
Chapter 4

Primer

Network data calls for—and is analyzed with—many computational and mathematical
tools. One needs good working knowledge in programming, including data structures
and algorithms to effectively analyze networks. In addition to graph theory (Ch. 1),
probability theory is the foundation for any statistical modeling and data analysis.
Linear algebra provides another foundation for network analysis and modeling because
matrices are often the most natural way to represent graphs. Although this book assumes
that readers are familiar with the basics of these topics, here we review the computational
and mathematical concepts and notation that will be used throughout the book. You can
use this chapter as a starting point for catching up on the basics, or as reference while
delving into the book.

4.1 Coding and computation
Studying network data requires creating and using computer code. We assume the
reader is familiar with writing code using basic programming concepts, including loops,
conditional statements, and functions, as well as basic data structures and algorithms.
Here we provide some additional background and notation.

For vs. foreach.
One programming concept worth discussing is the foreach loop. A traditional

for loop uses a numeric index variable that increments between a start and end
value in constant steps. Here is a for loop written with a C-style code:

for (int i=0; i<10; i+=){
[...]

}

The loop (or index) variable i begins at 0 and increases by 1 while it is less than
10.

By comparison, a foreach loop generalizes a for loop by defining a sequence
of values, not necessarily a range of numbers, that are iterated over. For example:

39

https://doi.org/10.1017/9781009212601.006 Published online by Cambridge University Press

https://doi.org/10.1017/9781009212601.006

40 CHAPTER 4. PRIMER

A = ['a', 'b', 'c']
foreach x in A:

[...]
done

Here A is a list of characters, and our variable x will be equal to 'a', then 'b',
then 'c', as the loop progresses. In practice, foreach loops are very useful, as we
can focus on what we are looping over and not have to deal with maintaining and
using index variables.

The concepts are simple but confusion can set in when syntax is succinct: often
a foreach loop is clear from the context and only “for” is written. Indeed, some
programming languages, chiefly Python, use foreach loops exclusively. When first
using such a language, think of the for as really being “foreach” when reading or
writing code.

Working with files
Working with data computationally necessarily requires working with data files. 1 We
assume familiarity with basic file read and write operations in your programming
language of choice. Usually files are “opened” for reading and writing and a file “handle”
is created that provides access to the file from your code. In Python, for instance, a file
can be opened for writing with fout = open("filename", 'w') and we can use the
fout handle to send data to the file:

values = ['a', 'b', 'c']
for s in values:

fout.write(s)
fout.write("\n")

fout.close()

In the example, we explicitly add newline characters ("\n") after writing each string s
and we “closed” the file handle when finished. Python, and most modern languages,
provide great functionality to handle such bookkeeping automatically.

Working with files also requires specifying the locations of those files. For that, paths
are used, which specify where the file is located within your computer’s file structure
by describing the sequence of folders (directories) and sub-folders we would follow to
find the file. Paths can be global (or absolute), specified from the very beginning of
your file system, or relative, specified in relation to your program’s working directory.
Managing a working directory can be a chore for beginners, but by allowing your code
to use relative paths, your code will be portable, and work without being changed on
other computers with different file structures.

Debugging tip: find out how to print your code’s working directory and add this
to the top of your script if you are struggling with file errors. In Python:

import os
print(os.getcwd ())

1 And databases too!

https://doi.org/10.1017/9781009212601.006 Published online by Cambridge University Press

https://doi.org/10.1017/9781009212601.006

4.1. CODING AND COMPUTATION 41

and in R:

print(getwd())

Algorithms and pseudocode
An algorithm is a sequence of instructions to solve a problem or perform a computational
task. Many network calculations boil down to a combination of algorithms. For instance,
the problem of calculating the shortest paths between two nodes in a network can be
achieved by the breadth-first search (BFS) algorithm or Dĳkstra algorithm.

To describe algorithms, we use pseudocode, which is a simplified notation of in-
structions that resemble spoken language. 2 Readers who are familiar with programming
in any common programming language should be able to read pseudocode, regardless
of what language they know. Algorithm 4.1 is pseudocode of the BFS algorithm that
returns all nodes that can be reached along paths starting from node 𝑠.

Algorithm 4.1 Reachable nodes with breadth-first search (BFS). With a few modifica-
tions, this algorithm can also compute the distances (or shortest path lengths) between
nodes in 𝐺.

1: Input: Graph 𝐺 = (𝑉, 𝐸), starting node 𝑠
2: Define 𝑄 as a new queue with 𝑠 as its only element
3: Define visited as a new set with 𝑠 as its only element
4: while 𝑄 is not empty do
5: current = 𝑄.dequeue() ⊲ Get a node to visit
6: for 𝑢 ∈ neighbor(current) do ⊲ Get the neighbors
7: if 𝑢 ∉ visited then
8: visited.add(𝑢)
9: 𝑄.enqueue(𝑢)

10: Return visited

Notice that BFS as written in Alg. 4.1 depends on a queue, a data structure that makes
it easy and fast to retrieve items (in this case nodes) in a particular order—algorithms
and data structures go hand-in-hand. An alternative to BFS is called DFS—Depth-First
Search. Based on the names and Alg. 4.1, can you judge what makes them different?

Computational complexity
Often there are multiple ways to solve a computational problem and the solutions
(algorithms) can wildly vary in terms of their efficiency, which is concretely defined
and studied as computational complexity. For instance, imagine that we are sorting an
array of numbers. Among numerous sorting algorithms, one particularly interesting—
and incredibly simple—algorithm is called “Bogosort,” which can be expressed with
just two lines of pseudocode (see Alg. 4.2).

2 There is an old joke saying that “Python is executable pseudocode” given its syntax resembling pseu-
docode and natural language.

https://doi.org/10.1017/9781009212601.006 Published online by Cambridge University Press

https://doi.org/10.1017/9781009212601.006

42 CHAPTER 4. PRIMER

Algorithm 4.2 Bogosort
while not sorted(deck) do

shuffle(deck)

If the shuffle 3 is random and all elements are distinct, given 𝑛 total elements, the
expected number of comparisons and swaps that should be performed (in the average
case) roughly scales with 𝑛!. In other words, if we have an array with just one million
items, we are looking at about 105,565,709 operations. Even if a supercomputer can
perform 1020 operations per second, we’ll need to wait. . . for some time.

Yes, this is indeed a ridiculous example. But, if you are not equipped with at least a
basic understanding of computational complexity, you will accidentally implement your
own bogo-algorithms. Pretty much everyone who codes had the experience of waiting
for a program to finish, realizing only later that it will not finish within their lifetime
(or until the end of our solar system). The difference between an efficient algorithm and
an inefficient one can determine—not just how long we should wait—but whether the
computation is even possible.

Can’t we just use faster programming languages or more powerful computers? This
is a valid point but only to some extent. In most cases, the fundamental efficiency of the
algorithm easily tops the power of the hardware and programming language.

Time complexity and space complexity The two major components of computational
complexity are time complexity and space complexity. Time complexity is about how
the amount of operations increases (scales) with the size of problem (e.g., the length
of an array in a sorting problem or the number of nodes and edges in a network
calculation). In other words, the question is: would we do 10 times more computation if
our array becomes 10 times longer? Would we do 100 times more computation? Space
complexity is similar, but about how the amount of memory scales with the size of the
problem. There are often—not always—tradeoffs between these two; we can sometimes
speed up a computation by putting more data into memory or save space by doing more
computation.

Big-O Since an algorithm’s performance matters most when the size of input is large,
we usually focus on the limiting behavior of algorithms. (This also abstracts away pesky
implementation details like how fast the CPU is and how efficient the programming
language is.) These are conceptualized based on the “Big-O notation” that captures the
limiting behavior of mathematical functions. As 𝑥 →∞,

𝑓 (𝑥) = O(𝑔(𝑥)) (4.1)

if there exists a positive real number 𝑀 and a real number 𝑥0 such that

| 𝑓 (𝑥) | ≤ 𝑀𝑔(𝑥), for all 𝑥 ≥ 𝑥0. (4.2)

3 By “shuffle” we mean to randomly permute all the elements of a sequence.

https://doi.org/10.1017/9781009212601.006 Published online by Cambridge University Press

https://doi.org/10.1017/9781009212601.006

4.1. CODING AND COMPUTATION 43

For instance, if the time complexity of an algorithm, given the size of input 𝑛, can be
written as 𝑇 (𝑛) = 2𝑛2 + 5𝑛 + 100, we say 𝑇 (𝑛) = O (

𝑛2) Because, for any 𝑛 > 1,

2𝑛2 + 5𝑛 + 100 < 2𝑛2 + 5𝑛2 + 100𝑛2 = 107𝑛2, (4.3)

where 𝑀 = 107 and 𝑔(𝑛) = 𝑛2.
In most cases, the big-O complexity can be calculated by simply keeping only the

fastest-growing term in the full complexity expression. Note that big-O notation specifies
an upper bound, not a precise scaling relationship. In other words, if 𝑓 (𝑛) = O(𝑛), then
we could also write 𝑓 (𝑛) = O (

𝑛2) . However, in the context of algorithm analysis, big-O
notation usually denotes the tighter bounds.

