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where Q,'(p) = a Q.(n), denoting cos# by p, and replacing the nota-
¢

Ip.
tion Q(9) by Q. (u). The surface velocity thus vanishes, as is
obvious from symmetry. where the axis of the ring cuts the spherical
surface.
The expressions for the velocity potential in the form given above
do not converge rapidly unless the distance of the ring from the
centre of the sphere be considerable compared to the radius.

On a problem in permutations.
By R. E. ALLARDICE, M. A.

The problem to be considered may be stated as follows :—How
many necklaces may be formed with p pearls, » rubies, and d
diamonds ¥

The peculiarity of this problem is that a general solution cannot
be given in terms of p, , and d alone. The form of the solution
depends on the nature of the numbers p, 7, and d ; and it is neces-
sary in solving the problem to consider whether or not these num-

. bers have a common measure, and how many of them are odd and
how many even. All possible cases of the problem are not discussed
in this paper ; but enough of them are considerod to illustrate the
variety of forms that the solution may assume.

If we put p 4+ d=mn, the number of possible arrangements of
the » stones in a line is »!/p!r'd! Hence the question is, how many
of these arrangements will give the same necklace ; or, conversely,
if we take any one form of the necklace, how many different
arrangements of the stones we can get from it by breaking it at
different parts and stretching it out straight. It is obvious that if
the n stones had been all different, the answer to the second of these
questions would have been 2 ; in other words, with n stones all
different, we may form »!/2n necklaces. The further question then
naturally arises, In what cases, if any, are the 2n arrangements of
the stones obtained from each form of the necklace all different when
the stones are not all different? Now these 2n arrangements com-
prise the n that are obtained by a cyclical interchange of the stones,
one at a time, together with the n that are obtained by exactly re-
versing each of these n arrangements.

* This problem was suggested to me by Professor Chrystal.
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The 22 arrangements may fail to be all different for one of the
three following reasons :—

(1). Because an arrangement is not altered when it is reversed.
In this case the arrangement must be symmetrical.

(2). Because an arrangement is reproduced after a cyclical inter-
change of a certain number of the stones. It may easily be seen
that in this case the arrangement considered must be resolvable into
a number of identical groups.

(3). Because an arrangement is reproduced when a number of
the stones have been interchanged cyclically and the resulting ar-
rangement reversed. In order that this may happen, the arrange-
ment considered must consist of two symmetrical groups. These
three cases may be conveniently referred to as the case of a single
symmetrical group, the case of identical groups, and the case of two
symmetrical groups, respectively.

A single symmetrical group will occur if not more than one of
the numbers p, 7, d, is odd ; and not otherwise.

Identical groups will occur if p, , and d have a common measure ;
and not otherwise.

The case of the two symmetrical groups will occur if not more
than two or the numbers p, r, d, are odd ; and not otherwise.

First CasE.

Hence if p, r, and d are all odd and have no common measure,
the number of necklaces that may be formed is n!/2n.p'r!d!, but this
formula will not hold good in any other case. [It may be pointed
out that any two of the numbers may have a common measure and
the formula will still hold ; and that a similar formula will apply to
the case of stones of any number of different kinds, provided there
be an odd number of each of three of the kinds.]

Seconp Case.

Suppose now that two of the numbers, p, r, d, are odd ; but that
these numbers have still no factor in common.

Tetp=27r+1,r=2p+1, d=26.

We may now have two symmetrical groups, a pearl occurring at
the centre of one and a ruby at the centre of the other. It should be
noted further that a cyclical interchange in the case of two symmet-
rical groups produces two symmetrical groups ; and that by means of
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a number of cyclical interchanges one of the groups may be reduced to
a single stone. Hence, if we put v=+ p+ 3, the number of neck-
laces involving two symmetrical groups will be v!/rlp!é!. From each
of these may be obtained » linear arrangements of the stones; and
thus there are altogether n!/p!rid! — n. v!/mip!8! arrangements that do
not involve symmetrical groups, giving (n!/pirld! - n.vl/x!p!d!)/2n
necklaces. Hence the whole number of necklaces is

1 n!  n! + vl (n—1)+ v!
%{ pirid! ;;QS!} Tpldl  2phrld! T 2alpldl

It may be well to illustrate this formula by actually writing out all
the possible arrangements in a particular case.

Put p=1, r=3, d=2; then #=0, p=1, §=1; n=6, v=2.
5! 2

+—— =6

The formula gives - + 5510

The arrangements are the following, the two in the first column
containing, and the others not containing, symmetrical groups :—
prdddr prrddd pddrrd
pdrdrd pddrdr prddrd

THIRD CASE.

Next let only one of the numbers p, 7, d, be odd ; and suppose
that these three numbers have still no common measure.

Let p=2r+1,.r=2p, d=28, n=p+7r+d, v=m+p+8. We
have now the case of a single symmetrical group, and also the case
of two symmetrical groups to consider.

In the latter case one of the groups will contain an odd number of
stones and will have a pearl as the centre one, while the other group
will contain an even number. It may easily be seen that any such
arrangement may be reduced by a number of cyclical interchanges
to a single symmetrical group.

The number of necklaces involving symmetrical groups is v!/=!p!8!,
giving n.v!/xlp!d! different linear arrangements. Hence it may easily
be seen that the whole number of different necklaces is

(n - 1)1/2.plrld! + v!/2.7!pl8!

This formula is exactly the same as that obtained in the last
case ; but = and v have here slightly different meanings.

