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Alternating groups and rational functions on surfaces

Sonia Brivio and Gian Pietro Pirola

Abstract

Let X be a smooth complex projective surface and let C(X) denote the field of rational
functions on X. In this paper, we prove that for any m > M(X), there exists
a rational dominant map f : X → Y , which is generically finite of degree m, into a
complex rational ruled surface Y , whose monodromy is the alternating group Am. This
gives a finite algebraic extension C(X) : C(x1, x2) of degree m, whose normal closure has
Galois group Am.

1. Introduction

Let F be an extension field of L, we denote by G(F : L) the Galois group of the extension F : L,
which consists of all automorphisms of the field F which fix L elementwise. If F : L is finite and
separable, its normal closure N : L is a Galois extension, see [Gar86]. Set M(F,L) = G(N : L).
Let X be an irreducible complex algebraic variety, we can associate to it the field C(X) of ratio-
nal functions on X. This gives a one-to-one correspondence between birational classes of irreducible
complex algebraic varieties and finitely generated extensions of C. Let X and Y be irre-
ducible complex algebraic varieties of the same dimension n. Let f : X → Y be a generically
finite dominant morphism of degree d. The field C(X) is a finite algebraic extension of degree d of
the field C(Y ), the group M(C(X),C(Y )) is called the Galois group of the morphism f , see [Har79].
There is an isomorphism between the Galois group of f and the monodromy group M(f), associated
to the topological covering induced by f , see § 2.1. Fix an irreducible variety X of dimension n,
C(X) is a finite algebraic extension of C(Pn) = C(x1, x2, . . . , xn), see [Zar58, Zar60]. The study of
possible monodromy groups for X is a classic, algebraic and geometric problem. In general, M(f)
is a subgroup of the symmetric group Sd. It is interesting to see in which cases M(f) is a subgroup
of the alternating group Ad; if this happens we say that f has even monodromy.

If n = 1: let X be a compact Riemann surface of genus g. Any non-constant meromorphic
function f ∈ C(X), of degree d, gives a holomorphic map f : X → P1, which is a ramified covering
of degree d. f is indecomposable if and only if the group M(f) is a primitive subgroup of Sd. There
are several results on even monodromy of such maps: first of all by Riemann’s existence theorem,
for all g � 0 and for all d � 2g + 3, there are Riemann surfaces of genus g admitting maps with
monodromy group Ad, see [Fri89]. Actually, for a generic Riemann surface X of genus g � 4, for
any indecomposable map the monodromy group is either Ad or the symmetric group Sd, see [GN95]
and [GM98]. Finally, a generic compact Riemann surface of genus 1 admits meromorphic functions
with monodromy group Ad, for d � 4, see [FKK01]. This result has been recently generalized to
any compact Riemann surface X of genus g for d � 12g + 4, see [AP05]. This implies that every
extension field F : C, with trascendence degree 1, can be realized as a finite algebraic extension of
degree d, F : L, with L � C(x) and monodromy group M(F,L) = Ad.
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In higher dimension there are many various results concerning the monodromy of branched cov-
erings f : X → Y of a variety Y (multiple planes theory, braid groups, Chisini problem, fundamental
groups of the complement of a divisor, etc., see [Chi42, Sev46, Cat86, AbS01, Nor83], etc.). On the
other hand, not much seems to be known when X is fixed, for instance, the existence of maps f
with M(f) solvable is also unknown for projective surfaces of degree d � 6. It is easy to produce,
by general linear projections, finite maps X → Pn with monodromy the full symmetric group Sd,
see [Sev48]. So it is interesting to see whether other primitive groups can be realized as monodromy
of X. In this paper, we deal with surfaces and even monodromy groups. Our result is the following.

Theorem 1. Let F be an extension field of C, with trascendence degree 2. Then there exists an
integer M(F ) with the following property: for any m > M(F ), F admits a subfield L � C(x1, x2)
such that F : L is a finite algebraic extension of degree m and the group M(F,L) is the alternating
group Am.

We will deduce Theorem 1 from the following geometric result.

Theorem 2. Let S be a smooth, complex, projective surface andKS denote a canonical divisor on S.
Let H be a very ample divisor on S, with H2 � 5 and such that (S,OS(H)) does not contain lines
or conics. Set g = pa(2H+KS). Then, for any m > 16g+7, there exist a smooth complex projective
surface X, in the birational class of S, and a generically finite surjective morphism f : X → Y , of
degree m, into a smooth complex rational ruled surface Y , such that the monodromy group M(f)
is the alternating group Am.

