
The Art of Modelling Stars in the 21st Century
Proceedings IAU Symposium No. 252, 2008
L. Deng & K.L. Chan, eds.

c© 2008 International Astronomical Union
doi:10.1017/S1743921308022412

Some discussion of the nonlocal treatment of
the dissipation in the Reynolds stress models

Tao Cai
Department of Mathematics, HKUST, Clear Water Bay, Hong Kong

email: ctust@ust.hk

Abstract. We investigate the weakness of the present turbulence model with the nonlocal
treatment of dissipation rate. A revised version is well tested for the solar convection. The
suggestion of constant mixing length parameter of MLT could not hold any more if we refer to
the nonlocal description of the dissipation rate, especially in the region of overshooting zone.
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1. Introduction
Discarding of the traditional local mixing length theory(MLT) (Böhm-Vitense (1958)),

Xiong developed a nonlocal turbulence model by using the Reynolds stress methods for
studying the stellar convection (Xiong (1979)). However, Canuto argued that Xiong’s
model is not a fully nonlocal turbulence model since it still uses a local description of
dissipation rate, hence he developed a fully nonlocal turbulence model by describing
the dissipation rate in a nonlocal way (Canuto & Dubovikov (1998)). By using this fully
nonlocal model, Kupka and his coworkers have calculated the cases of A-star and DA/DB
white dwarfs with thin convection zones (Kupka & Montgomery (2002), Montgomery &
Kupka (2004)). Meanwhile the more attractive case of the sun with a deep convection
zone is still unclear. The purpose of this paper is to try to explain where the difficulty
comes from and what’s the difference if we introduce the nonlocal description of the
dissipation rate.

2. Results and discussion
The fully nonlocal turbulence model with the nonlocal treatment of dissipation rate is

given by (Canuto & Dubovikov (1998))
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Figure 1. The ratio of the dissipative timescale over the buoyant timescale of the fully non-
local (solid curve) and nonlocal model (dash-dotted curve) in the solar envelope. The arrows
indicate the boundaries of the convective instable zone where ∇ = ∇ad .The ratio in the lower
overshooting zone is very small due to the nonlocal treatment of the dissipation rate.

When K2/ε is very small compared with 1/τ , the diffusion term in the equations
can be neglected. Then suppose that (K, θ2 , J, w2 , ε) is the solution of the system. It is
not difficult to check that λ(K, θ2 , J, w2 , ε) is also the solution by substituting it into
the equations if we notice that the timescales remain constant at the same level and
the system can be viewed as a linear system, here λ is a constant. This tells us that the
solution is not unique and that’s the reason why steady solution is hard to be obtained
by solving these equations. To overcome this weakness, a new formula of Brunt-Väisälä
frequency is introduced for replacing the former one. It can be defined by

N =
cε

αm Hp
K1/2 . (2.8)

τb = 2/N could be viewed as the buoyant characteristic timescale describing the travelling
time of the bulb to go through the mixing length. We know that τ is the dissipative
characteristic timescale for the bulb to consume all of its kinetic energy. If τ/τb > 1, the
bulb would reserve some energy when finishing travelling the mixing length. If τ/τb < 1,
the bulb would use up all of its kinetic energy within the mixing length. If τ/τb = 1, which
is the local description of dissipation rate, the kinetic energy of the bulb is exactly used up
after the bulb goes through the mixing length. This may provide us information to explain
why the mixing length parameter αm is supposed to have different values at different
levels when using the local mixing length model. This disadvantage will disappear when
we refer back to the nonlocal description. If τ/τb > 1, an adjustment of increasing the
mixing length parameter would balance the timescales, hence it is corresponding to a
larger mixing length parameter of MLT. While τ/τb < 1 is corresponding to a smaller
mixing length parameter of MLT.
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