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Abstract. For the shortest period exoplanets, star-planet tidal interactions are likely to have
played a major role in the ultimate orbital evolution of the planets and on the spin evolution
of the host stars. Although low-mass stars are magnetically active objects, the question of how
the star’s magnetic field impacts the excitation, propagation and dissipation of tidal waves
remains open. We have derived the magnetic contribution to the tidal interaction and estimated
its amplitude throughout the structural and rotational evolution of low-mass stars (from K to
F-type). We find that the star’s magnetic field has little influence on the excitation of tidal
waves in nearly circular and coplanar Hot-Jupiter systems, but that it has a major impact on
the way waves are dissipated.
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1. Introduction

Over the last two decades, about 4000 exoplanets have been discovered around low-
mass stars (Perryman 2018). In close-in star-planet systems, tidal dissipation in the host
star is known to affect the semi-major axis (and thus the orbital period) of the companion
as well as the spin of the star over secular timescales (see e.g. Ogilvie 2014 for a review
on this topic). In particular, the dissipation of the stellar dynamical and equilibrium
tides (Zahn 1977) can vary significantly along the evolution of the star. It is highly
dependent on stellar parameters like the angular velocity or the metallicity (Mathis 2015,
Gallet et al. 2017 and Bolmont et al. 2017). Therefore, it is very important to identify
and quantify in the most realistic way the dissipation processes that come into play.
In this respect, we have examined the effect of stellar magnetism on the excitation and
dissipation of dynamical tides inside the convective envelope of low-mass stars throughout
their evolution. For this purpose, we have used detailed grids of rotating stellar models
computed with the stellar evolution code STAREVOL, as well as databases of observed
star-planet systems. We first examine (in Sect. 3) the impact of the star’s magnetic
field on the effective tidal forcing exciting magneto-inertial waves. The amplitude of a
relatively large scale magnetic field is estimated via physical scaling laws at the base and
the top of the convective envelope (Sect. 3). We then assess the ratio of the magnetic and
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Table 1. Dynamo-like magnetic field derived from
simple energy or force balances.

Regime Balance Estimation of Bdyn

Equipartition ME=KE
√
μ02KE

Buoyancy dynamo ME/KE=Ro−1/2
√

μ02KE/Ro1/2

Magnetostrophy FL = 2ρ0Ω×u
√

μ02KE/Ro

Notes. KE and ME are the kinetic and magnetic energy densities of
the convective flow, respectively. Ro is the fluid Rossby number.

hydrodynamic tidal forcings for several short-period exoplanets (Sect. 4) before analysing
the relative importance of viscous over Ohmic dissipation of kinetic and magnetic energies
(Sect. 5).

2. Influence of magnetism on the effective tidal forcing

In the presence of stellar magnetic fields, both the excitation and dissipation of tidal
waves are theoretically modified when compared to the hydrodynamical case because
of the Lorentz force and the magnetic diffusion. The linearised momentum equation for
tidal waves in a convective region can be written as (Lin & Ogilvie 2018):

ρ0(∂tu + 2Ω×u) + ∇p−Fν −FL = fhydro + fmag, (2.1)

where we have introduced ρ0 the mean density, Ω the spin of the star, u, p the perturbed
flow and pressure, and Fν , FL the effective viscous and Lorentz forces, respectively.
Magneto-inertial waves (left-hand side of Eq. (2.1)) are forced by an effective tidal forcing
(right-hand side), resulting mainly from the action of the Coriolis pseudo-force and the
Lorentz force on the equilibrium tide (fhydro and fmag, respectively). Since fmag is often
neglected in studies of tidal interactions (see, e.g., Lin & Ogilvie 2018 and Wei 2016,
2018), we propose to examine its amplitude (fmag) relative to fhydro (the amplitude
of fhydro) when varying the mass and age of low-mass stars. Using typical scales of
a star-planet system such as R the radius of the star and σt the tidal frequency, the
magneto-to-hydrodynamical forcing ratio can be recast as:

fmag

fhydro
∼ Le2/Rot/σ̂max, (2.2)

with Le =B/(
√
ρμ02ΩR) the Lehnert number (Lehnert 1954), Rot = σt/(2Ω) the tidal

Rossby number, and σ̂max = max {σt/(2Ω), 1} a dimensionless factor close to unity. We
refer to Astoul et al. (2019) for a detailed derivation of Eq. (2.2).

3. Scaling laws to estimate stellar magnetic fields

To evaluate the ratio of the effective tidal forces (Eq. 2.2), we made use of simple
energy and force balances to give a rough estimate of the dynamo-generated magnetic
field strength inside the convective zone of low-mass stars (see, e.g., Brun et al. 2015 and
Augustson et al. 2019). These scaling laws are listed in Table 1. From this dynamo-like
magnetic field (Bdyn), we also estimate a large-scale dipolar magnetic field at the top of
the convective envelope:

Bdip = γ(r/R)3Bdyn, (3.1)

where γ can be understood as the ratio of the large-scale to small-scale magnetic fields,
or as the fraction of the total energy stored in the dipolar component of the magnetic
field (see Astoul et al. 2019 for more details). Unless otherwise stated, Bdyn is computed
at the radial interface (r) between the radiative and the convective zones, which is the
expected location for the development of a large-scale dynamo (Brun & Browning 2017).
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Figure 1. Left: surface dipolar magnetic field versus time for a 0.9M� star. The curves are
computed with a grid of STAREVOL models, for different scaling laws and initial stellar rotation
rates (see legend). The symbols H depict the mean dipolar magnetic field observed at the surface
of 0.9M� stars (See et al. 2019). Right: evolution of the Lehnert number squared over time, at
the base (solid curves) and the top (dashed dotted curves) of the convective envelope for various
low-mass stars, using the magnetostrophic dynamo regime and the median initial rotation.