Let us describe briefly the method we use in proving this result. Let H be a very ample divisor
on S: under our assumptions, which are actually verified by almost all H, we can find a Lefschetz
pencil P in the linear system |2H +KS |, whose elements are all irreducible, see § 4.1. By blowing
up the base points of P , we produce a smooth, complex, projective surface Ŝ, and a surjective
morphism φ : Ŝ → P1, with fibre Ft, see § 4.2. The pull-back of OS(H +KS) defines a natural spin
bundle Lt on each smooth fibre of φ. Following the method of [AP05], for each smooth fibre Ft,
we can introduce the variety H(Ft,Dt), parametrizing a family of meromorphic functions ft on Ft

with even monodromy, related to Lt, see § 4.3. As t varies on P1, we have a family p : H → P1 of
projective varieties. Our aim is to glue these meromorphic functions in a suitable way. This can be
done by producing a section of p. As for any t ∈ P1 the fibre p−1(t) is a normal rationally connected
variety, we can apply the following result: every family of rationally connected varieties over a smooth
curve admits a section. This property, conjectured by Kollár, has been recently proved by Graber,
Harris and Starr, and by de Jong and Starr (see [GHS03] and [DS03]). The existence of a section
allows us to produce a generically finite surjective morphism f : X → Y , where X is birationally
equivalent to S, Y is a smooth complex rational ruled surface, such that the restriction f|Ft

to a
general smooth fibre has monodromy Am. To conclude our proof, we show that the monodromy of
a general smooth fibre completely induces the monodromy of f . For this, we use a topological result
of Nori, see § 5.1.

Finally, we apply our result to surfaces of general type with ample canonical divisor, see § 5.3.
We conjecture that Theorem 1 holds for any finitely generated extension F of the complex field.

2. Preliminaries
2.1 Monodromy
Let X and Y be irreducible complex algebraic varieties of the same dimension n. Let f : X → Y be
a generically finite dominant morphism of degree d. We recall the definition of monodromy group
M(f) of f , see [Har79]. Let G be the Galois group of the morphism f , see § 1, G acts faithfully
on the general fibre f−1(y) and so can be seen as a subgroup of Aut(f−1(y)) � Sd. Let U ⊂ Y
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be an open dense subset such that the restriction f : f−1(U) → U is a covering of degree d in the
classical topology (i.e. non-ramified). For any point y ∈ U , let f−1(y) = {x1, . . . , xd}, we have
the monodromy representation of the fundamental group π1(U, y):

ρ(f, y) : π1(U, y) → Aut(f−1(y)),

sending [α] → σ(α), where σ(α) is the automorphism which sends xi to the end-point of the lift of α
at the point xi. Let M(f, y) = ρ(f, y)(π1(U, y)). It is easy to verify that M(f, y) is isomorphic to the
Galois group G of f , and so does not depend on the choice of the open subset U . The monodromy
group M(f) is defined as the conjugacy class of the transitive subgroups M(f, y).

2.2 Rational connectedness
Let X be a proper complex algebraic variety of dimension n. We recall that X is rationally connected
if and only if for very general closed points p, q ∈ X there is an irreducible rational curve C ⊂ X
which contains p and q, see [Kol96].

In the sequel we will need the following.

Proposition 2.2.1. Let X ⊂ PN be a complex irreducible variety of codimension m which is
the complete intersection of m hypersurfaces Q1, Q2, . . . , Qm, of degree d1, d2, . . . , dm. Let h =
dim(Sing(X)) and h = −1 if X is smooth. If

m∑

i=1

di + h+ 1 � N (1)

then X is rationally connected. In particular, a complete intersection X of m quadrics with h �
N − 2m− 1 is rationally connected.

Proof. If X is smooth, then
∑m

i=1 di � N implies that X is a Fano variety, hence it is rationally
connected (see [Kol96, p. 240]).

So we can assume that dim(Sing(X)) = h � 0. Let H ∈ (PN )∗ be a general hyperplane: the
hyperplane section Y = X ∩H ⊂ PN−1 is a complete intersection, irreducible and non-degenerate,
of m hypersurfaces of PN−1 of degree d1, . . . , dm. Moreover, dim(Sing(Y )) = h − 1 and Y satisfies
inequality (1). Then it follows, by induction on h, that Y is rationally connected. Finally, for general
points p and q ∈ X, there exists a rationally connected hyperplane section Y containing p and q,
hence an irreducible rational curve C ⊂ X connecting the two points. This concludes the proof.

