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Abstract

We present an agent-based model to study how the structure of a scientific network could
affect the public uptake of science and how this impact is influenced by scientific uncertainty
and affinity bias. For unbiased agents, a highly connected scientific network decreases the
probability that the public favors the correct theory. For biased agents, however, a
moderately connected scientific network causes the public to favor the correct theory more
often. This results from the competition between the scarcity of information (for poorly
connected agents) and the spread of misleading information (for highly connected agents).
Adding more scientists strengthens both effects.

1. Introduction
In contemporary society, science plays an important role in many aspects of life, such
as healthcare, energy, and education. However, it can be challenging for individuals to
determine the most credible scientific theory when making personal or policy
decisions. Factors such as literacy level, ideological orientation, and the manner of
science communication can influence their judgments (Miller, 1998; Rekker, 2021;
Knight, 2006; Harker, 2015).

This article focuses on topics lacking scientific consensus, a common stage in the
scientific process (Shwed and Bearman, 2010). Even perfectly rational scientists may
endorse differing theories as a result of inherent variability in research findings. Hence,
consensus is more likely when all research results are shared, but the speed of sharing
and processing such information by peers has limits. Internal communication channels
are thus vital for scientific progress. Moreover, scientists—like all humans—are
susceptible to affinity bias, where information uptake is influenced by the source’s
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affinity. This bias can affect consensus formation and sometimes even increase
polarization.

Previous agent-based studies have shown that the structure of scientific networks
affects scientists’ beliefs, influencing the formation of consensus or polarization
(Zollman, 2007; O’Connor and Weatherall, 2018). Empirical research also indicates that
citizens react differently to scientific results when they perceive a lack of consensus
among scientists. In particular, a lack of perceived consensus among scientists has
been shown to have a slightly negative effect on citizens’ belief in findings reported in
science communication (Chinn et al., 2018; Gustafson and Rice, 2019; van Stekelenburg
et al., 2022). So, there is a complex interplay of individual and network-level factors in
the formation of scientific consensus and the effects on citizens’ beliefs. So far, we
know of little research simulating the effects of this interplay on citizens’ uptake of
scientific findings.

The core innovation of this article is that we investigate how network features of
the scientific community affect citizens’ uptake of scientific findings. We do so with
computational simulations, extending the model of Zollman (2007). Our extended
model includes two groups of actors: scientists and other citizens. We study the effect
on citizens’ beliefs of the different types of networks that scientists may form. We also
include two additional variables: the uncertainty of the evidence and the affinity bias
of scientists and citizens. In the next subsection, we discuss what we know about the
four main variables.

1.1. Four main variables
First, the main dependent variable is the citizens’ uptake of scientific theories: it is
through this success rate among citizens that we can assess whether the public gets a
good understanding of science. In this article, we quantify the public uptake of science
with a single number: the success rate of a correct theory in the citizen community.
This success rate is given by the proportion of the number of citizens favoring the
correct theory over the total number of citizens (see later discussion). For the sake of
simplicity, we adopt what one calls, in public communication of science and
technology (PCST), the deficit model of science communication, which focuses on
unilateral knowledge transfer from scientists to other citizens (Wynne, 1991; Burns
et al., 2003). In this model, citizens are relatively passive receivers of evidence. We are
aware of the limitations of this model (Trench, 2008; Seethaler et al., 2019), but we
consider this minimal model here as a first step toward a more comprehensive
understanding of the impact of scientific uncertainty on the public uptake of science
(Schmid-Petri and Bürger, 2020). One limitation of our model is that while the
scientists’ search for evidence is influenced by their prior beliefs (as explained later),
the citizens are modeled as receiving the same evidence, to which they may respond
differently depending on their prior beliefs.

Second, the main independent variable of our model is the structure of scientific
networks. Here, we understand the term structure as the shape of the network of
epistemic relations that exist between scientists. In particular, two scientists share an
epistemic connection in the network when they exchange their empirical results.
Bibliometric analysis has shown that many scientists are just a few links away from
each other (Newman, 2001a). Authors’ positions in networks affect the uptake of their
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results (Uddin et al., 2013; Kumar, 2015). Thus, network structures directly affect the
dissemination of newly produced scientific knowledge among scientists and
potentially among citizens as well. Next, we consider two moderating variables.

Third, the acceptance of a scientific theory by citizens can depend on how
uncertain this theory is. Uncertainty is inherent to scientific inquiry (Kampourakis
and McCain, 2019; Pellizzoni, 2003) and can be due to the limited accuracy of the
experimental setup (e.g., a polymerase chain reaction [PCR] test with aleatory false-
positive results or a telescope with a low-resolution lens), the nature of the studied
object itself (e.g., a complex social phenomenon or a stochastic quantum effect), or
both. The communication of scientific uncertainty to a public audience has received
ample attention (Giles, 2002; Fischhoff and Davis, 2014; Broomell and Kane, 2017; Van
Der Bles et al., 2019). Indeed, making the scientific uncertainties explicit can affect the
acceptance of a scientific hypothesis or theory by citizens (Gustafson and Rice, 2019).
To contribute to the existing literature, we aim to assess this impact in a more
systematic and quantitative way.

Fourth, scientists and citizens alike are susceptible to psychological biases. One
such bias is affinity bias, where individuals give more weight to evidence coming from
people with whom they share similar beliefs, regardless of whether the new evidence
confirms their own beliefs. So, affinity bias is a form of homophily, understood here as
a preference for interacting with like-minded people (see Dandekar et al., 2013); it
pertains to the source rather than the content. As such, it differs from biased
assimilation or confirmation bias (whereby people selectively accept evidence that
confirms their prior beliefs while rejecting disconfirming findings; see, e.g., Lord et al.
1979).1 Affinity bias seems especially relevant for modeling scientists who revise their
beliefs in response to evidence and who make decisions on whether or not further
experiments are required. Moreover, the bias of individual scientists may affect the
whole scientific community through peer interaction, as well as the rest of society
through public communication. The impact of biases has been studied in scientific
communities, both in psychology and in the philosophy of science (Peters, 2021;
Mahoney, 1977; Wilholt, 2009; Schumm, 2021; Peters, 2022; Kelly, 2008; Dorst, 2023).