Another crucial consideration is that algorithms’ performance can vary immensely
based on the input. Even a terrible sorting algorithm may work very well if the input is
already almost sorted. Therefore, it is critical to consider multiple scenarios, especially
worst cases. It is customary to report both the average and worst case complexity when
they differ. For instance, the worst-case time complexity of the Quicksort algorithm is
O (
𝑛2) although its average-case time complexity is O(𝑛 log 𝑛).

A sneak peek into the complexity zoo O(1) refers to the case where the algorithm
does not depend on the size of input data at all. Whether it’s 𝑛 = 10 items or 𝑛 =
10,000,000, an O(1) algorithm returns its result within a constant time that does not
scale with 𝑛. For instance, the operation of obtaining the size of an array or a set is
usually O(1) because the data structure usually keeps track of the number of items.
O(𝑁) algorithms tend to be those that traverse the data at least once. For instance,

if we want to identify the maximum value of an unsorted array, we need to scan the
entire array and examine every element at least once. O (

𝑁2) algorithms tend to require
repeat traversals. For instance, in terms of time complexity, bubble sort is a well-known
example of an O (

𝑁2) algorithm. Given 𝑁 elements, we go through every item but the
last one and compare that item to every subsequent item in the array; the operations
scale as 𝑁2. O(log 𝑁) algorithms tend to appear when the data are “nicely organized”
and we can eliminate major portions of the data at every step of the computation. For
instance, if we have an already sorted array, finding the location of a target number
within the array is easy: we can recursively bisect the array. If the value at the middle
of the array is, say, larger than the target value, then we can safely ignore the second
half of the array because all those values will be larger than the target value. This
bisection reduces the computation drastically and we need only the order of O(log 𝑁)
computation. Having a sublinear algorithm for a problem is fantastic! 4

Data structures
Algorithms (and their complexity) are tightly coupled with data structures—the ways
to computationally organize and manipulate collections of data. For instance, sorting
algorithms like heap sort depend on a clever binary-tree data structure called a heap that
allows us to access the smallest (or the largest) item in the collection in constant time.

4 On the other hand, an exponential or even nondetermistic polynomial (NP) algorithm is very challenging.
This is the famous P vs. NP question.

https://doi.org/10.1017/9781009212601.006 Published online by Cambridge University Press

https://doi.org/10.1017/9781009212601.006

44 CHAPTER 4. PRIMER

Let’s describe—mathematically and as “computational objects”—some of the common
data structures that we’ll rely on throughout this book.

Arrays and lists

In the abstract sense, an array or a list is a sequence of items, which do not have to be
unique, usually denoted with square brackets: [𝑎, 𝑏, . . .]. An array usually refers to the
most primitive type of lists that stores the same type of data in a consecutive block of
memory. An array can be indexed; we can obtain the first item or 100th item (e.g., a[0]
and a[100]) in O(1). The size of an array is usually fixed when we allocate it. It is not
possible to quickly find out whether an item is in the array or not. To do so, either we
should scan the whole array (unsorted) or otherwise do a search (e.g., a binary search
on a sorted array).

Lists usually refer to a data structure that can be dynamically lengthened, shrunk, or
modified. A linked list is a data structure constructed by creating a chain of items that
each point to the next (and/or previous) item in the list. We can traverse the linked list
sequentially by following these pointers. Items can be easily added or removed from
the list by modifying these pointers. However, a linked list does not allow us to access
an item by its index.

The number of items in a list is its length. Lists can be homogeneous (every item in
the list is the same type) or inhomogeneous, containing multiple types of items. A list
can even contain elements that are themselves lists, making a list-of-lists.

Tuples, which are usually denoted with parentheses: (𝑥, 𝑦, 𝑧), are similar to lists.
Like a list, a tuple is still a sequentially ordered list of items. Usually the distinction
is whether we can change (list) or not (tuple) the data. Some computer languages
implement list and tuple data structures slightly differently; lists in Python, for instance,
are mutable, while tuples are immutable.

A mutable data structure (or variable) is one whose contents can change after it
has been created while an immutable data structure cannot be changed once it
is created. Using an immutable data structure guarantees that it stays the same
once initialized. We can pass that data structure to a function and be sure the
function won’t have any side effects on the data. While immutable data limits
the computational tasks and algorithms that can be pursued, it is safer and, when
changes aren’t needed, good practice to make data immutable.

Dictionaries

The next data structure worth considering, and one that is used throughout most com-
puter code that works with networks, is the dictionary. Dictionaries or “dicts,” also
called associative arrays, maps, or hashes,5 allow us to efficiently map keys to values.

Dictionaries typically require the keys to be unique, distinct from one another. The
values need not be unique. The cardinality, size, or length of a dictionary is the number
of keys it contains. Dictionaries are denoted with curly braces: {𝑘1 : 𝑣1, 𝑘2 : 𝑣2, . . .} by

5 You can tell something is important when it has a lot of names!

https://doi.org/10.1017/9781009212601.006 Published online by Cambridge University Press

https://doi.org/10.1017/9781009212601.006

4.2. MATHEMATICS 45

writing each element of the dictionary in the form key:value, using a colon (:) to denote
the mapping from key to value. You may on occasion see a dictionary’s key–value pair
written equivalently as a tuple: (key, value).

Dictionaries are especially powerful data structures. We can efficiently determine
whether a key is a member of a dictionary. (Usually this requires immutable keys.) This
means we can efficiently retrieve values when we have a key, giving us a lookup table
that works at (approximately) the same speed regardless of how long it is. A use case
with networks is defining a dictionary where the nodes in the network are the keys and
the values are the sets of neighbors (Ch. 8). Then we can quickly retrieve any node’s
neighbors regardless of how big the network becomes.

Sets

Once we have a dictionary, we can also implement a set (Sec. 4.2.1), which can be
considered (and sometimes implemented as) a dictionary with the item as the key. 6
Unlike a list where [𝑎, 𝑏] ≠ [𝑏, 𝑎], a set is unordered, {𝑎, 𝑏} = {𝑏, 𝑎}, and its elements
are unique. The usual implementations of sets guarantee low time complexity (O(1) or
O(log 𝑁)) operations for item lookup (by using a hashtable, sorted list, or tree-based
data structure) and addition and deletion of items. But it does not allow indexing.

Sets are usually mutable as we can insert or remove elements from them but im-
plementations of sets typically forbid using mutable objects as elements because data
structures work by identifying each element based on its contents and, if those contents
change, the program will lose track of the element. Not only does forbidding mutable
set elements avoid these errors, it allows for data structures to work very efficiently,
meaning that we can tell if a given item is a member of a set without looking at every
element in the set first (i.e., fast item lookup). Regardless of how big the set is, testing for
membership requires the same amount of work,7 This efficient test for set membership
is very powerful, and complicated (network) algorithms can often be expressed very
easily with set data structures.

4.2 Mathematics
Here we describe some notation we’ll use throughout the book and discuss various
concepts from linear algebra and probability, both of which are central to studies of
network data.

4.2.1 Sets and other notation
A set is an unordered collection of unique elements, which can be any mathematical
objects, including other sets.8 A set that contains no elements is called the empty set,

6 The value can be true, 1, or anything that indicates the existence; the value does not matter much when
we use a dictionary as a set.

7 Strictly speaking this is only approximately true. Sometimes, depending on what algorithm is used to
implement the set, there may be more computations needed for bigger sets than smaller sets, but it is usually
less than having to look at every element.

8 As a mathematical object, this is different than the set data structure we just discussed. Some set data
structures, depending on how they are implemented, cannot support sets as members of sets.

https://doi.org/10.1017/9781009212601.006 Published online by Cambridge University Press

https://doi.org/10.1017/9781009212601.006

46 CHAPTER 4. PRIMER

denoted ∅ or sometimes {}. The number of elements in a set is the size or cardinality of
the set; for a set 𝑠, its size is denoted |𝑠 |. We denote a set when listing out its elements
using curly braces: {𝑎, 𝑏, 𝑐} or {𝑎𝑖}𝑛𝑖 B {𝑎1, 𝑎2, . . . , 𝑎𝑛}. An element 𝑥 that belongs to
a set 𝐴 is denoted by 𝑥 ∈ 𝐴; likewise, 𝑥 not in 𝐴 is denoted 𝑥 ∉ 𝐴. The union 𝐴 ∪ 𝐵
of two sets 𝐴 and 𝐵 is the set of elements that appear in either or both of the sets.
Conversely, the intersection 𝐴 ∩ 𝐵 is the set of elements that appear in both 𝐴 and 𝐵.
The difference 𝐴 − 𝐵 is the set of elements in A that are not in B, and likewise, 𝐵 − 𝐴
is the set of elements in B that are not in A. One set can be a subset of another set:
𝐴 ⊂ 𝐵 means that every element in 𝐴 is also in 𝐵. Conversely, 𝐴 ⊃ 𝐵 means that 𝐴 is
a superset of 𝐵: every element in 𝐵 is also in 𝐴. 𝐴 is a proper subset of 𝐵 if and only if
𝐴 is a subset of 𝐵 and 𝐵 contains at least one element not in 𝐴, that is, 𝐵 − 𝐴 ≠ ∅.