We remark that, in the previous proof, one can intersect X with a general linear space of
dimension N − h− 1 to get a smooth Fano variety connecting two general points of X.

An important property of rational connectedness is given by the following result, see [GHS03,
DS03, KMM92].

Theorem 2.2.2. Let p : X → B be a proper flat morphism from a complex projective variety into a
smooth complex projective curve, assume that p is smooth over an open dense subset U of B. If the
general fibre of p is a normal and rationally connected variety, then p has a section. Moreover, for
any arbitrary finite set A ⊂ U and for any section σ1 : A→ p−1(A), there exists a section σ : B → X
such that σ|A = σ1.

2.3 Notation
Let S be a smooth, complex, connected, projective surface: we denote by OS the structure sheaf
and by KS a canonical divisor of S, so that OS(KS) is the sheaf of the holomorphic 2-forms. Let
q(S) = h1(S,OS) be the irregularity of S, let pg(S) = h2(S,OS) = h0(S,OS(KS)) be the geometric
genus of S, finally let pn(S) = h0(S,OS(nKS)), n � 1, be the plurigenera of S. We denote by k(S)
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the Kodaira dimension of S. A minimal surface S is said of general type if k(S) = 2. Let C ⊂ S
be an irreducible curve on S, we denote by pa(C) = h1(C,OC ) the arithmetic genus of C, then
pa(C) = 1 + 1

2(C2 + C · KS). If C is smooth, pa(C) = g(C) is the geometric genus of C, and
OS(KS + C)|C = ωC the canonical line bundle on C. A gr

d on a smooth curve C is a linear series
(not necessarily complete) on C of degree d and dimension exactly r.

2.4 Very ample line bundles
Let L be a line bundle on S, L is said k-spanned for k � 0 (i.e. it defines a kth order embedding), if
for any distinct points z1, z2, . . . , zt on S and any positive integers k1, k2, . . . , kt with

∑t
i=1 ki = k+1,

the natural map H0(S,L) → H0(Z,L⊗OZ) is onto, where (Z,OZ) is a zero-dimensional subscheme
such that at each point zi: IZOS,zi is generated by (xi, y

ki
i ), with (xi, yi) local coordinates at zi on S.

Note that k = 0, 1 means, respectively, L globally generated, L very ample (see [BFS89]). In the
sequel, we will need the following.

Lemma 2.4.1. Let S be a smooth complex projective surface and KS be a canonical divisor on it.
Let H be a very ample divisor on S, such that H2 � 5 and (S,OS(H)) does not contain lines and
conics. Then we have the following properties:

(a) the divisor 2H +KS is also very ample;

(b) let R ⊂ |2H +KS | be the locus of reducible curves, then R is a closed subset of codimension
at least 2;

(c) a general pencil P ⊂ |2H +KS | has all irreducible elements and the singular curves of P have
a unique node as singularities.

Proof. Note that as H is very ample, to prove property (a), it is enough that OS(H + KS) is a
line bundle globally generated on S. This is true for any pair (S,OS(H)) which is not a scroll or
(P2, OP2(i)), i = 1, 2, see [SV87]. Let us examine (b). Let S∗ ⊂ |2H +KS | be the locus of singular
curves, then S∗ is an irreducible variety and codimS∗ � 1 (see [Har92]), moreover R ⊂ S∗ (see
[Hart77, Corollary III 7.9]). So property (b) means either codimS∗ � 2 or R is a proper closed
subset of S∗. Let p ∈ S be any point, let ε : X → S be the blow-up of S at the point p with
exceptional divisor E: assume that there exists a smooth irreducible curve in the linear system
|ε∗(2H +KS)− 2E|, this would give us an irreducible curve having a unique node in p in the linear
system |2H+KS |, which implies that R �= S∗. For this it is enough to request that ε∗(2H+KS)−2E
is ample and globally generated, which is of course true if it is very ample. This last property is
achieved for every point p, whenever 2H+KS defines a third-order embedding, (i.e. it is 3-spanned),
see [BS96, Proposition 3.5]. In particular, if H2 � 5, 2H + KS is 3-spanned unless there exist an
effective divisor F on S such that either H ·F = 1 and F 2 = 0,−1,−2 or H ·F = 2 and F 2 = 0, see
[BFS89]. As we assumed that there are no curves embedded by H as lines or conics, this concludes
property (b). Actually, we have also proved that a general element of S∗ is an irreducible curve with
a unique node, which implies property (c).

Remark. Note that on any surface S we can easily find very ample line bundles satisfying the
assumptions of the lemma: for any very ample H, it is enough to take nH with n � 3.