Biases have also been implemented in numerical models. For instance,
Baumgaertner and Justwan (2022) modeled how people’s beliefs are influenced by
homophily. As mentioned, this bias is similar to what we call affinity bias in the
current article. However, Baumgaertner and Justwan (2022) only considered a single
group of agents (modeled after online groups) with full beliefs, whereas we
investigate two groups of agents with graded degrees of belief. An earlier example of a
computational study focused on homophily is Dandekar et al. (2013), who started from
DeGroot’s (1974) model. Individuals update their subjective probability assignments
by taking a weighted average over the opinions of others. This can be understood as
an agent-based model on a total graph with weighted edges that can be chosen to
represent homophily. Dandekar et al. (2013) pointed out that homophily alone does
not lead to polarization in such a model (whereas biased assimilation does).

Our work aims to contribute to this debate by evaluating the role of affinity bias in
shaping the beliefs of scientists and citizens, especially under scientific uncertainty.

1 The simultaneous effect of social informational sharing and confirmation bias on polarization versus
consensus has been studied by Del Vicario et al. (2017).
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Key questions include: How does affinity bias influence scientists’ beliefs when results
are uncertain? Is affinity bias overcome with more certain evidence? Additionally, our
model tests whether individually problematic dispositions (e.g., affinity bias) are
equally problematic at the group level. Some cognitive biases can be problematic at
the individual level but turn out to be beneficial at the group level (Peters, 2021); this
is known as Mandevillian intelligence (Smart, 2018).

Methodologically, we chose the public uptake of science as our dependent variable
because this is the effect on which PCST generally focuses. The structure of the
scientific community, scientific uncertainty, and affinity bias could, in principle, all be
considered as independent variables. We selected the structure of the scientific
community as our main independent variable, though, because our goal is to
understand, for a specific structure of the scientific interactions, how changes in
individual behaviors (i.e., affinity bias) and the accuracy of experiments (i.e., scientific
uncertainty) affect the dependent variable.

1.2. Interaction of the four variables
Previous models have studied these variables in isolation or have focused on the
interaction of some of them. In practice, however, these factors operate
simultaneously and likely interact in complex ways, so their net effect seems
impossible to determine a priori. We are not aware of any model or theory that has
incorporated all these variables together. Therefore, we opted for a comprehensive
simulation model to study dynamic interactions between these variables. This
approach helps us to develop a more nuanced understanding of the effects of these
factors on public science communication.

Complex interplays of parameters on individual and network levels can be
simulated with agent-based modeling (Hedström and Ylikoski, 2010; Bruch and
Atwell, 2015). Agent-based modeling is used in the social sciences to understand the
dynamics of social phenomena (Šešelja, 2023). Such models consider social entities
(individuals, institutions, etc.) like agents forming a network. Each of these agents can
share information or influence others in other ways through the agent community. In
particular, the network epistemology framework of Bala and Goyal (1998) has been
adapted in the context of science by Zollman (2007) and has been further developed in
several publications to describe the dynamics of scientific communities (Weatherall
et al., 2020; O’Connor and Weatherall, 2018). Our article aims to adapt this model in a
new direction to simulate how a scientific community exchanges knowledge with a
nonscientific audience.

Our model represents an undecided scientific community hesitating between two
theories, A and B. We assume that one theory is, in fact, correct, but the scientists only
have fallible means for determining this empirically. Some scientists perform
experiments; they make their outcomes public to inform other scientists as well as
citizens. In response, the members of both groups progressively change their degrees
of belief concerning theories A and B. As far as we know, our extension of Zollman’s
model is the first one to consider two distinct epistemic communities: scientists and
other citizens.

As we will see in the next section, our four variables can be implemented
numerically, so their influence can be quantified. The outcomes of our model can be
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read both descriptively and normatively. On the one hand, we describe how agents
react to various combinations of the aforementioned variables and parameters. On
the other hand, we can use this knowledge to assert how a scientific network should be
organized in order to maximize public uptake of the correct scientific theory. Our
article can also be considered as a first step toward a comprehensive computational
study of the deficit model in science communication. Our methodology can be
extended to more complex science communication paradigms, such as the dialogue
approach in PCST, but doing so falls outside the scope of our present work.

Our article is structured as follows. In section 2, we introduce Zollman’s model and
present our modifications to it. In section 3, we run the model with varying input
values for the main parameters. In section 4, we summarize our key findings and
suggest directions for follow-up studies.

2. The model
In this section, we introduce the model of Zollman (2007) and our extension of it. We
explain how we implemented the adapted model numerically to address our research
question.

2.1. Zollman’s model and our application of it
There are several agent-based models that aim to describe how individuals create,
share, and update their knowledge (also known as opinion dynamics; for a review, see,
e.g., Fischbach et al., 2021). In recent years, Zollman’s model and its improvements
raised specific attention. In his influential article, Zollman (2007) applied the
economic model of Bala and Goyal (1998) to epistemic communities in order to
understand their communication structures. Such a model only considers one type of
agent, which represents scientists. Each scientist is a node of a communication
network: a scientist can interact with other scientists (if some communication
channel links them directly) or can stay isolated from other scientists (if no direct
channel exists between them).