Some sets of numbers are common enough that standard symbols are used to
denote them. These include the set of integers Z, the set of real numbers R, and the set
of complex numbers C. (Note that these sets are infinite and each is a superset of the
one that came before: Z ⊂ R ⊂ C.) Another convention is to use superscripts to denote
positive and negative numbers: R+ represents the positive real numbers, for example.

How can we express sets that have complex definitions? For example, the set of all
integers between 0 and 100 that are divisible by 4? We can write this out element-by-
element, of course, but the following notation is common:

{𝑎 | 𝑎 ∈ Z, 0 ≤ 𝑎 ≤ 100, 𝑎 = 0 mod 4}. (4.4)

You can read this kind of expression as “the set of all 𝑎 such that [these conditions
hold]”. In this case, we’d read Eq. (4.4) as “the set of all values of 𝑎 such that” (“|”)
“𝑎 is an integer” (𝑎 ∈ Z), “𝑎 is between 0 and 100 inclusive” (0 ≤ 𝑎 ≤ 100) and “𝑎
is divisible by 4” (𝑎 = 0 mod 4). This notation is called set-builder notation or just set
notation.

On occasion, we will distinguish identities or definitions from statements of equality
by using “:=” instead of “=” (“≡” is another popular alternative).

4.2.2 Linear algebra
Linear algebra provides a powerful language to organize, represent, and manipulate
collections of numbers and variables. As network data are all about collections of nodes
and edges, it is natural to use the language of linear algebra.

Basic definitions A scalar 𝑥 is an individual number. A 𝑑-dimensional vector x is a
collection of scalars 𝑥𝑖 , 𝑖 = 1, . . . , 𝑑, where 𝑥𝑖 is the 𝑖th element of x. (We use boldface
variables to distinguish vectors and matrices from scalars.) Vectors of numbers of the
same length can be added, subtracted, and multiplied, with a variety of definitions for
scalar and vector multiplication. For instance, the dot product between two vectors is
the sum of the products of their elements: a · b =

∑𝑑
𝑖=1 𝑎𝑖𝑏𝑖 .

A matrix X of size 𝑛 × 𝑚 is a collection of scalars arranged into an array or grid
of 𝑛 rows and 𝑚 columns. The elements of a matrix X, typically written 9 𝑋𝑖 𝑗 and

9 It is sometimes common to use an uppercase letter for the matrix and the corresponding lowercase letter
for an element of that matrix. We dispense with that formality.

https://doi.org/10.1017/9781009212601.006 Published online by Cambridge University Press

https://doi.org/10.1017/9781009212601.006

4.2. MATHEMATICS 47

identified by a pair of indices, represent the row and column of the element: 𝑋𝑖 𝑗 is the
element located in row 𝑖 and column 𝑗 . A square matrix is one where 𝑛 = 𝑚; otherwise,
the matrix is rectangular. Vectors can also be distinguished as row vectors or column
vectors. A row vector is then a 1× 𝑑 matrix and a column vector is a 𝑑×1 matrix. Given
row and column vectors, a matrix of size 𝑛 × 𝑚 can also be considered as a collection
of row vectors of length 𝑚 arranged in 𝑛 rows or a collection of column vectors of
length 𝑛 arranged in 𝑚 columns. Sometimes we need to transpose a matrix: A⊺ is the
transpose of A, formed by swapping rows and columns, or 𝐴⊺𝑖 𝑗 = 𝐴 𝑗𝑖 . Transposing a
column vector will create a row vector, and vice versa, which we can use to represent a
dot product: a · b = a⊺b using matrix multiplication (described shortly).

Matrices of numbers are endowed with a variety of mathematical operations. Two
matrices A and B can be added or subtracted by adding or subtracting their elements
element-wise: [A ± B]𝑖 𝑗 = 𝐴𝑖 𝑗 ± 𝐵𝑖 𝑗 . This requires A and B to be the same size (have
the same numbers of rows and columns). A matrix can be multiplied by a scalar along
the same lines: [𝑐A]𝑖 𝑗 = 𝑐𝐴𝑖 𝑗 .

Lastly and most importantly is matrix multiplication. A matrix C = AB is defined
as a collection of dot products between the rows of A and the columns of B: the element
𝐶𝑖 𝑗 =

∑𝑛
𝑘=1 𝐴𝑖𝑘𝐵𝑘 𝑗 of C is the dot product between the 𝑖th row of A and the 𝑗 th column

of B. This definition has a variety of consequences and is fundamental to all areas of
science, engineering, and mathematics. It requires the matrices to be compatible sizes;
if A has 𝑛 columns, B should have 𝑛 rows.

Eigenvalues and eigenvectors For an 𝑛 × 𝑛 square matrix A, when an 𝑛 × 1 vector v
and scalar 𝜆 satisfies the following equation:

Av = 𝜆v,

we call v an eigenvector of A and 𝜆 an associated eigenvalue. When we consider A
as a linear transformation, its eigenvectors are the vectors that do not change direction
under this transformation. Eigenvectors and eigenvalues play a role when diagonalizing
a matrix. If a square matrix A is diagonalizable, we can write it as A = VDV−1, where the
columns of V are the eigenvectors of A and D is a diagonal matrix with the eigenvalues
of A on the diagonal (𝐷𝑖𝑖 = 𝜆𝑖). Often, but not always, we will work with real, symmetric
(A⊺ = A) matrices, which is especially convenient because, by the spectral theorem,
they can always be diagonalized by an orthonormal basis of real eigenvectors. The
eigendecomposition is one of several important matrix factorizations; singular value
decomposition (SVD), for rectangular matrices, is another we will encounter. As we
will see, matrix algebra and spectral analysis play pivotal roles in many problems in
network analysis.

4.2.3 Probability
Probability is the fundamental mathematical tool of statistics and data science. Let us
introduce the basic probability concepts and notation.

Conceptually, probability captures the chances for a random event to occur. An
event 𝐴 is when a random variable takes on a certain value from its sample space Ω,

https://doi.org/10.1017/9781009212601.006 Published online by Cambridge University Press

https://doi.org/10.1017/9781009212601.006

48 CHAPTER 4. PRIMER

defined as the set of all possible outcomes for the event. For instance, 𝐴 can be the
event where a coin is flipped and takes on the value heads, represented as 𝐴 = 𝐻. The
sample space of 𝐴 is Ω𝐴 = {𝐻,𝑇}. A single event can encompass multiple acts; event
𝐵 could be the results from tossing a coin twice in a row, which has a sample space of
{𝐻𝐻, 𝐻𝑇,𝑇𝐻,𝑇𝑇}. Two or more events are said to be mutually exclusive (or disjoint)
if at most one of them can occur. We say the events are collectively exhaustive if at least
one of the events must occur.

An event 𝐴 is said to occur with probability Pr(𝐴) (sometimes written 𝑃(𝐴)). This
Pr(𝐴), defined for the sample space of 𝐴, is a probability distribution function if it
satisfies:

1. Pr(𝐴) ≥ 0 for every 𝐴,

2. Pr(Ω𝐴) = 1,

3. Pr(∪∞𝑖=1𝐴𝑖) =
∑∞
𝑖=1 Pr(𝐴𝑖) for mutually exclusive 𝐴1, 𝐴2, . . .

These axioms of probability—non-negativity, unitarity, and additivity—are the foun-
dation for other properties of probability, such as Bayes’ theorem, described below.