3. Odd ramification coverings of smooth curves

Let X be a smooth, irreducible, complex projective curve of genus g. Let f ∈ C(X) be a non-
constant meromorphic function on X of degree d, then it defines a holomorphic map f : X → P1,
which is a ramified covering with branch locus B ⊂ P1 and ramification divisor R ⊂ X. Let
M(f) be the monodromy group of f , see § 2.1. We say that f is an odd ramification covering if all
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ramification points of f have odd index. Note that if f is an odd ramification covering, then it has
even monodromy, in fact all of the generators of the group M(f) can be decomposed in cycles of
odd length.

3.1 Constructing map with even monodromy
We recall the method used in [AP05] to produce odd ramification coverings. A line bundle L on X
is said a spin bundle if L2 = KX , where KX denotes the canonical line bundle on X. Fix three
distinct points p1, p2, p3 on X and define the divisor

D = n1p1 + n2p2 + n3p3, ni ∈ N, n1 > n2 > n3 � 0; (2)

set d = degD = n1 + n2 + n3 and denote by [D] the support of D, we have deg[D] = k with k = 2
or 3. Let L be a spin bundle on X: we consider the line bundle L(D). Note that if s is a global section
in H0(X,L(D)), then s2 can be identified with a meromorphic form ω on X having poles at the
points of [D]. If ω were an exact form, then there would be a non-constant meromorphic function
f ∈ H0(X,OX (2D − [D])) on X, such that ω = df . It is easy to verify that f : X → P1 would be a
ramified covering with odd ramification index at every point. Let us define, set-theoretically,

A(X,D) = {s ∈ H0(X,L(D)) : s2 is exact}, (3)

F(X,D) = {f ∈ C(X) : df = s2, s ∈ A(X,D)}. (4)

Note that A(X,D) is actually the zero scheme of the following map:

ψ : H0(X,L(D)) → H1(X − [D],C) (5)

sending each global section s into the De Rham cohomology class [s2] of the form ω = s2. Actually
we will consider the projectivization of A(X,D)

H(X,D) = {(s) ∈ P(H0(X,L(D))) : s2 is exact}. (6)

We have the following results.

Proposition 3.1.1. Let X be a smooth complex projective curve of genus g, let D be a divisor as
in (2) with degree d and support of degree k. We assume that: d > 8g + 3k − 4 and, moreover, if
k = 2, then 2ni > 3g + 2 for i = 1, 2; if k = 3, then 2ni > 3g + 3, i = 1, 2, 3. Then H(X,D) ⊂ Pd−1

is a complex projective variety with the following properties:

(i) H(X,D) is an irreducible variety of dimension d− 2g− k and its singular locus Sing(H(X,D))
has dimension h < 4(g − 1) + k;

(ii) H(X,D) ⊂ Pd−1 is a complete intersection of 2g + k − 1 linearly independent quadrics;

(iii) H(X,D) is a normal rationally connected variety.

Proof. Note that ψ factors through the natural linear map

θ : Sym2H0(X,L(D)) → H1(X − [D],C), (7)

defined as θ(s⊗ t) = [s · t], the De Rham cohomology class of s · t. This implies that H(X,D) is the
zero locus of homogeneous polynomials of degree 2. Actually, H(X,D) can be seen as the zero locus
of a global section σ of the following vector bundle of rank 2g+ k− 1 on P(H0(X,L(D))) = Pd−1:

E = H1(X − [D],C) ⊗OPd−1(2), (8)

see [Pir98, Proposition 2.1]. Note that the ideal sheaf IH(X,D) is the image of the dual map σ∗ : E∗ →
OPd−1 , hence it is locally generated by 2g + k − 1 elements. By studying the tangent map we can
obtain that, under the above assumptions, actually H(X,D) is irreducible of dimension d− 2g − k
and, moreover, dim Sing(H(X,D)) = h < 4(g−1)+k, see [Pir98, Proposition 5.1 and Corollary 5.3].

413

https://doi.org/10.1112/S0010437X05001715 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X05001715


S. Brivio and G. P. Pirola

This also implies that H(X,D) is a complete intersection of 2g + k − 1 quadrics and concludes the
proofs of properties (i) and (ii). The variety H(X,D) is normal as from property (i) it is regular
in codimension 1 (see [Hart77, p. 186]). Finally, as H(X,D) ⊂ Pd−1 is an irreducible complete
intersection of 2g + k − 1 quadrics, by Proposition 2.2.1, it is rationally connected if we have

h � d− 4g − 2k,

this immediately follows from property (i), as we assumed d > 8g + 3k − 4.