Zollman (2007) described quantitatively how this network of interactions
influences each scientist’s beliefs about given theories. Agents can have degrees of
beliefs about which of two options, A and B, is best. From round 1 onward, agents have
to decide between two statements: “Treatment A is better than treatment B” or
“Treatment B is better than treatment A.” In our article, we apply the model to two
scientific theories (rather than treatments, although this interpretation remains
admissible, too). We consider a scientific community in which two competing
theories, A and B, have been proposed to explain a given phenomenon. The first
theory, A, is a well-known theory that has been confirmed by a large number of
experiments. The second theory, B, is either a theory that has so far been ignored—
for instance, because its predicted effects were too small compared with available
measurement resolution—or an improved version of theory A. We consider the phase
in which a new empirical method has just become available that might give more
strength to theory B (relative to theory A).2 Note that, in reality, two scientific

2 As a historical example, theory A may represent geocentrism, and theory B may be heliocentrism.
The latter theory had been suggested in antiquity but was ignored because there were no measurable
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theories are rarely each other’s negation.3 Our model merely compares the relative
merits of two theories in a context where those are the main or only contenders.

To model such situations, in which dissensus about two rival theories has started
to emerge within the scientific community, we assume that each scientist has a
personal degree of belief about which theory is better. We assume that these degrees
of belief are rational in the sense that they adhere to the axioms of probability. Hence,
we also call the degrees credences. For a given agent at a given time, we denote these
degrees of belief, respectively, by P A� � ≡ P (“Theory A is better than theory B”) and
P B� � ≡ P (“Theory B is better than theory A”). They are both real numbers between 0
and 1, with P A� � � 0 denoting the agent’s subjective certainty that theory B is better
than theory A and P A� � � 1 denoting their certainty that theory A is better than B,
mutatis mutandis, for P B� �. Rational coherence requires that these credences obey the
normality requirement: P A� � � P B� � � 1. So, for instance, if a scientist has a credence
of 80% that theory B is better than A (P B� � � 0:8), their credence that theory A is
better must be 20% (P A� � � 1� 0:8 � 0:2). If an agent has a credence above 50% that
either theory is better than the other (at a given time), we say the agent favors that
theory.

As mentioned earlier, in our model, theory A is initially far more established than
theory B. Scientists are unlikely to challenge theory A without significant belief in
theory B. However, some dissident scientists may doubt the established theory A and
conduct new experiments to confirm their belief. Meanwhile, their conservative
colleagues strongly favor theory A and will not perform additional experiments.
Stated differently, we assume that only dissident scientists who have a prior degree of
belief in the superiority of theory B greater than 50% (P B� � > 0:5, or equivalently
P A� � < 0:5) will deem it relevant to run further experiments in order to further
confirm theory B and to convince their colleagues that theory B warrants more
support than theory A. Conservative scientists who favor the established theory A
(i.e., having P A� � > 0:5 and thus P B� � < 0:5) lack incentive to run extra experiments
because of A’s established empirical adequacy and their low belief in B. However, a
conservative scientist may update their beliefs based on dissidents’ results, and if they
come to favor B (P A� � < 0:5), they may run experiments to confirm their new belief,
becoming dissidents themselves.

Zollman’s model assumes that the second treatment is better than the first one.
Analogously, we assume that theory B has better predictive success than theory A.
However, the experimental device is not perfect and leaves room for uncertainty.
That is, the device does not lead to a positive result in favor of B 100% of the time.
Although not perfect, we expect it to have an accuracy of more than 50%. A lower
value would imply, given our assumption that B is indeed better than A, that the
device is not a suitable one. A 50% accuracy would be equivalent to assessing the truth
of theory B by flipping a coin. We define the accuracy of the experimental device, p, as
the sensitivity of the device: the probability of producing a true-positive experimental

effects. Early telescopic observations in the 17th century showed evidence of moons that revolve around
planets other than Earth, which provided direct empirical confirmation of heliocentrism relative to
geocentrism.

3 In the previous example, a hybrid theory was indeed proposed: geo-heliocentrism (see, e.g., Blair,
1990).
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result (given that B is the correct theory).4 For example, in a counterfactual case
where the geocentrism versus heliocentrism debate took place with 19th-century
telescope technology, p could represent the probability of measuring stellar parallax
(which is a true positive, given that heliocentrism is correct). Formally, we use the
notation

p � 0:5� ε; (1)

where ε is a real number between 0 and 0.5. If ε � 0:5, then the device is 100%
accurate, and its results leave no room for uncertainty.

Because p is a probability, its (Bayesian) interpretation can be extended from the
experimental accuracy to encompass other forms of uncertainty. Indeed, dispersion
in the experimental outcomes is not necessarily caused by the measurement device
alone but can also result from the intrinsic stochasticity of the system under study
itself. Having that in mind, one can apply our model to many other fields dealing with
inherent uncertainty, such as the social sciences, medicine, statistical physics, and
quantum mechanics. For instance, one can cite sampling error in a population survey
(in that case, one of the theories could be “The majority of the population is shorter
than 170 cm”), chaos in weather simulation (“It will rain tomorrow at 2:34 p.m.”), the
detection of an electron outside an electron trap (“The electron stays in the trap for at
least 30 minutes”), and so forth.