The joint probability for multiple events 𝐴, 𝐵, . . . all occurring is denoted by
Pr(𝐴, 𝐵, . . .). For instance, imagine throwing two dice 𝐴 and 𝐵. Then, Pr(𝐴 = 1, 𝐵 = 1)
is the joint probability that both dice land on 1. The joint probability is the product of
the individual probabilities if and only if the random variables are independent from
each other:

Pr(𝐴, 𝐵) = Pr(𝐴) Pr(𝐵) ⇐⇒ 𝐴 and 𝐵 are statistically independent. (4.5)

As a notation, the joint distribution is symmetric, meaning Pr(𝐴, 𝐵) = Pr(𝐵, 𝐴).
The conditional probability Pr(𝐴|𝐵) 10 is the probability to observe 𝐴 given that

we observe 𝐵. For instance, the probability of rain during the next hour Pr(rain) can
depend heavily on whether there are dark clouds or not. In other words, Pr(rain at 4pm |
clouds) > Pr(rain at 4pm | no clouds). Note that the conditional probability does not
have to describe a temporal or causal relationship. For instance, it is totally valid to
think about Pr(clouds at 2pm | rain at 4pm) (given a future event, we can look back on
past events) or Pr(wearing rain boots | carrying an umbrella).

The conditional probability and the joint probability are related. If we ask for the
probability of both events 𝐴 and 𝐵 occurring, it is the same as asking (i) if event 𝐵 occurs
and (ii) given 𝐵 occurred, if event 𝐴 occurs. Formally, we write this relationship 11 as

Pr(𝐴, 𝐵) = Pr(𝐴 | 𝐵) Pr(𝐵) (4.6)

or
Pr(𝐴 | 𝐵) = Pr(𝐴, 𝐵)

Pr(𝐵) . (4.7)

This is called the chain rule (or general product rule) of probability. This rule plays
an essential role in probability theory by allowing us to reduce any joint probability
distribution into a product of conditional probabilities.

10 It can be read as “the probability of 𝐴 given 𝐵.”
11 If 𝐴 and 𝐵 are independent, then Pr(𝐴 | 𝐵) = Pr(𝐴) , which again shows that Pr(𝐴, 𝐵) = Pr(𝐴) Pr(𝐵) .

https://doi.org/10.1017/9781009212601.006 Published online by Cambridge University Press

https://doi.org/10.1017/9781009212601.006

4.2. MATHEMATICS 49

What if there are more than two variables? We can iteratively apply the chain
rule (Eq. (4.6)) by considering multiple variables as one. For instance, here with three
variables, we first group 𝐴 and 𝐵, then apply the chain rule again:

Pr(𝐴, 𝐵, 𝐶) = Pr(𝐶 | 𝐴, 𝐵) Pr(𝐴, 𝐵)
= Pr(𝐶 | 𝐴, 𝐵) Pr(𝐵 | 𝐴) Pr(𝐴). (4.8)

More generally,

Pr(𝐴𝑛, . . . , 𝐴1) = Pr(𝐴𝑛 | 𝐴𝑛−1, . . . , 𝐴1) · · · Pr(𝐴3 | 𝐴2, 𝐴1) Pr(𝐴2 | 𝐴1) Pr(𝐴1).
(4.9)

When we consider multiple events, the marginal probability of a variable is sim-
ply the probability of individual events (Pr(𝐴), Pr(𝐵), etc.). Using the conditional
probability, when we consider two variables, the marginal probability can be written
as:

Pr(𝐴) =
∑︁
𝐵∈Ω𝐵

Pr(𝐴, 𝐵) =
∑︁
𝐵∈Ω𝐵

Pr(𝐴 | 𝐵) Pr(𝐵), (4.10)

which states that we need to consider all possible cases of the other variable to calculate
the marginal probability. This process of summing/integrating out the other variable or
variables (it holds for more than two variables) is called marginalization.

Finally, combining the symmetry of the joint distribution with the relationship
between joint and conditional distributions reveals Bayes’ theorem:

Pr(𝐴, 𝐵) = Pr(𝐵, 𝐴)
Pr(𝐴 | 𝐵) Pr(𝐵) = Pr(𝐵 | 𝐴) Pr(𝐴)

Pr(𝐴 | 𝐵) = Pr(𝐵 | 𝐴) Pr(𝐴)
Pr(𝐵) . (4.11)

Equation (4.11), despite its simplicity, is one of humanity’s most fundamental mathe-
matical discoveries. It is also connected to many cognitive biases that plague human
quantitative reasoning as many of those biases reflect misunderstandings of conditional
probabilities. 12 Because Bayes’ theorem is a fundamental way to approach inference
problems and learning from data in general, we will be seeing this formula throughout
this book.

4.2.4 Random variables and probability distributions
Random variables A random variable (RV) 𝑋 is a variable endowed with a cor-
responding probability distribution Pr(𝑋) governing the probability that 𝑋 randomly
takes on one of its supported values, denoted 𝑥. An event would be the assignment of 𝑥 to
𝑋 which would then occur with probability Pr(𝑋 = 𝑥). Given a probability distribution
𝑓 (𝑥), often we use 𝑋 ∼ 𝑓 (𝑥) to denote that 𝑋 is drawn from the distribution 𝑓 (𝑥) or
equivalently that 𝑋 is distributed according to 𝑓 (𝑥).

12 Bayes’ theorem tells us we can’t in general just “flip around” a conditional probability, 𝑃 (𝐴 | 𝐵) ≠
𝑃 (𝐵 | 𝐴) , something many intuitively wish to do.

https://doi.org/10.1017/9781009212601.006 Published online by Cambridge University Press

https://doi.org/10.1017/9781009212601.006

50 CHAPTER 4. PRIMER

For example, a coin flip can be represented by a random variable 𝑋 that takes on value
𝑥 = 0 when the coin lands tails and 𝑥 = 1 when the coin lands heads. The probability
distribution for this 𝑋 can then be defined as Pr(𝑋 = 1) = 𝑝, Pr(𝑋 = 0) = 1− 𝑝, where
𝑝 ∈ [0, 1] is a constant (𝑝 = 1/2 for an unbiased or fair coin).

Often distributions have parameters associated with them, non-random quantities
that govern the scale or spread of the RV’s values. For the coin flip, 𝑝 served as a
parameter. When discussing parameters generically, we commonly use the symbol 𝜃 to
represent one or more generic parameters and when defining a function we distinguish
between the values of the parameter(s) and the value of the RV with a semicolon:
𝑓 (𝑥; 𝜃). (When describing an RV’s probability it is also common to use a conditional
probability, Pr(𝑋 | 𝜃), to distinguish between values and parameters.)

Lastly, when dealing with multiple variables, we distinguish whether they follow
the same or different distributions. Suppose we independently flip a coin (𝑋 ∈ {0, 1})
and roll a die (𝑌 ∈ {1 . . . 6}). Because they are independent, the joint probability of
getting 𝑋 = 𝑥 and 𝑌 = 𝑦 is given by

Pr(𝑋 = 𝑥,𝑌 = 𝑦) = 𝑓coin (𝑋 = 𝑥) 𝑓die (𝑌 = 𝑦), (4.12)

where we use 𝑓coin and 𝑓die to distinguish the different distributions the RVs follow.
We usually simplify such expressions using the RVs only to distinguish the densities:
Pr(𝑋 = 𝑥,𝑌 = 𝑦) = Pr(𝑋 = 𝑥) Pr(𝑌 = 𝑦), with the idea being that the distributions
must be different for these different arguments. (When unambiguous, it is also common
to drop the values 𝑥 and 𝑦, Pr(𝑋,𝑌) = Pr(𝑋) Pr(𝑌).) If there is ambiguity, notation
should always make it clear which RV goes with which distribution.

If two or more RVs follow the same distribution, they are identically distributed.
If they are also independent, they are independent and identically distributed or
iid.

Probability mass and probability density For a discrete random variable like the
coin flip, the support of 𝑋 is a finite or countably infinite set. In comparison, a continuous
random variable is one with an uncountably infinite support. Typically these RVs are
real-valued.

The distribution for a discrete random variable is referred to as a probability mass
function (pmf). The pmf assigns probability to each supported value 𝑥 such that∑
𝑥 Pr(𝑋 = 𝑥) = 1 (where the sum runs over all supported values). The probability

that 𝑋 takes on some value is 1 so the probabilities must sum to 1 over the supported
values.

On the other hand, for a continuous random variable, the probability function is
referred to as a probability density function (pdf), which assigns probability densities
to values of 𝑥. The distinction here is that for a continuous random variable there
will be an infinite number of possible values, so each value must be assigned only a
infinitesimal probability in order to be normalized. In other words, the values of a pdf are
not probabilities! Instead, they are probability densities. And there is zero probability
mass at any precise value of the random variable (Pr(𝑥) = 0); the probability mass only
exists when we consider an interval—for instance, the probability that 𝑥 is between 𝑎

https://doi.org/10.1017/9781009212601.006 Published online by Cambridge University Press

https://doi.org/10.1017/9781009212601.006

4.2. MATHEMATICS 51

and 𝑏 is Pr(𝑎 < 𝑥 < 𝑏) =
∫ 𝑏
𝑎

Pr(𝑥)𝑑𝑥. Defined in this way, normalization is ensured
through an integral over the supported values:∫

Pr(𝑥)𝑑𝑥 = 1. (4.13)

The area under the curve must be equal to 1 for the distribution to be properly normalized.