Let (s) ∈ H(X,D): it defines a unique linear series g1
m(s) on X as follows:

g1
m(s) = {λf + µ = 0}(λ,µ)∈P1 ,

where f ∈ C(X) and df = s2. We have the following result.

Proposition 3.1.2. Let X be a smooth complex projective curve of genus g, let D be a divisor with
degree d and support of degree k as in (2). Assume that: d > 6g+2k−3, if k = 2, then 2ni > 3g+3
for i = 1, 2, if k = 3, then 2ni > 3g+ 4 for i = 1, 2, 3, moreover, the triple (2n1 − 1, 2n2 − 1, 2n3 − 1)
is given by relatively prime integers. Then for general (s) ∈ H(X,D) the linear series g1

m(s) is
base-points free and defines an indecomposable finite morphism F : X → P1 of degree m = 2d− k
with monodromy M(F ) = Am.

For the proof see [AP05, Proposition 3 and Theorem 1].

4. Main constructions

In this section we introduce some basic constructions that, we will need in proving our main theorem.

4.1 Lefschetz pencil
Let S be a smooth complex projective surface and let KS be a canonical divisor on S. Let H be
a very ample divisor on S such that H2 � 5 and (S,OS(H)) does not contain lines or conics. Set
g = pa(2H +KS) and N = (2H + KS)2 � H2 � 5. By Lemma 2.4.1(c), we can choose a general
pencil P = {Ct}t∈P1 in the linear system |2H +KS |, with the following properties:

(i) every curve in P is irreducible;

(ii) the generic curve in P is a smooth, irreducible, complex projective curve of genus g;

(iii) there are at most finitely many singular curves in P and they have a unique node as singular-
ities;

(iv) every pair of curves Ct and Ct′ of P intersect transversally, so that P has N distinct base
points, p1, . . . , pN .

We will call P a Lefschetz pencil of irreducible curves on S of genus g. Starting from these data
(S,H,P ) we will introduce the following constructions.

4.2 Construction 1
Let Ŝ be the smooth complex projective surface obtained by blowing up the base points of the
pencil P :

Ŝ = Bp1,p2,...,pN
(S). (9)

Let us denote by ε : Ŝ → S the blow up map, by E1, . . . , EN the exceptional curves, such that
E2

i = −1 and Ei · Ej = 0, for i �= j, then KŜ = ε∗KS + E1 + · · · + EN . Note that the strict
transforms of the curves of the pencil P satisfies C̃t · C̃t′ = 0, for any t �= t′. Hence, the pencil P
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induces a surjective morphism
φ : Ŝ → P1, (10)

with fibre Ft = C̃t, for any t ∈ P1, Ct ∈ P . Moreover, φ is actually a flat morphism and the
exceptional curves E1, . . . , EN in Ŝ turn out to be sections of the morphism φ. We will define on Ŝ
the line bundle

L = ε∗OS(H +KS). (11)
Note that if Ft is any singular fibre of φ, then its dualizing sheaf ωFt is a line bundle, as we have
ωFt = (ωŜ + Ft)|Ft

, as for smooth fibres. It is easy to verify that for any fibre Ft we have

L2
|Ft

� ωFt, (12)

so we say that L is a spin bundle relatively to φ. We denote by U ⊂ P1 the open subset corresponding
to smooth fibres of φ, set ŜU = φ−1(U), then φ : ŜU → U is a smooth morphism. We have proved
the following.

Claim 1. The smooth complex projective surface Ŝ is endowed with a surjective morphism φ : Ŝ →
P1, with smooth fibre Ft of genus g, and a line bundle L which is a spin bundle relatively to φ.

4.3 Construction 2
Now let us choose three distinct exceptional curves E1, E2, E3 on the surface Ŝ, and fix integers
n1 > n2 > n3 � 0: we will consider on Ŝ the line bundle

L(n1E1 + n2E2 + n3E3). (13)

As each Ei is a section of the morphism φ : Ŝ → P1, for any fibre Ft of φ we have