In Zollman’s model, in order to reduce statistical error, each dissident scientist
chooses to run the experiment n times (always with a probability of success of 0:5� ε

for each run). E denotes the event of k positive results out of n runs. The probability of
this event, given that theory B is true, is given by the binomial distribution:

P�EjB� � P k; n; p
� � � n!

n � k� �!k! p
k�1 � p�n�k; (2)

where p � 0:5� ε.
When faced with the evidence E of such a run of n experiments, each agent updates

their prior credences according to Bayes’s rule:

Pnew B� � � P�BjE� � P�EjB�P B� �
P E� � ; (3)

where P B� � is the agent’s prior credence in the superiority of theory B, P�EjB� is
the probability of the evidence E given that the theory B is true, and P E� � is the
absolute probability of E. By the law of total probability, the latter probability can be
rewritten as

P E� � � P�EjB�P B� � � P�EjA�P A� �; (4)

which says that the probability that E occurs (without knowing whether proposition A
is true or B) is proportional to the probability that it occurs on theory A or on theory
B, weighted by the probability that the given theory is correct. Assuming E
corresponds with k successes out of n experiments, we obtain by combining
equations 2–4:

4 Like Zollman (2007), we assume that the device never produces false-negative results (100%
specificity). Hence, we use the terms accuracy and sensitivity interchangeably.
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Pnew B� �� pk�1 � p�n�kP B� �
pk�1 � p�n�kP B� � � �1 � p�kpn�k 1 � P B� �� �

� 1

1� 1�P B� �
P B� �

0:5�ε
0:5�ε

� �
2k�n :

(5)

Each dissident scientist will perform an experimental run and update their prior
beliefs according to equation 5. If ε is very small (meaning that an unreliable
experimental device is used), the outcome of the run has a nonnegligible probability
of disconfirming theory B. Then, after updating their belief, the dissident scientist can
end up with a degree of belief in B below 0.5. The agent will then disfavor their former
favorite theory B and become a conservative scientist who favors theory A. This
scientist will not perform any new experiments because, as mentioned, scientists are
reluctant to perform a costly experiment in favor of a new theory in which they have
low credence when there are already a lot of old experiments in favor of A.

But all the scientists, both conservatives and dissidents, aim to improve their
knowledge and are open to listening to neighbor scientists located in their direct
network. Thus, even if conservative scientists will not perform an experiment
themselves, they will consider the experimental results of dissident colleagues who
are direct neighbors and update their prior beliefs according to equation 5. In
Zollman’s model, all pieces of evidence have the same weight, regardless of whether
they come from the scientists themselves or from dissident colleagues.

2.2. Extending the model
Some extensions of Zollman’s original (2007) model have been proposed in the
literature. O’Connor and Weatherall (2018) added a social bias (similar to affinity bias)
related to the source of the evidence: in their model, scientists treat the evidence of
peers as more uncertain when their credences are further apart. The authors found
that this promotes polarization, but their model only concerns the scientific
community and does not include citizens. Wu (2023) set up a variant of the model
including two groups of agents, in which members of one group ignored the
testimony of members of the other group. Zollman’s later (2010) model represents
scientists who again have a choice between two methods, but now, instead of one
having a known success rate and the other being unknown compared to it, both
methods have unknown success rates (modeled by binomial distributions). Gabriel
and O’Connor (2024) added confirmation bias to this model and found that it may
improve group learning. After each experimental round, agents have some
probability to accept or reject these outcomes. This probability is driven by a
beta-binomial distribution that depends on the history of success and failure of each
theory and the new outcomes. In another version of the model, Weatherall et al.
(2020) considered an epistemic community made of scientists, policymakers, and a
propagandist. The propagandist aims to shift public opinion in one direction by
cherry-picking among the experimental results that confirm their prior beliefs and
massively sharing them. Even though both communities (i.e., scientists and citizens)
are considered, Weatherall et al. (2020) did not give a systematic study of the impact
of the scientific network. They only considered two types of networks among the
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thousands possible: the cycle graph and the complete graph. In the next section, we
will discuss the interpretation of these graphs in more detail.

In our model, affinity bias influences how agents (both scientists and citizens)
adapt their degrees of belief in response to the testimony of (other) scientists.
Specifically, if the agent is prone to affinity bias, their trust in the scientist’s
testimony will be high if their prior credence on a particular topic (in this case,
whether they favor theory B) is very similar. The closer the agent’s prior degree of
belief is to that of the scientist, the more the agent will trust the reported evidence.

To represent this type of belief revision, we must deviate from Bayes’s rule (eq. 5),
which is part of Zollman’s base model, because it assumes that all evidence is learned
with certainty. Instead, we start from Jeffrey’s (1990) generalization of Bayes’s rule, as
did O’Connor and Weatherall (2018). In addition, we modify the way agents respond to
testimony under the influence of affinity bias. To achieve this, we essentially use the
same equation as O’Connor and Weatherall (2018), but with one component fewer.

Formally, we consider a scientist j who reports their evidence E to another agent i,
who does not fully believe this testimony. By testimony, we consider an observation
report (i.e., a scientist’s testimony on their experimental evidence) rather than an
expert’s posterior degree of belief, which has been studied, for example, by Steele
(2012) and Roussos (2021). According to Jeffrey’s (1990) conditioning, the posterior of
agent i is as follows:

P0i B� � � Pi�BjE�P0i E� � � Pi�Bj � E�P0i �E� �; (6)

where P0i B� � is agent i’s posterior credence that theory B is better than theory A; Pi�BjE�
and Pi�Bj � E� are the conditional probabilities of theory B being better than theory A
given that E or �E occurred, respectively (see eq. 5); and P0i E� � and P0i �E� � are agent i’s
posterior credence that E or �E occurred, respectively, after accounting for the
testimony of scientist j. These final two factors are influenced by the affinity bias, as
defined in equation 7.

In our model, when scientist j claims that they received evidence E, the posterior
credence of agent i depends on the affinity bias, as follows:

P0i E� � � 1 �min 1;max 0; α Pi B� � � Pj B� �
�� ��� �� �

; (7)

where P0i E� � is agent i’s posterior credence in E, Pi B� � � Pj B� �
�� �� is the distance between

the prior credences of agent i and scientist j in theory B being better than A, and α is a
positive real parameter that represents the degree of affinity bias of agent i. P0i �E� � is
obtained as 1 � P0i E� �.

