding and share price at the end of
calendar month t�1. We calculate BOOK_TO_MARKET as the log ratio of the book
value of equity from the fiscal year ending in calendar year t�1 to the market value of
equity from the end of calendar year t�1 and use the thus calculated value from June of
calendar year t to May of calendar year tþ1. MOMENTUM is the compounded stock
return over calendar months t�12 to t�2. We calculate PROFITABILITY as sales
minus costs of goods sold (COGS), selling, general, and administrative (SG&A)
expenses, and interest expenses scaled by book equity for the fiscal year ending in
calendar year t�1 and use the thus calculated value from June of calendar year t toMay
of calendar year tþ1.

A.2 Data Sources

Our market data come from CRSP, the accounting data from Compustat, the
analyst data from IBES, and the benchmark factor as well as the risk-free rate of return
data from Kenneth French’s and Lu Zhang’s websites. We study the common stocks

TABLE A2

Descriptive Statistics

Table A2 presents descriptive statistics for INVESTMENT, CONSTRUCTION, and DUMMY_CONSTRUCTION (Panel A) and
the Pearson cross-correlations between the joint set of the investment and construction variables and our controls (Panel B).
The descriptive statistics include themean, the standard deviation, skewness, kurtosis, and several percentiles.We calculate
the table entries first by sample month and then average over our sample period. Except for skewness and kurtosis, the
statistics in columns 1 and 2 in Panel A are in percentage. See Table A1 in Appendix A for more details about variable
definitions.

INVESTMENT CONSTRUCTION DUMMY_CONSTRUCTION

1 2 3

Panel A. Descriptive Statistics

Mean 9.10 1.09 0.37
Std. dev. 12.50 2.43 0.48
Skewness 3.26 3.34 0.54
Kurtosis 15.81 15.66 1.41
Percentile 1 0.14 0.00 0.00
Percentile 5 0.57 0.00 0.00
First quartile 2.38 0.00 0.00
Median 5.07 0.00 0.01
Third quartile 10.32 0.96 1.00
Percentile 95 32.25 5.78 1.00
Percentile 99 78.23 14.38 1.00

Panel B. Pearson Correlations

CONSTRUCTION 0.20
DUMMY_CONSTRUCTION 0.00 0.59
MARKET_BETA 0.09 0.04 �0.01
MARKET_SIZE 0.01 0.12 0.11
BOOK_TO_MARKET �0.06 �0.06 �0.02
MOMENTUM �0.07 �0.02 0.01
PROFITABILITY 0.04 0.05 0.06

23We also ran Lewellen and Nagel (2006) time-series regressions of a stock’s daily return on the
contemporaneous, 1-day-lagged, and the sum of the 2-, 3-, and 4-day-lagged daily market returns. Using
the sum of the slope coefficients as alternativemarket beta estimate, we obtain identical conclusions as in
our main tests.
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(share codes: 10 and 11) of firms traded on the NYSE, AMEX, and Nasdaq. To ensure
our sample firms use at least some physical assets in their operations, we exclude
financial (SIC codes: 6000 to 6999), utility (4900 to 4949), and service (7000 to
8999) firms.24 To benchmark our investing firms against non-investing (and not also
disinvesting) firms, we further drop firms with negative INVESTMENT values. To
mitigate microstructure biases, we eliminate firms with a market size below the first
quartile at the end of June of calendar year t and/or sales below $25 million over the
fiscal year ending in calendar year t�1, from the July of year t to June of year tþ1
sample period. In line with Shumway (1997) andBali, Brown, and Tang (2017), we set a
stock’s return to its CRSP delisting return whenever the delisting return is non-
missing.25 We winsorize all analysis variables except the stock return at the first and
99th percentiles per month. We set missing PPE-CIP values to 0 in our main tests, but in
our Supplementary Material conduct a robustness test in which we exclude firms with

TABLE A3

Industry Classifications

Table A3 presents the 32 NAICS industries used to construct ΔOUTPUT_PRICE.