L(n1E1 + n2E2 + n3E3)|Ft
= Lt(Dt), (14)

where Dt = n1p
t
1 + n2p

t
2 + n3p

t
3, with pt

i = Ei|Ft
and Lt = L|Ft

is a spin bundle on Ft. Set
d = deg(Dt) = n1 +n2 +n3 and [Dt] = the support of Dt, with deg[Dt] = k, k = 2 or 3. We assume
that: d > 8g + 3k − 4, if k = 2, then 2ni > 3g + 3 for i = 1, 2; if k = 3, then 2ni > 3g + 4 for
i = 1, 2, 3, finally (2n1 − 1, 2n2 − 1, 2n3 − 1) are relatively prime integers. For such (d, k), for any
smooth fibre Ft, by Proposition 3.1.1, we can introduce the irreducible projective variety:

H(Ft,Dt) ⊂ P(H0(Ft, Lt(Dt))) = Pd−1
t . (15)

Claim 2. There exists a complex projective variety H and a surjective morphism p : H → P1, with
the following property: let U ⊂ P1 be the open subset corresponding to smooth fibres Ft of φ, for
any t ∈ U , the fibre p−1(t) is the projective variety H(Ft,Dt).

Let us consider on Ŝ the line bundle L(n1E1 +n2E2 +n3E3) and look at its restriction Lt(Dt) to
any fibre Ft. As for all t, Ft is irreducible and lies on a smooth surface, then deg(Lt(Dt)) > 2pa − 2,
implies that h1(Ft, Lt(Dt)) = 0, see [CF96], so we can apply Riemann Roch theorem and obtain
h0(Ft, Lt(Dt)) = d. As φ : Ŝ → P1 is a flat morphism, by Grauert ’s theorem (see [Hart77, p. 288]),
the sheaf

F = φ∗(L(n1E1 + n2E2 + n3E3)) (16)
is a locally free sheaf of rank d on P1. So we can introduce the associated projective space bundle
P(F) and the following smooth morphism

π : P(F) → P1, (17)

whose fibre at t is the projective space P(H0(Ft, Lt(Dt))) = Pd−1
t . Let OF (1) be the tautological

line bundle on P(F), i.e. OF (1)|P(Ft) = OPd−1
t

(1). Let U ⊂ P1 be the open subset where φ is smooth
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and ŜU = φ−1(U). Set W = ŜU − {E1, E2, E3}, we can consider the restriction

φ̄ = φ|W : W → U, (18)

with fibre φ̄−1(t) = Ft − [Dt], for any t ∈ U . As for any smooth fibre Ft, we have h1(Ft − [Dt],C) =
2g + k − 1, the sheaf R1φ̄∗(C) is actually a vector bundle on U with fibre H1(Ft − [Dt],C), set

GU = R1φ̄∗(C). (19)

Let Sym2 F be the 2 symmetric power of F , we have the following natural maps:

α : OF (−2)|U → Sym2 F |U (20)

Θ: Sym2 F |U → GU , (21)

see the proof of Proposition 3.1.1. By composition we obtain a non-zero global section τ of the
vector bundle GU ⊗OF (2)|U . We define the projective variety

HU ⊂ P(F)|U , (22)

as the zero locus of the section τ . It admits a natural surjective morphism pU : HU → U , whose
fibre at t is actually the projective variety H(Ft,Dt). It’ s easy to verify that pU turns out to be
a proper flat morphism. Finally, let H be the scheme-theoretic closure of HU into the projective
variety P(F), then H is a complex projective variety, moreover, as U = P1 − {t1, . . . , tQ}, then
there exists a flat morphism p : H → P1, which extends pU (see [Hart77, p. 258]).

Claim 3. The variety H admits a section σ.

Look at the surjective flat morphism p : H → P1: for any t ∈ U , the fibre p−1(t) = H(Ft,Dt) is
a normal rationally connected variety, see Proposition 3.1.1. This allows us to apply Theorem 2.2.2
to p and to conclude that p has a section, let us denote it by σ,

σ : P1 → H, (23)

with the following property: for general t ∈ U , the linear series g1
m(t), defined by σ(t), on the smooth

fibre Ft, is base points free of degree 2d− k. So, by Proposition 3.1.2, the associated map Ft → P1

is indecomposable with monodromy group A2d−k. Note that under the assumptions made in § 4.3,
m is even and m > 16g + 2 if k = 2, while m is odd and m > 16g + 7 if k = 3.

4.4 Construction 3

There exists a smooth, complex, rational ruled surface Y and a finite rational map of degree m =
2d − k, δ : Ŝ → Y with the following property: for a general smooth fibre Ft the restriction δ|Ft

is
given by the linear series g1

m(t) on Ft and the following diagram commutes:

Ŝ
δ ��

��

Y

��
P1 id �� P1

where the vertical arrows are respectively the morphism φ and the ruling π of Y .