A further consequence of properly normalized pdfs is that the probability densities
do not necessarily remain below 1 as probabilities do. Suppose 𝑋 is supported for
0 ≤ 𝑥 ≤ 1/2. The width of this interval is less than 1, so the height of any pdf
defined on it must exceed 1 at some point for the area under the curve to equal 1.

Cumulative distributions For pdfs and pmfs defined on ordinal support, we can
derive a cumulative distribution function (CDF) 13 that also assigns probabilities to
values of 𝑥. Instead of asking what is the probability or density of a particular value 𝑥,
the CDF asks what is the probability of having a value less than or equal to 𝑥. The CDF
𝐹𝑋 (𝑥) is defined as:

𝐹𝑋 (𝑥) = Pr(𝑋 ≤ 𝑥) =
{∑

𝑥′≤𝑥 Pr(𝑥′) for a pmf,∫ 𝑥
−∞ Pr(𝑥′)𝑑𝑥′ for a pdf.

(4.14)

The CDF is a monotonically increasing function defined over the entire support of 𝑋
and it connects the percentiles of 𝑋 to each value of 𝑥 (for instance, the 50th percentile
or median of 𝑥 is the 𝑥 where 𝐹𝑋 (𝑥) = 1/2). In the context of network analysis, we also
use the other cumulative distribution function, called the complementary cumulative
distribution function (CCDF) 14 and defined as:

�̄�𝑋 (𝑥) = Pr(𝑋 > 𝑥) = 1 − 𝐹𝑋 (𝑥). (4.15)

While conveying the same information as the CDF, the CCDF is particularly useful when
we examine RVs that are strongly skewed such that values far larger than the mean and
median have some nonvanishing probability of being observed. 15 A logarithmic plot
of the CCDF will visually stretch out the small probabilities assigned to the extreme
values, whereas those values will be squashed visually as they accumulate near 1 when
plotting the CDF.

Both the CDF and CCDF can be obtained from the functional form of the pmf or
pdf using Eqs. (4.14) and (4.15), or estimated from the actual data points (creating what
are called the “empirical” CDF and CCDF; see Exercises and Ch. 11).

4.2.5 Commonly encountered distributions
There is unlimited variety in probability distributions, both pmfs and pdfs, but some
types of distributions are so fundamental and so frequently encountered that they are
given specific names. Here we discuss a few.

13 The CDF is sometimes just called the distribution function.
14 The definitions for CDFs and CCDFs are sometimes exchanged.
15 The degree distribution of networks often exhibits such a skewed or “heavy-tailed” distribution, making

this scenario especially important when studying networks.

https://doi.org/10.1017/9781009212601.006 Published online by Cambridge University Press

https://doi.org/10.1017/9781009212601.006

52 CHAPTER 4. PRIMER

Bernoulli distribution A Bernoulli random variable 𝑋 represents a binary or two-
outcome variable (𝑥 = 0 or 𝑥 = 1) with a constant probability for outcomes:

Pr(𝑋 = 1) = 𝑝,
Pr(𝑋 = 0) = 1 − 𝑝, (4.16)

or, written more compactly,

Pr(𝑋 = 𝑥; 𝑝) = 𝑝𝑥 (1 − 𝑝)1−𝑥 for 𝑥 ∈ {0, 1}. (4.17)

The Bernoulli distribution is foundational since so many problems can be reduced to
binary events, such as true/false or win/lose outcomes. In the network context, whenever
we think about random processes such as creating edges at random in a null model, we
think about Bernoulli trials.

Binomial distribution The binomial distribution is a companion to the Bernoulli.
It describes the number of positive outcomes 𝑘 from a collection of 𝑛 independent,
identically distributed (iid) Bernoulli variables, where each Bernoulli has a positive
outcome with probability 𝑝:

Pr(𝑋 = 𝑘; 𝑛, 𝑝) =
(
𝑛

𝑘

)
𝑝𝑘 (1 − 𝑝)𝑛−𝑘 , (4.18)

for 𝑘 = 0, 1, . . . , 𝑛 and (
𝑛

𝑘

)
=

𝑛!
𝑘! (𝑛 − 𝑘)!

is the binomial coefficient. Here 𝑛 and 𝑝 serve as parameters, 𝑝𝑘 (1 − 𝑝)𝑛−𝑘 is the
probability of one particular way to achieve 𝑘 successes and 𝑛 − 𝑘 failures, and

(𝑛
𝑘

)
captures the number of arrangements of these 𝑘 successes across 𝑛 trials. We can write
𝑋 ∼ Binom(𝑛, 𝑝) to denote that 𝑋 follows a binomial distribution with parameters 𝑛
and 𝑝.

In the context of networks, the binomial can, for instance, describe the degree
distribution of a random graph, which is created by performing Bernoulli trials for
every possible pair of nodes—an edge exists between the two nodes with probability 𝑝
or it does not with probability 1 − 𝑝.

Poisson distribution The binomial distribution can be well approximated, when 𝑛 is
large and 𝑝 is small, by a Poisson distribution:

Pr(𝑋 = 𝑘;𝜆) = 𝜆𝑘 e−𝜆

𝑘!
, (4.19)

where 𝜆 = 𝑛𝑝. 16 A Poisson gives the distribution of the number of events in a fixed time
(or space) interval when events occur independently from one another and the rate of
events 𝜆 is known.

16 Actually, this is imprecise. The Poisson distribution derives in the limit from the binomial distribution
by taking 𝑛→∞ and 𝑝 → 0 such that the expected value 𝑛𝑝 → 𝜆 > 0.

https://doi.org/10.1017/9781009212601.006 Published online by Cambridge University Press

https://doi.org/10.1017/9781009212601.006

4.2. MATHEMATICS 53

The correspondence between the binomial and the Poisson can be understood as
follows. If we take a continuous time interval and divide it up into many small intervals,
and assume at most one event can occur per segment,17 the number of segments con-
taining an event can be represented by a binomial with 𝑛 as the number of segments.
If we divide into smaller and smaller segments and reduce the probability for a single
event to occur such that the total rate of events occurring is constant (or, 𝑛 → ∞ and
𝑝 → 0 such that 𝑛𝑝 → 𝜆) then we can show that in the limit the binomial distribution
will converge to the Poisson distribution.18

Normal (Gaussian) distribution A normal distribution or Gaussian distribution is
one of the classic bell-shaped probability distributions. You are likely already familiar
with it. It is ubiquitous due to the central limit theorem—the normal distribution is the
limiting form for the distribution of sums of any iid RVs with finite variances. Thanks to
the central limit theorem, both binomial and Poisson distributions can be approximated
by a normal distribution when the number of trials is large.

Its pdf is given by

𝑓 (𝑥; 𝜇, 𝜎) = 1
𝜎
√

2𝜋
exp

(
−1

2

(𝑥 − 𝜇
𝜎

)2
)
, (4.20)

for 𝑥 ∈ R, where 𝜇 and 𝜎2 are the mean and variance, respectively, of the random
variable. We denote that an RV 𝑋 is normally distributed with mean 𝜇 and variance 𝜎2

with 𝑋 ∼ N(𝜇, 𝜎2). A standard normal distribution is one with 𝜇 = 0 and 𝜎2 = 1.

Log-normal distribution Sometimes, it is not the “raw” value that is normally dis-
tributed, but the logarithm of the value:

𝑓 (𝑥; 𝜇, 𝜎) = 1
𝑥𝜎
√

2𝜋
exp

(
− (ln 𝑥 − 𝜇)

2

2𝜎2

)
. (4.21)

Just as the normal distribution arises when summing multiple iid RVs (via the central
limit theorem), the log-normal distribution is produced by a multiplicative process.
In other words, when many independent (positive) RVs are multiplied together, the
resulting random variable approaches the log-normal distribution (this is also called
Gibrat’s law). For instance, in the distribution of wealth, income, or other financial
applications (e.g., the Black–Scholes model for option pricing), a log-normal distribution
is often a good approximation because the underlying process is multiplicative.

The log-normal and many other distributions are said to be broadly distributed or
heavy-tailed in the sense that the distribution spans multiple orders of magnitude and
a large value of 𝑥 can be expected every so often, a value of 𝑥 that we would never see
under a normal distribution with the same mean.