If α is 0, the agent is not prone to affinity bias, and P0i E� � will be 1, so the agent will
trust another scientist regardless of how different their beliefs are. As α increases, the
agent is more prone to affinity bias, so the agent will distrust experimental results
coming from other scientists, except those for which Pi B� � � Pj B� �

�� �� is smaller than
1=α. We notice as well that when the credences of scientists i and j in the theories get
closer, the subjective probability P0i E� � approaches 1: scientist i approaches full belief
in the occurrence of E as reported by scientist j. So, there are two ways in which an
agent imay fully trust the testimony of scientist j: if α is 0 or if agent i happens to have
the same prior credence in B as scientist j. In both cases, P0i E� � � 1, and Jeffrey’s
formula reduces to Bayes’s rule.
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Our equation 7 is structurally similar to the expression introduced by O’Connor
and Weatherall (2018), except that we left out the additional factor of 1 � Pi E� �� �—a
useful simplifying assumption.5 So, our approach assumes that the uptake of the
testimony only depends on the difference in the degree of belief between i and j and
the intensity of the affinity bias, regardless of how probable this piece of evidence is.

We have described how each scientist updates their degree of belief according to their
own experiment’s outcomes and those of their epistemic neighbors. These pieces of
evidence are communicated to the citizens via a communication channel, called a
mediator. In our article, we only consider a rapporteur in the role of a mediator, who
publishes all the scientific outcomes.6 Unlike the dialogue model in PCST (Trench, 2008),
there is no scientist–citizen knowledge co-production. The citizens merely receive
information from the mediator, a one-way communication channel from scientists to
citizens. Once new evidence has been produced by any scientist, it reaches every citizen.
Like the scientists, each citizen will use equation 6 to update their degree of belief. We
assume that, realistically, citizens, like scientists, are prone to affinity bias.

2.3. From the theoretical model to its numerical implementation
As stated in the introduction, our aim is to understand how the structure of scientific
communities, scientific uncertainty, and affinity bias affect the public uptake of
science. The agent-based model we just reviewed gives us a useful tool to approach
this question. We implemented our model in a Python algorithm (publicly available:
Ferrari, 2025).

For each simulation, several parameters are fixed: the structure of the scientific
community, the sensitivity of the experimental device, the affinity bias, the number
Nsc of scientists in the scientific community, the number Ncit of citizens in the public,
and the number of experiments n done by each dissident scientist in each run.

The Ncit citizens, like the Nsc scientists, all start with a prior degree of belief P B� � at
time t � 0. These degrees of belief (between 0 and 1) are randomly generated by the
computer. Each dissident scientist (with P B� � > 0:5) will run n experiments with a
probability of success of 0:5� ε for each trial. At the next time increment (t � 1),
each of these dissident scientists will update their personal degrees of belief according
to the outcomes of their own experiment by using Bayes’s rule. In addition, they will
share their results with scientists located in their neighborhood. Remember that the
network of scientists is a graph, where each scientist is represented by a vertex and
each connection by an edge. Each of the scientists (conservative or dissident) of the
neighborhood will update on each of the upcoming pieces of evidence coming from
their neighborhood according to Jeffrey’s rule (eq. 6). Then, each of the citizens will
update their degree of belief with all the pieces of evidence produced by the scientific
community according to Jeffrey’s rule as well.

We reiterate this process for t � 2, t � 3, and so forth until all agents (both
scientists and citizens) stabilize their beliefs: not changing them for subsequent time

5 We also compared our results with those obtained by using O’Conner and Weatherall’s (2018)
expression for affinity bias. The results differ only slightly quantitatively, and the qualitative conclusions
remain the same.

6 In general, there are other options, such as a journalist who publishes the most interesting research
results, a science educator, or an opinion maker (Burns et al., 2003).
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t. The time after which beliefs stabilize is called the stabilization time τ. Once all beliefs
are stabilized, the simulation stops. This is the halt condition of our algorithm. We can
now count how many scientists and citizens favor theories A and B. From these
numbers, we can draw conclusions about the public uptake of science for this specific
community.

So far, we have described a single simulation for specific values of the independent
variables and a random degree of belief assignation. In order to have a general picture
of the impact of a given choice of parameters (our independent variables), we would
like to make this result independent of the prior beliefs of the agents (i.e., the P B� � at
t � 0). To do so, we randomize the initial distribution of beliefs of agents and simulate
the same epistemic network with the same parameters a large number of times. More
specifically, we start with a random distribution of scientists with degrees of belief
between 0 and 1 and a distribution of citizens with degrees of belief between 0 and 0.5
(so, no citizens favor B at t � 0 because we assume that the conservative scientists
had enough time in the past to convince all the citizens to favor theory A). Then, we
average the proportion of agents favoring the correct theory (i.e., theory B) at the end
of the interaction process (i.e., once all scientists’ beliefs have stabilized). This average
ratio is called the success rate. We use this success rate among the citizens to assess if
the public gets a good understanding of science (assuming the deficit approach of
PCST). This is why we quantify the dependent variable of this article (i.e., the public
uptake of science) with the success rate of theory B (i.e., the correct theory) in the
citizen community.

We summarize the independent and dependent variables in table 1. The main four
variables of this article are written in bold.

Our model is now complete. In the next section, we will investigate how the choice
of the scientific network affects both the scientists and the public in their beliefs: we
study the success rate in these two communities.