As φ : ŜU → U is a smooth morphism, we can consider the quasi projective variety Ŝ
(m)
U

parametrizing the symmetric products F (m)
t of the smooth fibres Ft of φ. There is natural map

induced by φ, which is a smooth morphism

φm : Ŝ(m)
U → U, (24)
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with smooth fibre F (m)
t . The existence of σ, allows us to define a quasi projective variety I as

follows:
I = {(A, t) ∈ Ŝ

(m)
U × U : A ∈ g1

m(t)}. (25)

Let π1 : I → U the natural projection, then π1
−1(t) � P1 is the linear series g1

m(t). So I is a
quasi-projective surface endowed with a rational ruling π1. Then let Y be a smooth rational ruled
surface whose ruling

π : Y → P1, (26)

that restricts to U is π1, let F Y
t denote the fibre of π at t. Finally, we define the rational map δ: let

x ∈ ŜU , then there exists a unique smooth fibre Ft through x, assume that x is not a base point of
the series g1

m(t), then δ(x) is the unique divisor in g1
m(t) passing through the point x. It is easy to

see that δ is a rational map. Let t ∈ U be a general point, then the fibre Ft is smooth and the linear
series g1

m(t) is base-points free of degree m = 2d − k, see Claim 3. The restriction δ|Ft
is actually

the morphism associated to g1
m(t):

δ|Ft
: Ft → F Y

t � P1, (27)

so the map induced on the P1 must be the identity. Moreover, by Claim 3, for general t ∈ U , the
monodromy group M(δ|Ft

) is the alternating group Am.

4.5 Construction 4
The rational map δ : Ŝ → Y can be resolved with a finite number of blow-ups as follows. Let V ⊂ Ŝ
be an open subset where δ is defined. Let Γδ ⊂ Ŝ × Y be the closure of the graph of the morphism
δ|V . Γδ is a projective variety, and it has two natural projections π1 : Γδ → Ŝ, which is a birational
morphism, and π2 : Γδ → Y , which is a generically finite surjective morphism of degree m. Then
there exist a smooth surface X and a birational morphism r : X → Γδ which is a resolution of
singularities of Γδ, see [Hir63]. Hence, we have:

(i) X is a smooth complex projective surface in the birational class of S;
(ii) there exists a surjective morphism η = φ · π1 · r : X → P1, whose general smooth fibre is

isomorphic to a general smooth fibre Ft of φ;
(iii) there exists a generically finite surjective morphism, f = π2 ·r : X → Y , of degree m, such that

the restriction f|Ft
is actually δ|Ft

, for a general smooth fibre Ft.

So we have proved the following.

Claim 4. We have a commutative diagram:

X

��

f �� Y

��
P1 id �� P1

where the vertical arrows are, respectively, the morphism η and the ruling π of Y , such that for a
general smooth fibre Ft, the monodromy group M(f|Ft

) is the alternating group Am.

5. The main result

5.1 Technical lemma
We start with a basic lemma, which is an easy application of a topological result of Nori (see [Nor83,
Lemma 1.5]).
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Lemma 5.1.1. Let X be a smooth complex projective surface endowed with a surjective morphism
η : X → P1 with general smooth fibre Ft. Let Y be a smooth complex rational ruled surface with
ruling π : Y → P1, and fibre F Y

t � P1. Assume that f : X → Y is a generically finite dominant
morphism of degree m, such that the following diagram commutes:

X
f ��

��

Y

��
P1 id �� P1

then the restriction of f to general smooth fibres of η completely induces the monodromy group
M(f), i.e.

M(f, x) �M(f|Ft
, x),

for a general smooth fibre Ft and x ∈ f(Ft), not a branch point of f .

Proof. Let us consider the morphism f : X → Y , let R ⊂ X be the ramification divisor and B ⊂ Y
the branch locus of f . The following map

q = f|X−f−1(B) : X − f−1(B) → Y −B, (28)

is a covering of degree m in the classic topology. Look at the restriction to a general smooth fibre
Ft of η, by the above commutative diagram, we have

q|Ft
= f|Ft−(Ft∩f−1(B)) : Ft − (Ft ∩ f−1(B)) → F Y

t − (B ∩ F Y
t ),

as R ∩ Ft is actually the ramification divisor of f|Ft
and B ∩ F Y

t is the branch locus of f|Ft
, then

q|Ft
is also a covering of degree m. Now let us also restrict π to Y −B:

π|Y −B : Y −B → P1, (29)

by the above commutative diagram, as the induced map on the P1 is the identity, B cannot contain
a complete fibre. This allows us to conclude that the restriction π|Y −B is also surjective. Moreover,
note that as π is a ruling of a rational ruled surface, it admits a section: so it cannot have multiple
fibres, that is every fibre must have a reduced component. So by [Nor83, Lemma 1.5(c)], we have
the following exact sequence between the fundamental groups:

π1(F Y
t − (B ∩ F Y

t )) → π1(Y −B) → π1(P1), (30)

for a general smooth fibre F Y
t . As π1(P1) = 0, this gives us a surjective map st:

st : π1(F Y
t − (B ∩ F Y

t )) → π1(Y −B). (31)

Let x ∈ Y −B be a point such that x ∈ F Y
t = f(Ft), for a general smooth fibre Ft. We recall that

the monodromy representation is the group homomorphism

ρ(f, x) : π1(Y −B) → Aut(f−1(x)), (32)

whose image is M(f, x). The surjectivity of st immediately implies that

M(f, x) = M(f|Ft
, x), (33)

for a general smooth fibre Ft and for any x ∈ f(Ft), x �∈ B. This concludes the proof.

5.2 Proof of Theorem 2
Let m > 16g + 7 be any integer, we can find a pair of integers (d, k) satisfying the following
properties:

k = 2 or 3, d > 8g + 3k − 4, 2d− k = m.

As H2 � 5 and the pair (S,OS(H)) does not contain lines and conics, see § 4.1, we can choose a
Lefschetz pencil P of irreducible curves of genus g, in the linear system |2H +KS |. We can apply
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all constructions of § 4 to the data (S,H,P ), where (d, k) are given as above. So we produce the
following situation: X is a smooth complex projective surface, birationally equivalent to S, endowed
with a surjective morphism η : X → P1, with smooth fibre Ft of genus g, Y is a smooth complex
rational ruled surface, with ruling π : Y → P1, f : X → Y is a generically finite morphism of degree
m = 2d− k, finally the following diagram commutes:

X
f ��

��

Y

��
P1 id �� P1

where the vertical maps are, respectively, η and π. Moreover, for a general smooth fibre Ft of η,
the monodromy group M(f|Ft

) is the alternating groupAm. Note that all the assumptions of
Lemma 5.1.1 are verified, hence we have

M(f, x) = M(f|Ft
, x), (34)

for a general smooth fibre Ft and a point x ∈ f(Ft), which is not a branch point. As M(f|Ft
) =

Am, for a general smooth fibre Ft, we can finally conclude that the monodromy group M(f) is
actually the alternating group Am.

Remark. Note that the above theorem works under the following more general hypothesis: let H be
an ample divisor, such that 2H +KS is very ample and 2H +KS defines a third-order embedding,
see Lemma 2.4.1.

5.3 Surfaces of general type
We would like to apply the above result to surfaces of general type. Let S be a minimal, smooth
complex projective surface of general type with ample canonical divisor KS . As is well known, for
some n > 0 the pluricanonical map φnKS

is an embedding; in order to apply Theorem 2, we will
be interested in the smallest n such that φnKS

is actually a third-order embedding. In fact, in this
situation, if n = 2t + 1 � 3, we can find a Lefschetz pencil P , of irreducible curves in the linear
system |nKS|, see § 4.1, and apply our constructions of § 4 to the data (S,OS(tKS), P ). At this
point, we will use the following result.

Lemma 5.3.1. Let S be a minimal surface of general type with ample cannonical divisor KS .

(i) If n � 5, the divisor nKS is very ample, if pg � 3 and K2
S � 3, then 3KS is also very ample;

(ii) If n � 5 and K2
S � 3, then nKS defines a third-order embedding; moreover, if K2

S > 5, then
3KS defines a third-order embedding unless there exists an effective divisor F on S such that
KS · F = 2 with F 2 = 0.

For the proofs, see [Cat85] for part (i) and [BFS89] for part (ii).
As an immediate consequence of our result, we have the following.

Theorem 5.3.2. Let S be a minimal, smooth, complex, connected, projective surface of general
type with ample canonical divisor KS , with K2

S > 3. Then for any m > 16(1 + 15K2
S) + 7, there

exist a smooth complex projective surface X, in the birational class of S, and a generically finite
surjective morphism, of degree m:

f : X → Y,

into a smooth complex rational ruled surface Y such that the monodromy group M(f) is the
alternating group Am.

Moreover, if pg � 3 and K2
S > 5, and S does not contain any effective divisor F described in

Lemma 5.3.1, then m > 16(1 + 6K2
S) + 7.
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