17 Which becomes more valid of an assumption as segments become smaller.
18 In fact, in Ch. 22 we derive this not using a traditional calculation but to demonstrate a combinatorial

tool called generating functions that are helpful for mathematically analyzing networks and other problems.

https://doi.org/10.1017/9781009212601.006 Published online by Cambridge University Press

https://doi.org/10.1017/9781009212601.006

54 CHAPTER 4. PRIMER

Power-law distribution Another common “broad” distribution is a power-law dis-
tribution 𝑝(𝑥) where the pdf (𝑥 continuous) or pmf (𝑥 discrete) follows a power-law
functional form:

𝑝(𝑥) = 𝐶𝑥−𝛼, (4.22)

with exponent 𝛼 > 0 (usually between 2 and 4) and a suitable normalization constant𝐶.
Some choices are necessary for the support (since 𝛼 is positive, we must exclude 𝑥 = 0)
to ensure normalization, which dictates the possible values of 𝛼; both affect whether
the mean, variance, or other moments are finite.

An extension of a pure power-law distribution is a power law with an exponential
cutoff,

𝑝(𝑥) = 𝐶𝑥−𝛼e−𝜆𝑥 . (4.23)

This introduces a second parameter 𝜆, which governs the value of 𝑥 when the power
law is “overwhelmed” by the exponential. Note that Eq. (4.23) reduces to Eq. (4.22)
when 𝜆 = 0.

A useful property of power-law distribution is that it shows up as a straight line in
a log–log plot of 𝑥 and 𝑝(𝑥). If we take the logarithm of both sides of the equation, we
get

log 𝑝(𝑥) = log𝐶 − 𝛼 log 𝑥. (4.24)

In log–log scale, this is a straight line with slope −𝛼 and intercept log𝐶. Furthermore,
the CCDF of a power-law distribution is also a power-law distribution, with exponent
𝛼 − 1 instead of 𝛼, ∫ ∞

𝑥
𝐶𝑦−𝛼𝑑𝑦 =

𝐶

1 − 𝛼
[
𝑦1−𝛼]∞

𝑥
= 𝐶′𝑥−(𝛼−1) . (4.25)

Because of this and the abundance of heavy-tailed degree distributions in real-world net-
works, examining CCDFs in log–log scale is a common exploratory analysis technique
for network data. We will revisit power-law distributions again in Chs. 11 and 12.

Note that a power-law probability distribution is distinct from a power-law scaling
relation. For instance, Newton’s law of gravitational attraction in classical mechanics
𝐹 = 𝐺 𝑚1𝑚2

𝑟2 ∝ 𝑟−2, an “inverse-square” law, where 𝐴 ∝ 𝐵 means that there exists some
constant 𝑐 such that 𝐴 = 𝑐𝐵, is mathematically a power-law functional form relating 𝐹
and 𝑟 but is not describing the distribution of a random variable.

Broadly distributed random variables appear often in network data, especially as
degree distributions. The degree distribution of many networks can be explained either
by log-normal distribution or the power-law distribution, as we will see later in this book.
Because a log-normal distribution exhibits a heavy tail due to its logarithmic nature,
it is often not easy to distinguish this distribution from the power-law distribution (or
vice versa). In fact, identifying statistically broad distributions from finite data samples
is often fiendishly difficult (Ch. 11 and Sec. 22.6)

While not exhaustive, the above distributions are the most commonly encountered
by scientists working with (network) data and when analyzing and implementing data
analysis methods.

https://doi.org/10.1017/9781009212601.006 Published online by Cambridge University Press

https://doi.org/10.1017/9781009212601.006

4.3. STATISTICS 55

4.3 Statistics
As a subject, statistics is often lumped in with probability, but probability is a fully
axiomatic branch of mathematics whereas statistics is a mathematical science that
leverages probability (in particular) to understand better the properties of data. Statistical
questions often ask about underlying phenomena that give rise to empirical data by
comparing that data with probabilistic models. Answering such questions requires care,
and often we must thoughtfully consider uncertainty when data are noisy or incomplete.

4.3.1 Summary statistics
We often turn to summary or descriptive statistics to quantify our data. Measures of
central tendency can tell us what are “typical” values, and measures of dispersion tell us
how tightly packed values tend to be around their centers. The form of our data dictates
what mathematical operations, and therefore what statistics, we can use. Categorical
variables cannot be added or multiplied, for instance, but we can tell whether two values
are equal, so we can only use the mode for a categorical’s measure of central tendency.
For a numeric variable, however, those operations are permitted, giving us medians or
means to measure central tendencies.

When computing (summary) statistics, such as means and variances, throughout
this book, we’ll use the following notation.

The mean, expectation, or expected value of a random variable 𝑋 is denoted ⟨𝑥⟩
(sometimes 𝐸 [𝑋]) and given by

⟨𝑥⟩ =
∑︁
𝑥

𝑥𝑃(𝑥) (pmf) ⟨𝑥⟩ =
∫ ∞

−∞
𝑥𝑃(𝑥) 𝑑𝑥 (pdf), (4.26)

where the summation or integration is over 𝑋’s support. The expectation of a function
𝑓 (𝑥) of an RV is

⟨ 𝑓 (𝑥)⟩ =
∑︁
𝑥

𝑓 (𝑥)𝑃(𝑥) (pmf) ⟨ 𝑓 (𝑥)⟩ =
∫ ∞

−∞
𝑓 (𝑥)𝑃(𝑥) 𝑑𝑥 (pdf). (4.27)

Using this, the 𝑛th moment (about zero) of a distribution is given by ⟨𝑥𝑛⟩. The mean is
the first moment. The variance of 𝑋 compares the first and second moments,

Var (𝑋) = 〈(𝑋 − ⟨𝑋⟩)2〉 = 〈
𝑋2〉 − ⟨𝑋⟩2 . (4.28)

(The variance of 𝑋 is also commonly denoted by 𝜎2
𝑋 or just 𝜎2 when the context is

clear.) The standard deviation is the square root of the variance. The variance is a
special case of the covariance Cov (𝑋,𝑌) for two RVs (Var (𝑋) = Cov (𝑋, 𝑋)):

Cov (𝑋,𝑌) = ⟨(𝑋 − ⟨𝑋⟩) (𝑌 − ⟨𝑌⟩)⟩ = ⟨𝑋𝑌⟩ − ⟨𝑋⟩ ⟨𝑌⟩ . (4.29)

The covariance tells us how strongly related two variables are, but it’s also common to
use the (Pearson) correlation coefficient,

𝜌𝑋𝑌 =
Cov (𝑋,𝑌)
𝜎𝑋𝜎𝑌

=
⟨𝑋𝑌⟩ − ⟨𝑋⟩ ⟨𝑌⟩√︃〈

𝑋2
〉 − ⟨𝑋⟩2√︃〈

𝑌2
〉 − ⟨𝑌⟩2 , (4.30)

https://doi.org/10.1017/9781009212601.006 Published online by Cambridge University Press

https://doi.org/10.1017/9781009212601.006

56 CHAPTER 4. PRIMER

instead of the covariance to measure how strongly correlated or linearly related the
variables are to each other. Rescaling the covariance in this way ensures −1 ≤ 𝜌 ≤ 1,
making for a more interpretable statistic and more easily compared across different
datasets.

Useful properties Expectation is linear:

⟨𝑐1𝑋 + 𝑐2𝑌⟩ = 𝑐1 ⟨𝑋⟩ + 𝑐2 ⟨𝑌⟩ 𝑐1, 𝑐2 constants, (4.31)〈
𝑛∑︁
𝑖=1

𝑐𝑖𝑋𝑖

〉
=

𝑛∑︁
𝑖=1

𝑐𝑖 ⟨𝑋𝑖⟩ in general. (4.32)

The variance obeys the following (𝑐, 𝑐𝑖 constants):

Var (𝑋) ≥ 0, (4.33)
Var (𝑋 + 𝑐) = Var (𝑋) , (4.34)

Var (𝑐𝑋) = 𝑐2 Var (𝑋) (that 𝑐 is squared is a common “gotcha”), (4.35)

Var

(
𝑛∑︁
𝑖=1

𝑐𝑖𝑋𝑖

)
=

𝑛∑︁
𝑖=1

𝑛∑︁
𝑗=1
𝑐𝑖𝑐 𝑗 Cov

(
𝑋𝑖 , 𝑋 𝑗

)
(4.36)

=
𝑛∑︁
𝑖=1

𝑐2
𝑖 Var (𝑋𝑖) +

∑︁
𝑖≠ 𝑗

𝑐𝑖𝑐 𝑗 Cov
(
𝑋𝑖 , 𝑋 𝑗

)
, (4.37)

Var

(
𝑛∑︁
𝑖=1

𝑐𝑖𝑋𝑖

)
=

𝑛∑︁
𝑖=1

𝑐2
𝑖 Var (𝑋𝑖) (if the 𝑋𝑖 are uncorrelated). (4.38)

Sample statistics Lastly, it can be important to distinguish between the statistics of a
random variable defined above and the statistics computed from a data sample. For a
collection of 𝑛 data points {𝑥𝑖} and {𝑦𝑖}, define

𝑥 =
1
𝑛

𝑛∑︁
𝑖=1

𝑥𝑖 (sample mean), (4.39)

𝑠2
𝑥 =

1
𝑛 − 1

𝑛∑︁
𝑖=1
(𝑥𝑖 − 𝑥)2 (sample variance), (4.40)

𝑠2
𝑥𝑦 =

1
𝑛 − 1

𝑛∑︁
𝑖=1
(𝑥𝑖 − 𝑥) (𝑦𝑖 − �̄�) (sample covariance), (4.41)

𝑟𝑥𝑦 =

∑𝑛
𝑖=1 (𝑥𝑖 − 𝑥) (𝑦𝑖 − �̄�)√︃∑𝑛

𝑖=1 (𝑥𝑖 − 𝑥)2
√︃∑𝑛

𝑖=1 (𝑦𝑖 − �̄�)2
(sample correlation). (4.42)

The sample covariance is unbiased when using 𝑛 − 1 in the denominator (this is called
Bessel’s correction).