NAICS Industry Name

315 Apparel
316 Leather and allied products
323 Printing and related support activities
324 Petroleum and coal products
3114 Fruit and vegetable preserving and specialty food
3116 Animal slaughtering and processing
3119 Other food
3121 Beverage
3221 Pulp, paper, and paperboard mills
3222 Converted paper products
3251 Basic chemicals
3252 Resin, synthetic rubber, and artificial and synthetic fibers and filaments
3253 Pesticide, fertilizer, and other agricultural chemicals
3254 Pharmaceuticals and medicine
3256 Soap, cleaning compounds, and toilet preparation
3261 Plastic products
3311,2 Iron and steel products
3314 Nonferrous metal (except aluminum) production and processing
3329 Other fabricated metal products
3331 Agriculture, construction, and mining machinery
3332 Industrial machinery
3333,9 Commercial and service industry machinery and other general purpose machinery
3334 Ventilation, heating, air-conditioning, and commercial refrigeration equipment
3343 Audio and video equipment
3345 Navigational, measuring, electromedical, and control instruments
3353 Electrical equipment
3359 Other electrical equipment and components
3361 Motor vehicles
3363 Motor vehicle parts
3364 Aerospace products and parts
3371 Household and institutional furniture and kitchen cabinets
3391 Medical equipment and supplies

24While it is common to exclude financial and utility firms, we acknowledge that it is less common to
also exclude service firms. We do so since investments into physical capacity (as captured by INVEST-
MENT) play a less important role for them than for others. Despite that, our Supplementary Material
shows that keeping service firms in our sample does not greatly alter the conclusions extracted from our
empirical work.

25Whenever the delisting return is missing but the delisting code is not, we set the stock return to
�30% for delisting codes 500, 520, 551 to 573, 574, 580, and 584 and �100% for others.
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missing PPE-CIP values. Due to the availability of the PPE-CIP data, our sample period
is July 1986 to Dec. 2016.

A.3 Descriptive Statistics

In Table A2, we offer descriptive statistics for INVESTMENT, CONSTRUC-
TION, and DUMMY_CONSTRUCTION and the Pearson correlations for the joint set
of those variables and our controls in Panels A andB, respectively.We compute both the
descriptive statistics and correlations first by sample month and then average over our
sample period. Panel A suggests that themean (median) firm in our sample data raises its
PPE by 9.10% (5.07%) of its assets in the average year (see column 1). Column 2 reveals
that about 12% (0%) of that change is attributable to firms building additional capacity.
Although that fraction may seem small, we stress that it should be treated as a lower
bound since we do not observe all construction expenses (recall Section II.A), and the
change in PPE includes maintenance and upgrading expenses. Looking into their first
three higher moments, INVESTMENTand CONSTRUCTION are both highly volatile
and right-skewed.While about three quarters of our sample firms raise their PPE by less
than 10% in the average year, the remainder raises it by close to 25%, consistent with
Doms and Dunne’s (1998) and Cooper and Haltiwanger’s (2006) evidence that corpo-
rate investment is spikey. Focusing on sample firms with a positive PPE-CIP balance,
while about 60% of them have a negligible fraction of assets-under-construction, the
remainder has a far more significant fraction of such assets (average: about 5%). Finally,
column 3 suggests that about 37% of our sample firms are engaged in construction work
in the average year.

Panel B demonstrates that INVESTMENTand CONSTRUCTION share a signif-
icantly positive average cross-sectional correlation of 0.20, indicating that the PPE-CIP
balance at the end of a fiscal year explains a meaningful fraction of the change in PPE
over that year. In contrast, the two variables do not share high average correlations
with the controls. The exceptions are the moderately positive average correlations of
CONSTRUCTION or DUMMY_CONSTRUCTION with MARKET_SIZE of 0.12
and 0.10, respectively. The moderately positive correlations with MARKET_SIZE
suggest that larger firms are more prone to have assets-under-construction.

Supplementary material

To view supplementary material for this article, please visit http://doi.org/
10.1017/S0022109024000024.
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