Table 1. Independent and Dependent Variables of the Model; Main Variables of Interest Indicated in Bold

Independent Variable Name Symbol Range of Value

Number of scientists Nsc Natural number

Number of citizens* Ncit Natural number

Number of experiments at each run n Natural number

Network structure None All possible graphs representing connections
between Nsc agents

Sensitivity of the experimental
device

0.5� ε ε∈ [0, 0.5]

Affinity bias of agents* α Positive real number

Dependent Variable Name Symbol Range of Value

Success rate of scientists None [0, 1]

Success rate of citizens None [0, 1]

Stabilization time τ Natural number

*Added to Zollman’s model.
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3. Network structure
The structure of a scientific community can be represented by a graph in which each
vertex represents an agent and each edge represents the connection existing between
two agents. For instance, the graph of all members of the same university department
is usually a complete graph: each agent stands in a direct epistemic connection with
any other one. In other cases, the graphs might not be connected sets, such as when
there is an accidental or forced segregation of two (or more) scientific communities
(e.g., due to language barriers). In this case, the graph of the whole scientific
community consists of at least two disconnected subgraphs. Such a setup does not
imply that the subcommunities cannot reach the right conclusion independently. A more
extreme case consists of a society of isolated agents with no communication between any
of them. One can think of independent scholars without affiliation to any university and
therefore lacking coverage for their research or scholars during antiquity, when
manuscripts were often unaffordable and communication means were very slow or
nonexistent. Some authors also consider two other kinds of networks: the cycle and the
wheel (Zollman, 2007; O’Connor and Weatherall, 2018). In a cycle network, each agent is
connected to two other agents. The resulting connected graph is a loop. Such a network is
one of the most economical to link all agents together. However, the path between one
agent and another can be long and has to transit through a lot of peers who could modify
the message. The wheel is an improved version of the cycle with an agent at the cycle’s
center and connected to all other agents. This agent is like a postal worker providing
shortcuts for communication between any pair of agents. An illustration of these four
networks is presented in figure 1.

In this section, our object of investigation is the effect of the network structure of the
scientific community on the success rates within the communities of both scientists and
citizens. As mentioned before, we assume here that the communication channel is a
rapporteur, such that all experimental outcomes produced by the scientists are made
public to the citizens (which may be viewed as the ideal of open science), and that the
latter take this information into account (an even less realistic modeling assumption).
Stated differently, at each round, each citizen will update (in a Bayesian way) their degree
of belief based on all the experiment outcomes produced during this round.

3.1 Complete, isolated, cycle, and wheel graphs
We begin by examining the four common network graphs—complete, isolated, cycle,
and wheel—to understand their impact on the public uptake of science. We model a
society of 20 scientists and 20 citizens, considering both societies of agents without
affinity bias (α � 0) and with agents prone to affinity bias (α > 0). Initially, scientists’
prior degrees of belief are randomly distributed between 0 and 1, and citizens’ are
distributed between 0 and 0.5.

Figure 1. The com-
plete, isolated, cycle,
and wheel networks.
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3.1.1. Unbiased case: α � 0
The result of the unbiased case is depicted in figure 2. We notice that the wheel
network is the most successful graph for making scientists favor the correct theory,
followed by the complete network and the cycle network. For the isolated network,
even if half of the scientists start by favoring the correct theory on average, less than
half of them end up with the right conclusion. We can explain this by noticing that a
small value of ε implies a high probability of failure (k < n=2). In the case of an update
with false-negative results, a scientist starting with a prior degree of belief above 0.5
can have a posterior degree of belief below 0.5 at the next time increment. As a
consequence, this scientist will then stop running experiments. Because the agent is
isolated, they will not have any new experimental outcomes for updating their
erroneous belief. Such an agent will stay stuck below 0.5 forever.

Concerning the impact of these four structures on citizens, we notice quite similar
behaviors in each case. No citizen will be convinced to favor the correct theory if the
accuracy of the experimental device is 0.5 (ε � 0). But the number of citizens who
favor the correct theory grows rapidly and reaches the maximal value even for a poor
accuracy of the device. It is surprising to see that the isolated network now performs
as well as the other networks.

In order to study the robustness of our results, we varied the number of scientists
and the number of citizens. We discovered that varying the number of citizens does
not affect their success rate. However, as depicted in figure 3, a larger scientific
community leads to a better success rate both for itself and for the citizens. Although
we exemplified it for a complete graph, this statement is valid for all four graphs
considered here.

3.1.2. Biased case: α > 0
We run the same algorithm, now considering a society with affinity bias (α � 2). In
figure 4, we notice that the success rate of the four networks is lowered, and none of
them is able to convince either the scientists or the citizens to favor the correct
theory. This effect is even more prominent in the case of citizens; only the complete
graph reaches slightly more than 50%. If we add more scientists to the network, the
success rate for the scientists rises but never surpasses 75%, and the citizens’ success
rate never rises above 50%. For readability, we omitted these plots.

Figure 2. Fraction of scientists and citizens who reached the correct conclusion in a society without
affinity bias as a function of increasing experimental accuracy (or sensitivity) 0:5� ε and graph
geometry. In these simulations, Nsc � Ncit � 20, α � 0, n � 10, and number of runs � 500.
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The geometry with the lowest success rates is once again the isolated network.
We notice here that the more connected a graph is, the higher its success rates are.
The next subsection investigates whether that statement can be true in general.

3.2. General graphs
Even though the complete, isolated, cycle, and wheel graphs are often implemented in
Zollman’s model (Zollman, 2007; Weatherall et al., 2020; O’Connor and Weatherall,
2018), there are few systematic studies covering all the possible graphs. Zollman
(2007) investigated all the possible graphs for Nsc � 3; 4; 5; 6. (We will discuss his
conclusions later on.) Zollman’s approach aims to be analytical: for a fixed number of
scientists (i.e., vertices), he computed all the ways of linking them. He ended up with
2, 6, 21, and 112 possible graphs, respectively. This number grows exponentially with
the number of scientists (Sloane, 2024): 853 for 7 scientists, 11,117 for 8, 261,080 for 9,
11,716,571 for 10, and so forth. Hence, an intrinsic limitation of this type of research is
the exponential increase in computation time needed for exploring larger graphs.
However, it is worth investigating beyond graphs of six vertices because a scientific
society is rarely limited to six individuals, and important differences are to be

Figure 3. Fraction of scientists and citizens who reached the correct conclusion in a society without affinity
bias as a function of increasing experimental accuracy (or sensitivity) 0:5� ε and the number of scientists in
the case of a complete graph. In these simulations, Ncit � 20, α � 0, n � 10, and number of runs � 1; 000.