While the statistics of a random variable are perfectly defined, they are facts of the
distribution, the sample statistics themselves vary depending on the data sample being

https://doi.org/10.1017/9781009212601.006 Published online by Cambridge University Press

https://doi.org/10.1017/9781009212601.006

4.3. STATISTICS 57

used. A different sample would lead to a different sample statistic, with this difference
decreasing with increasing sample size.

Standardizing A standard score 𝑧 is useful when we wish to “correct” for the mean
and variance of 𝑥:

𝑧 =
𝑥 − ⟨𝑥⟩
𝜎𝑥

. (4.43)

A standard score of 𝑧 means that 𝑥 is 𝑧 standard deviations above (or below, if negative)
the mean of 𝑥. This 𝑧-score lets us compare different data on a common scale and lets us
perform z-tests using the properties of the standard normal. Note that if the variable we
are standardizing is itself the sample mean of a randomly sampled underlying variable,
𝑧 can be expressed with the underlying variable’s standard deviation with a correction
in the denominator:

𝑧 =
𝑥 − ⟨𝑥⟩
𝜎𝑋/
√
𝑛
. (4.44)

Intuitively, this makes sense, as the variability in 𝑥 should decrease with increasing 𝑛.

4.3.2 Inference

Statistical inference is a process of inferring models (assumptions) that explain the data
well. The common approaches to inference are (null) hypothesis testing and Bayesian
inference.

Hypothesis testing proceeds by defining a null hypothesis related to a question of
interest. For example, if we want to understand how strongly correlated 𝑥 and 𝑦 are, we
could take as a null hypothesis that “𝑥 and 𝑦 are uncorrelated.” We then consider a test
statistic, something we can measure in our real data and can understand, traditionally
mathematically, how it behaves assuming the null is true. We then measure the test
statistic in our real data, and ask how probable it is to see a value that large or larger
under the null hypothesis. This “tail probability” is given by the CDF of the null
distribution of the test statistic. If that probability, called a 𝑝-value, is sufficiently small,
we can argue that it is unlikely for the null hypothesis to be true. Hypothesis testing is
a richly developed set of tools, with many tests for many situations and careful ways to
report results. It brings a lot of baggage, however, and is (often, rightfully) criticized. For
instance, we are actually only testing the null, not any actual hypothesis. Likewise, we
often rely on arbitrary thresholds to determine whether a test is “significant”; commonly,
if 𝑝 < 0.05 the test is significant, otherwise it is not. And, since a smaller 𝑝-value is
a stronger result, researchers often, intentionally or not, find themselves optimizing for
𝑝, a misleading practice called p-hacking (Ch. 3). Used properly, hypothesis testing has
its place, and it can be simple and effective, but these concerns should be front of mind.

Bayesian inference is built on Bayes’ theorem. We’ve seen Bayes’ theorem before

https://doi.org/10.1017/9781009212601.006 Published online by Cambridge University Press

https://doi.org/10.1017/9781009212601.006

58 CHAPTER 4. PRIMER

(Eq. (4.11)) but let’s write it again using two symbols 𝐷 and 𝜃, and label it:

𝑃(𝜃 | 𝐷)︸ ︷︷ ︸
“posterior”

=

“likelihood”︷ ︸︸ ︷
𝑃(𝐷 | 𝜃)

“prior”︷︸︸︷
𝑃(𝜃)

𝑃(𝐷)︸︷︷︸
“evidence”

. (4.45)

Here 𝐷 refers to data and 𝜃 refers to parameters. 𝑃(𝜃) is called the prior, or the prior
probability distribution of the parameters. 𝑃(𝐷 | 𝜃) is called the likelihood, or the
likelihood that our model with parameters 𝜃 generates the data 𝐷. 𝑃(𝐷) is usually
called the evidence or marginal likelihood.19 Finally, 𝑃(𝜃 | 𝐷) is called the posterior,
or the posterior probability distribution of 𝜃 given the data.

Once we write the theorem in this way, we can interpret it as following: we can learn
about the conditional probability of parameters given data (“posterior”) by knowing
the conditional probability of data given parameters (“likelihood”), the probability
of parameters (“prior”), and the marginal likelihood of data (“evidence”). In effect,
the left-hand side of Eq. (4.45) tells us what statistical models (what parameters) are
probable given our data and what models are improbable, but this probability is not
easy to compute. The terms on the right-hand side are computable so, thanks to Bayes’
theorem, we have a way to address the posterior, the probability we wish to assess.

If you are not familiar with Bayesian inference, you may be wondering how can
we even think about the “marginal likelihood of data” or the “prior probability distri-
bution of parameters.” Those are great questions! In Bayesian statistics, probability is
conceptualized, not as a fixed number that we can estimate by performing many trials,
but as the degree of belief that an outcome will occur. That is why we can think of
the prior probability distribution of parameters. We explicitly state what we believe (or
don’t believe) about our parameters prior to seeing the data. Data then lets us adjust our
initial belief (prior) to a more informed belief (posterior).

Let’s walk through a toy example. Imagine yourself catching some fish on a fishing
boat floating on a lake. Your goal is to create a good model that explains how many fish
you can catch (per hour) from the lake. Your data are the number of fish you caught in
the past several hours, say:

𝐷 = [4, 1, 2, 10] . (4.46)
Then we can come up with some probabilistic models to explain the data. Suppose one
model (𝑀1) assumes a uniform distribution of the number of fish caught with a single
parameter 𝑁 that determines the maximum number of fishes, or

Pr(𝑛;𝑀1, 𝑁) =
{

1
𝑁+1 𝑛 ∈ {0, . . . , 𝑁},
0 otherwise.

(4.47)

For a second model (𝑀2), let’s assumes a Poisson distribution, which describes processes
that happen with a constant rate:

𝑃(𝑛;𝑀2, 𝜆) = 𝜆𝑛e−𝜆

𝑛!
. (4.48)

19 This name stems from writing the denominator as 𝑃 (𝐷) = ∑
𝜃′ 𝑃 (𝐷 | 𝜃 ′)𝑃 (𝜃 ′) .

https://doi.org/10.1017/9781009212601.006 Published online by Cambridge University Press

https://doi.org/10.1017/9781009212601.006

4.3. STATISTICS 59

Once we have our models, we can think about the likelihood, which captures how
likely it is to have the data given a model. Unlike the probability of a model given
the data, the likelihood is straightforward to calculate. For instance, if we assume our
datapoints are iid, for the first model with 𝑁 = 10, the likelihood is:

Pr(𝐷 | 𝑀1; 𝑁 = 10) =
∏
𝑖

Pr(𝑑𝑖 |𝑀1; 𝑁 = 10) (4.49)

=
1

11
· 1

11
· 1

11
· 1

11
. (4.50)

Likewise, we can compute the likelihood of 𝑀2 in the same way (this time without
plugging in a parameter value):

Pr(𝐷 | 𝑀2;𝜆) =
∏
𝑖

Pr(𝑑𝑖 |𝑀2;𝜆) (4.51)

=
𝜆4e−𝜆

4!
· 𝜆

1e−𝜆

1!
· 𝜆

2e−𝜆

2!
· 𝜆

10e−𝜆

10!
. (4.52)

The ability to calculate the likelihoods lets us compare models and parameters. Let’s
focus on the first model and think about the ratio of two posterior probabilities given
two different parameters (𝑁 = 10 and 𝑁 = 20):

Pr(𝑁 = 10|𝐷)
Pr(𝑁 = 20|𝐷) =

Pr(𝐷 |𝑁 = 10) Pr(𝑁 = 10) Pr(𝐷)
Pr(𝐷 |𝑁 = 20) Pr(𝑁 = 20) Pr(𝐷) (4.53)

=
Pr(𝐷 |𝑁 = 10) Pr(𝑁 = 10)
Pr(𝐷 |𝑁 = 20) Pr(𝑁 = 20) . (4.54)

If this ratio is larger than 1, that means, given the data,𝑁 = 10 is more likely than𝑁 = 20.
Starting from here, there are multiple ways to approach the inference—identifying good
models and their parameters. In general, the process of comparing and then choosing
between models using data is called model selection.