In the left panel of Fig. 1, we display the time evolution of the surface dipolar magnetic
field (Bdip, Eq. 3.1) for a 0.9M� star and for the three scaling laws in Table 1. A few
observational data are overplotted for comparison (See et al. 2019). To compute Bdip,
parameters like the convective turnover time and velocity were obtained from grids of
models computed with the 1D stellar evolution code STAREVOL (Amard et al. 2019).
These grids were calculated for low-mass stars between 0.7M� and 1.4M�, from the early
pre-main sequence until the end of the main sequence. Three initial rotation rates (fast,
median and slow) have been chosen (see Amard et al. 2019 for more details). We see that
the observed and estimated surface dipolar magnetic fields are in good agreement when
using the magnetostrophic regime, in particular when assuming fast initial rotation. Note
that the large-scale to small-scale ratio γ has been kept constant in this analysis. The
right panel in Fig. 1 shows the Lehnert number squared against time for stars of various
masses for the magnetostrophic regime and median initial rotation. The panel reveals
that Le2 is higher at the base than at the top of the convective zone, similar to what
can be expected from the magnetic field amplitude inside the convective envelope of a
low-mass star. Moreover, Le2 increases overall with time and with mass (except for the
most massive stars).

4. Magnetic tidal forcing in observed star-planet systems

The tidal frequency σt in Eq. (2.2) depends on the orbital frequency of the planet
Ωo and the spin frequency Ω of the star. When the orbit is quasi-circular and coplanar,
the quadrupolar component of the tidal potential dominates (Ogilvie 2014) and the tidal
frequency writes σt = 2(Ωo − Ω). In the left panel of Fig. 2, the ratio of magnetic and
hydrodynamical effective forcings has been calculated for observed quasi-circular and
coplanar star-planet systems in the main-sequence. The masses, radius, age, and the
orbital and/or spin frequencies of the planets and their host star have been extracted
from the Extrasolar Planets Encyclopaedia. For each system, Le2 is calculated via the
STAREVOL grid models. The ratio fmag/fhydro is higher at the base of the convective
zone than near the surface, and grows with stellar mass, in line with the trends identified
in the previous section. We emphasize that the forcing ratio is far from unity for all
considered star-planet systems, meaning that the contribution of the Lorentz force to
the effective tidal forcing is weak.
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Figure 2. Left: ratio of the Lorentz and Coriolis tidal forcing against the mass of the star for var-
ious observed short-period exoplanetary systems. The ratio fmag/fhydro (Eq. 2.2) is estimated at
the base (blue bullet) and the top (red triangle) of the convective zone, and the magnetostrophic
regime is used to calculate Bdyn. Right: Lehnert number at the base of the convective zone
(solid lines) versus age for different masses of the star. The typical Lehnert number above which
Ohmic dissipation of magneto-inertial waves dominates over viscous dissipation (Lin & Ogilvie
2018) is shown by dotted curves using a turbulent magnetic Ekman number.

5. Dissipation of kinetic and magnetic energies

In the previous section, we have highlighted the negligible impact of the star’s magnetic
field in the effective tidal forcing. However, the star’s magnetic field may still play an
important role in the propagation and dissipation of magneto-inertial waves. In that
regard, Lin & Ogilvie (2018) have shown that the Ohmic dissipation of magneto-inertial
waves becomes comparable to viscous dissipation when the Lehnert number becomes
of order Em2/3, where Em is the magnetic Ekman number. The right panel of Fig. 2
displays the time evolution of the Lehnert number at the base of the convective zone
for various low-mass stars, as well as the threshold derived by Lin & Ogilvie (2018). We
observe that Le is always an order of magnitude larger than this threshold. Therefore,
Ohmic dissipation prevails over viscous dissipation for all low-mass stars at the base of
the convective zone. At the top of the convective zone (not shown here), this statement
is less clear-cut, especially for stars with M >∼ 1.2M�, for which both Ohmic and viscous
dissipations are comparable (Astoul et al. 2019).

6. Conclusion

We have shown that the large-scale dynamo-generated magnetic field of a star has
a limited impact on the forcing of tidal waves in the convective envelope of K, G, F-
type stars all along their evolution from the pre-main sequence until the terminal age
main-sequence. Nevertheless, stellar magnetism is found to have a strong influence on
the dissipation mechanism of dynamical tides inside the convective envelope of these
stars. Our results therefore indicate that a full magneto-hydrodynamic treatment of the
propagation and dissipation of tidal waves is needed to assess the impact of star-planet
tidal interactions for all low-mass stars along their evolution.
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