Figure 4. Fraction of scientists and citizens who reached the correct conclusion in a society with
affinity bias as a function of experimental accuracy 0:5� ε and the graph geometry. In these
simulations, Nsc � Ncit � 20, α � 2, n � 10, and number of runs � 200.
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expected for larger networks. As in the previous example, we would like to simulate
all possible graphs for a community of 20 scientists. For this case, there are roughly
1037 possible graphs (Sloane, 2024). Because our script takes 0.1 seconds to simulate 10
graphs in one central processing unit (CPU), it would take around 1035 seconds, or 1027

years (i.e., more than 1 billion times the current age of the universe), to go through all
possible graphs. Clearly, this is far beyond the capacity of current computers. Instead,
we modestly simulated 10,000 random graphs. We will show later that this tiny
sample seems to suffice for studying the trend of the results.

Like Zollman (2007) and earlier authors (see, e.g., Newman, 2001a, 2001b), we
synthesize the graph identity with one unique number: the clustering coefficient (also
called transitivity).7 This coefficient aims to describe how vertices tend to be clustered.
For each agent, the local clustering coefficient is proportional to the number of
connections the agent’s neighbors form. The more the neighbors are connected, the
higher the local clustering coefficient. These local coefficients are computed for each
vertex (i.e., for each agent) and are averaged. This final number (between 0 and 1) is
called the global clustering coefficient or simply the clustering coefficient of the graph. For
example, a completely isolated community has a graph with a null coefficient, and a
fully connected community has a coefficient of 1. The cycle structure has a coefficient
of 0.5. The higher the coefficient, the denser and more connected the community.

In figure 5, we simulated 10,000 random graphs and computed their clustering
coefficient, their stabilization time, and their ratio of scientists who reached the
correct conclusion. The upper plots pertain to an unbiased society (α � 0) and the

Figure 5. Fraction of scientists and citizens who reached the correct conclusion and the stabilization time as
a function of the clustering coefficient. α � 0 for the three upper charts, and α � 2 for the three lower ones.
We fixed ε � 0:05, n � 5, number of generations � 20, and number of graphs � 1; 000. The blue stars
denote the complete graph, the green diamonds denote the cycle, the yellow squares denote the wheel, and
the black tripods denote the isolated graph.

7 One could also describe the network with average path length: the average number of steps to
connect two nodes by the shortest path. Real-world communities tend to have a small-world network: a
high clustering coefficient and a low average path length.
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lower ones to a more biased one (α � 2). The complete, isolated, cycle, and wheel
graphs are represented by specific symbols as well.

Our results for scientists agree with earlier work in this area. In addition, we
consider the effect of the network in one community (the scientists) on the credences
of another group (the citizens), for which no such studies exist. Moreover, we study
the interaction with affinity bias, as discussed later.

3.2.1. Unbiased society
In the case of an unbiased society, the more clustered the graph is (i.e., the higher the
clustering coefficient), the more likely the scientists will reach the correct conclusion.
Concerning the citizens, however, it is the exact opposite: the more disconnected a
graph is, the more likely the citizens will favor theory B. We notice, out of the four
common graphs, that the complete one cannot lead all the citizens to favor theory B.
However, it is the quickest one: the community stabilizes after only a few iterations.
The isolated graph lies in the bottom left and scores a success rate below 0.5 for the
scientists, although scoring at 1 for the citizens. We can explain this by noticing that
once a dissident scientist runs an experiment whose outcomes lower their degree of
belief below 0.5, they will never do an experiment again, nor will they update their
belief based on another scientist’s experiment. At the same time, each isolated
scientist will share their knowledge with the audience, and the latter will reach the
correct conclusion. In general, we notice that increasing the clustering of a graph
improves its stabilization time and the ratio of dissident scientists but lowers the
chance of getting all the citizens unequivocally favoring theory B (i.e., being in one of
the horizontal strips of the second graph). We can see it as a trade-off between a
successful scientific community and a successful citizen community. The link between
connectivity and stabilization time is consistent with the results of Zollman (2007).

3.2.2. Biased society
We ran the simulation again with a non-null level of affinity bias (α � 2). We first
notice that the three dotted clouds in the three lower charts in figure 5 are, on
average, convex. This time, no graph achieves a success rate of 1 for the scientists, and
in a few graphs only, the success rate for the citizens is above 0.5. The most successful
graphs are located around a clustering coefficient of 0.6. The success rate of the
isolated graph is one of the worst ones, even though its stabilization time is very low.
The three other classical graphs have low success rates, especially the cycle and the
wheel, which lie below the majority of points. This specific convex shape of the curve
can be understood as the result of two competing phenomena: epistemic isolation of
the agents due to high affinity bias and the fast dissemination of false pieces of
evidence in highly connected graphs. The first phenomenon that takes place is poorly
connected graphs. Agents are isolated as a result of the lack of connection with other
agents and have fewer opportunities to receive information from other agents. This
effect is even more stringent with the affinity bias: even though an agent receives an
experiment outcome from one of their rare peers, they are more easily prone to
discard it. That explains the low success rate for poorly connected networks. This rate
increases when the connectedness increases. However, a second phenomenon will
counteract this increase. In a highly connected graph, information spreads very fast
and very easily to all the agents. This may sound as though it would be beneficial to
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the success rate. However, even though true-positive results (i.e., in favor of theory B)
spread fast, false-positive results (i.e., in favor of theory A) do as well. Such false-
positive results are difficult to correct once they have been communicated to a large
number of agents. This effect has already been pointed out by Zollman (2007) and is
known as the Zollman effect (Šešelja, 2023). This effect diminishes for poorly connected
networks. The convex shape is thus understood as the result of these two competing
phenomena.