4.3.3 Maximum likelihood estimation
We can see from Eq. (4.54) that the ratio of two posterior probabilities is solely de-
termined by the likelihood and the prior. Let’s first assume that we do not have any
knowledge or prior belief about what the parameters should be. Then we can assume
an equal prior for all possible parameters (Pr(𝑁1) = Pr(𝑁2) for any 𝑁1 and 𝑁2). In this
case, the ratio of posteriors is entirely determined by the likelihood—the higher the
likelihood of a given parameter, the higher the posterior probability of that parameter,
which makes sense! In other words, under these conditions,

Pr(𝜃 |𝐷) ∝ Pr(𝐷 |𝜃). (4.55)

Then, the best parameter given data can be identified by finding the parameter that
maximizes the likelihood:

𝜃MLE = arg max
𝜃

𝑃(𝜃 |𝐷) = arg max
𝜃

𝑃(𝐷 |𝜃). (4.56)

https://doi.org/10.1017/9781009212601.006 Published online by Cambridge University Press

https://doi.org/10.1017/9781009212601.006

60 CHAPTER 4. PRIMER

(The “arg max” of a function 𝑓 (𝑥) is the value(s) of 𝑥 for which 𝑓 (𝑥) is maximized.
A similar definition holds for “arg min.”) This is the basic idea of maximum likelihood
estimation (MLE). It is built on the assumption that, when we don’t have any information
or prior belief about parameter distribution, it is reasonable to assume that the parameter
that maximizes the likelihood is the best parameter. Note that MLE is a point estimate—
it identifies a single parameter value that maximizes the likelihood but it cannot tell us
what is the posterior probability distribution.

4.3.4 Maximum a posteriori
What if we have some information or belief about the prior distribution of the param-
eters? For instance, maybe we have reasons to believe that the fish yield of the lake
should be around 5. Maybe lakes of this size and characteristics tend to have similar
numbers of fish.

Bayes’ theorem provides a straightforward way to incorporate this information
through the prior distribution of the parameter Pr(𝜃). We just need to keep the prior:

𝜃MAP = arg max
𝜃

Pr(𝜃 |𝐷) = arg max
𝜃

Pr(𝐷 |𝜃) Pr(𝜃). (4.57)

This is called maximum a posteriori (MAP) inference. For many common situations,
MAP point estimates tend to be a simple interpolation between the MLE point estimate
and the mean of the prior distribution. For more information, read about “conjugate
priors” and the exponential family.

4.3.5 Bayesian inference
MLE and MAP obtain point estimates—a single point in the parameter space that
maximizes the likelihood or posterior. Although a point estimate can be the “solution,”
it is less useful than inferring the full distribution and sometimes can be misleading. For
instance, imagine a hypothetical case where the likelihood function looks like Fig. 4.1.

𝐴 𝐵

𝜃

L
(L

ik
el

ih
oo

d)

Figure 4.1 A hypothetical likelihood function where most of the probability mass exists (𝐴) far
away from the maximum likelihood point (𝐵).

As you can see, MLE will (or may) point us to 𝐵, where the sharp peak is located.
However, the peak is extremely sharp and the probability mass around the MLE is

https://doi.org/10.1017/9781009212601.006 Published online by Cambridge University Press

https://doi.org/10.1017/9781009212601.006

4.4. SUMMARY 61

negligible compared with the broad peak around 𝐴. In this case, can we justify the
result of MLE, particularly given that most parameter values will be around 𝐴 if we
sample from this distribution?

As shown in this case, a point estimate can be misleading and miss critical infor-
mation about the distribution. With a single estimated parameter value, it is impossible
to know the uncertainty around the estimate and it is also impossible to know whether
there exist other parameters that are almost equally likely. When we say “(full) Bayesian
inference,” we refer to the practice of considering the posterior probability distribution
rather than the point estimate like MLE or MAP.

Sometimes a full Bayesian inference can be accomplished mathematically, by writ-
ing down an expression for the posterior probability. Unfortunately, this tends to be
possible only for simple models with tractable likelihoods. In practice, we often resort
to computational approaches called Markov Chain Monte Carlo (MCMC) that avoid
computing the posterior and instead generate large numbers of samples (parameter
values) that will be distributed following the posterior.20 MCMC can be expensive
to compute, and may need careful guidance to ensure the posterior is being sampled
correctly. This hampered Bayesian inference in the past, but computers are quite fast
nowadays, and many new MCMC algorithms make inference both faster and more
reliable.

4.4 Summary
Network science is a broadly interdisciplinary field, pulling from computer science,
mathematics, statistics, and more. The data scientist working with networks thus needs
a broad base of knowledge. Although helpful, we do not expect the reader to know all
these areas well. Instead, the reader should be prepared enough that they can learn this
material without also needing to learn much of the background that the primer itself
depends on. This chapter serves as a primer for the reader on background information
that we will use through the rest of the book. When necessary, we will refer back to
these materials as we proceed.

Bibliographic remarks
Many resources abound for learning programming in general and for data science in
particular. These days, the two major programming languages for data scientists are
Python and R. Readers wanting to learn more on practical programming in Python
may consider Python for Scientists by Stewart [444] or An Introduction to Python
Programming for Scientists and Engineers by Lin et al. [276], while R for Data Science
by Wickham and Grolemund [491] is an excellent entry point for those interested in R.
Introduction to Algorithms by Cormen et al. [117] is one of the classic starting points
for studying algorithms and data structures.

Readers seeking to learn more linear algebra are encouraged to begin with the classic
Introduction to Linear Algebra (Strang [447]) or the more recent Linear Algebra and

20 An alternative to MCMC is variational inference, which approximates or lower bounds the intractable
denominator in Eq. (4.45).

https://doi.org/10.1017/9781009212601.006 Published online by Cambridge University Press

https://doi.org/10.1017/9781009212601.006

62 CHAPTER 4. PRIMER

Learning from Data (Strang [446]), which gives a broad introduction to linear algebra
using statistics and machine learning as the stage.

For readers interested in brushing up on probability and statistics, we recommend
the excellent All of Statistics by Wasserman [484], the perennial classic Probability
& Statistics for Engineers & Scientists by Walpole et al. [481], and Computer Age
Statistical Inference by Efron and Hastie [142], the latter giving an exciting blend of
statistics and computing. For Bayesian statistics, Doing Bayesian Data Analysis by
Kruschke [256] is a practically focused introduction, while Bayesian Data Analysis by
Gelman et al. [179] is suitable for those with more background.

Exercises
4.1 A multiset acts like a set except duplicates are allowed, so multiset elements need

not be unique. Suppose you are working with a programming language that gives
you set, list, and dict (dictionary) data structures. Describe how to implement
multiset using these built-in data structures.

4.2 We have at the ready an infinite number of true/false questions. Assume questions
are unrelated and each question has probability 𝑝 = 1/20 to have an answer of T,
otherwise the answer is F. We continue to ask questions until the first T answer.
How many questions should we expect to ask?

4.3 Show that Var (𝑋) = 0 if and only if Pr(𝑋 = 𝑐) = 1 for some constant 𝑐.

4.4 The cumulative distribution function (CDF) 𝐹 (𝑥) (Eq. (4.14)) can be estimated
from data using the empirical CDF (ECDF):

𝐹𝑛 (𝑥) = 1
𝑛

𝑛∑︁
𝑖=1

𝐼 (𝑋𝑖 < 𝑥), (4.58)

where

𝐼 (𝑋𝑖 < 𝑥) =
{

1 if 𝑋𝑖 ≤ 𝑥,
0 otherwise.

(4.59)

An advantage of the ECDF over a typical histogram for estimating a distribution
is that the ECDF is defined for all 𝑛 data points, while the histogram is defined at
fewer points due to the need to bin the data.
Describe with pseudocode a simple function that computes the ECDF efficiently
using a sort function.

4.5 We wish to study how a network with 𝑁 nodes and 𝑀 edges changes when an
edge is removed. We use a method 𝑓 (𝑖, 𝑗) that compares a pair of nodes 𝑖, 𝑗 .
We study what removing an edge does by computing 𝑓 before and after the edge
is removed. Computing 𝑓 has complexity O(𝑁 + 𝑀) for one pair. For one edge
removal, what is the complexity of checking the change in 𝑓 over every pair of
nodes? What is the complexity of checking every edge?

https://doi.org/10.1017/9781009212601.006 Published online by Cambridge University Press

https://doi.org/10.1017/9781009212601.006