As an example, put p=1, r=2,d=2; so that v=0,p=1,8=1;
n="5,v=2,
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The formula gives 4!/2.1!12121 + 21/2.011!1! = 4.

The arrangements are the following, the two in the first column
containing, and the other two not containing, symmetrical groups :—
rdpdr rrpdd
drprd drdrp

FourTa CASE.

Suppose in the next case, that p, », and d are all even.

This case is an exception to the assumption made hitherto that
p, 7, and d have no common measure. I shall consider only the case
in which the other factors, when 2 is divided out, are all odd num-
bers, and have no common measure, that is,

p=2m r=2p, d=2§; where m, p and & are odd numbers and
have no common measure. .

We may now have (1) a single symmetrical group; (2) two
symmetrical groups ; (3) identical groups.

Under (2) we have to consider two cases, namely, () that in
which each of the symmetrical groups contains an odd number of
stones, the central stones of the two groups being necessarily of the
same kind ; () that in which each of the symmetrical groups con-
tain an even number of stones, an arrangement which is reducible to
a single symmetrical group by means of cyclical interchanges.

(1). The number of necklaces involving single symmetrical groups
is v1/2.71p!8!, giving n.v!/2.7!p!8! permutations.

(2). The number of necklaces involving two symmetrical groups
of type (a) is Z{(v — 1)!/3.(x — 1)!p!8!}, the three terms corresponding
to the three cases where the middle stones are 2 pearls, 2 rubies and
2 diamonds. The number of permutations that these give is

nZ{(v = 1)I/2.(m — 1)Ip!8!} = n.(v — 1)1 Z7r/2.71p!8! = m.v)/2.71p!8!

(3). The number of permutations involving identical groups is
vi/wlp!8! giving (v — 1)}/2.71p!8! necklaces.

Hence the whole number of permutations not involving any of
these three cases is

n! n.v! vt
pirid! wlplfl wlpld!’

and the whole number of necklaces is
1 n! n.v! v! } v! (v-1)
3\ pirdl " mpst ” whpet f e Y e
(n-1)t v (v=1)

Spirdi T Satptdr T Lrptd)
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As an example, put p=2, r=2, d=2; so that r=1, p=1,
8=1,n=6,v=3.

The formula gives 5!/2.2.2.2 + 31/2 + 2!/4=11.

The arrangements are the following, those in (1) containing a
single symmetrical group, those in (2) two symmetrical groups,
those in (3) identical groups, and those in (4) having none of these

peculiarities : —

(1) dprrpd l (2) pdrprd (4) prddpr
pdrrdp drpdpr} rdpprd
prdder rpdrdp pdrrpd

(3) pdrpdr pprrdd
Firra Cask.

Suppose next that p, , and d have a factor in common. In a
full discussion of the problem a number of particular cases would
require to be considered ; but I shall limit myself to that in which
p, 7, and d are all odd numbers and their G.C.M. is a prime number.
In other words, I assume p=Am, »=>Ap, d= A, where A, , p, and
8 are all odd numbers, A is a prime, and m, p, and & have no factor
in common.

A permutation may consist of A identical groups, each containing
v=m+p+3 terms.

There will be v!/m!p!8! such permutations, giving (v!/7!p!8!)/2v
necklaces.

Hence the whole number of necklaces is

1 { n! v! } (v-—l)!_(n—l)!+(n—v).(v—l)!
on | phrld!” wlpldl | T 2.wlpldl T 2.plrld] In.wlpld!

(=1 A-1 (v
T2pleld! T AT 2xlpld!

As an example, put p=r=d=3; so that r=p=8=1, n=9,
v=3. The formula gives 8!/2.3!313! +2/3 =94.

Only one of the necklaces contains identical groups, namely,
prdprdprd.

Without writing out all the 94 arrangements, we may verify that
this is the correct number by enumerating them in the following
manner :—

We may set down the three pearls in a ring, and count the num-
ber of ways in which the other six stones may be arranged relatively
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to them. The number of stones to be put in each of the three spaces
between the pairs of pearls is given in the following table, with the
total number of corresponding necklaces in each case :—

0 0 6 gives 10 necklaces,
o1 5 , 20 »
02 4 , 2
03 3 , 10 "
11 4 , 10 »
1 23 , 2
2 2 2 bkl 4 »
o

Stath Meeting, 21th April 1890,

R. E. ALLARDICE, Esq., M. A., Vice-President, in the Chair.

On a hydromechanical theorem.
By Dr A. C. ELLioTT.

Giffard’s injector appeared more than thirty years ago. The
first serious attempt to explain its action on dynamical principles
was made by the late William Froude at the Oxford Meeting of the
British Association in 1860. The history of mechanical science is
almost everywhere deeply marked by Rankine ; and it seems, just
as it ought to be, that he should be found to have contributed not a
little to the literature of this particular subject in a paper presented
to the Royal Society of London in 1870. As serving to show how
far the problem is still interesting, even from a high standpoint,
attention may be directed to the exceedingly curious procedure of
Professor Greenhill, where he deals cursorily with the matter at the
page numbered 448 of his article on Hydromechanics in the Ency-
clopcedia Britannica.

When first announced, the statement that the particles of a mere
steam jet could, by the agency of this somewhat simple apparatus,
force for themselves, in addition to a considerable quantity of more
or less cold feed water, re-entrance into the identical boiler from
whence they had escaped, seemed to involve an impossibility. But
the mystery of that aforetime paradox would have been as nothing
had it then been farther known what is now familiar— namely, that
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