We notice here a trade-off between accuracy and speed. On average, adding or
removing some vertices to change the clustering coefficient of the graph in order to
reach the value of 0.6 (i.e., to maximize the success rate of scientists and citizens)
will increase the stabilization time. Stated differently, slower graphs will perform
better.

To assess the model’s sensitivity to affinity bias, we also run the script for α � 4.
In this case, the curve of the first two charts is shifted downward: fewer scientists and
citizens reach the correct conclusion. One could have expected this result: because of
their strong affinity bias, all the agents will rarely update their degrees of belief and
will stay stuck not far from their prior beliefs. The top of the curve lies around 0.5 on
average for scientists and around 0.25 on average for citizens. The first value can be
understood as follows. Because scientists who initially believe in theory B will never
change their minds, their proportion stays the same throughout the interaction
process (i.e., 50%). So, half of the scientists in the initial and final communities favor
theory A, whereas the other half favors theory B.

In this section, we studied the impact of the scientific network on both
the scientists’ and citizens’ beliefs. We stressed that a society prone to affinity bias
(i.e., a biased society) performs poorly and is never able to make more than half the
citizen population favor theory B. Even if these limitations are unavoidable, a poor
result can be improved either by hiring more scientists (raising Nsc) or by
reorganizing the scientific network in such a way that its clustering coefficient is near
0.6 (i.e., moderately connected). In the case of unbiased societies, we saw that there is
a trade-off between making either scientists or citizens favor the correct theory.
These results are especially interesting because they illustrate how the network of
one community (i.e., the scientists) affects the uptake by another (i.e., the citizens).
This suggests that citizens’ uptake is driven not only by the content of scientific
information (i.e., the experimental outcomes) but also by the temporal variations of
the flow of information. These variations are caused by the conversion of
conservative scientists into dissident scientists, and vice versa, during all the
simulations. In addition, the network’s structure directly affects the likelihood of such
conversions.

4. Conclusion and outlook
In this article, we investigated how the structure of the scientific community affects
citizens’ uptake of science. We proposed an adapted version of the Zollman agent-
based model that includes not only the structure of the scientific community and
citizen uptake of scientific findings but also scientific uncertainty and the agents’
propensity for affinity bias. The latter, as defined in equation 7, is one of the major
contributions of this article.
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By doing an extensive study of the influence of the structure of the scientific
network, we found that in unbiased societies, on average, most of the scientists and
citizens arrive at believing the correct theory. We also noticed a trade-off between
successfully making either scientists or citizens favor theory B over theory A. Highly
connected scientific communities will lead more scientists than citizens to believe in
theory B. Less connected scientific communities will lead more citizens than scientists
to believe in theory B. In contrast, we found that a society prone to affinity bias
(i.e., biased society) performs poorly and never ends up with more than half of the
citizen population favoring the true theory (i.e., theory B). Two interventions are
possible if one wants to improve this ratio: (1) hiring more scientists and
(2) reorganizing the scientific network in such a way that it is just moderately
connected (clustering coefficient around 0.6). Our findings suggest that maximal
connectivity is not always the best way to produce better science, which is in line
with the findings of Zollman (2007).

The previous results give us more insight into how the choice of parameters
influences the public uptake of science in the deficit model. By carefully adjusting
these parameters, one can improve not only the success rate of the scientific
community but also the public uptake of science. Some changes in the model are
suggestive of interventions that can be tested experimentally and that can be
influenced through policies for the organization of science and for science
communication. For instance, one can change the number of connections per
scientist in the model as well as in reality (e.g., by incentives that either promote or
discourage team science). The effect of these choices will depend on other parameters
as well (modifiable or not), such as the degree of affinity bias in society, the number of
agents, and the experimental accuracy.

This article is a first contribution toward a comprehensive understanding of the
interaction between scientists and the public in science communication. This model
can also serve as a starting point for studying the limitations of the deficit model. For
instance, we only considered a one-way interaction from the scientists to the other
citizens and no interaction between the citizens. A possible improvement would be to
move from a deficit model to a dialogue model, which allows two-way communication
between the two types of agents as well as communication between the citizens.
Other possible improvements would be to consider other psychological biases or to
test our model with a more realistic network structure, for instance, based on citation
patterns reported in empirical bibliometric studies. Different communication
channels between the scientists and the citizens can also be implemented, as was
done by Weatherall et al. (2020). Lastly, we assumed that once a dissident becomes
conservative after running experiments favoring theory A, they will not perform any
new experiment (by our definition of a conservative scientist). In the real world,
however, one may expect that scientists do not give up so easily and keep
experimenting for several iterations.8

We have used an expression for the posterior degree of belief in evidence reported
by a scientist that depends on the agent’s affinity bias and the difference between

8 Moreover, as indicated in the introduction, our current model does not aim to represent
confirmation bias, which does affect how real-world agents deal with uncertain evidence and may be
crucial to understanding belief polarization (see, e.g., Kelly, 2008; Dorst, 2023).
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their prior credences on which theory to favor, but—unlike O’Connor and Weatherall
(2018)—not on the prior probability of the evidence (eq. 7). Qualitatively, this
simplification did not seem to affect our results, but we flag a systematic robustness
study of different implementations of this bias and empirical validation as potential
avenues for future research.

Our results suggest that the structure and size of the scientific community affect
the uptake of correct theories by citizens but also that the direction of this effect
depends on the degree of affinity bias. Without this bias, the probability that the
public ends up favoring the correct theory decreases as the connectivity of the
scientific network increases. When affinity bias is present, however, the probability
that the public favors the correct theory is highest for a moderately connected
scientific network. Both effects are more pronounced when the number of scientists
increases.
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